Distributed Learning of Equilibria in a Routing Game

Abstract : We focus on the problem of learning equilibria in a particular routing game similar to the Wardrop traffic model. We describe a routing game played by a large number of players and present a distributed learning algorithm that we prove to converge weakly to equilibria for the system. The proof of convergence is based on a differential equation governing the global evolution of the system that is inferred from all the local evolutions of the agents in play. We prove that the differential equation converges with the help of Lyapunov techniques.
Type de document :
Article dans une revue
Parallel Processing Letters, World Scientific Publishing, 2009, 19 (2), pp.189-204. 〈10.1142/S012962640900016X〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00432310
Contributeur : Johanne Cohen Épouse Bournez <>
Soumis le : lundi 16 novembre 2009 - 10:33:19
Dernière modification le : jeudi 10 mai 2018 - 02:06:01

Lien texte intégral

Identifiants

Citation

Dominique Barth, Johanne Cohen, Olivier Bournez, Octave Boussaton. Distributed Learning of Equilibria in a Routing Game. Parallel Processing Letters, World Scientific Publishing, 2009, 19 (2), pp.189-204. 〈10.1142/S012962640900016X〉. 〈inria-00432310〉

Partager

Métriques

Consultations de la notice

290