
HAL Id: inria-00432368
https://inria.hal.science/inria-00432368

Submitted on 16 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logoot: A Scalable Optimistic Replication Algorithm for
Collaborative Editing on P2P Networks

Stéphane Weiss, Pascal Urso, Pascal Molli

To cite this version:
Stéphane Weiss, Pascal Urso, Pascal Molli. Logoot: A Scalable Optimistic Replication Algorithm for
Collaborative Editing on P2P Networks. 29th IEEE International Conference on Distributed Com-
puting Systems - ICDCS 2009, Jun 2009, Montreal, Canada. pp.404-412, �10.1109/ICDCS.2009.75�.
�inria-00432368�

https://inria.hal.science/inria-00432368
https://hal.archives-ouvertes.fr

Logoot : a Scalable Optimistic Replication Algorithm

for Collaborative Editing on P2P Networks

Stéphane Weiss, Pascal Urso and Pascal Molli

Nancy-Université

LORIA

Campus Scientifique Vandoeuvre-lès-Nancy

{weiss,urso,molli}@loria.fr

Abstract

Massive collaborative editing becomes a reality through

leading projects such as Wikipedia. This massive collabo-

ration is currently supported with a costly central service.

In order to avoid such costs, we aim to provide a peer-

to-peer collaborative editing system. Existing approaches to

build distributed collaborative editing systems either do not

scale in terms of number of users or in terms of number

of edits. We present the Logoot approach that scales in

these both dimensions while ensuring causality, consistency

and intention preservation criteria. We evaluate the Logoot

approach and compare it to others using a corpus of all the

edits applied on a set of the most edited and the biggest

pages of Wikipedia.

1. Introduction

Collaborative editing (CE) systems allow distant users to

modify the same data concurrently. The major benefits are:

reducing task completion time, getting different viewpoints,

etc... Wikis, online office suites and version control systems

are the most popular collaborative editing tools.

Several collaborative editing systems are becoming mas-

sive: they support a huge number of users to obtain quickly

a huge amount of data. For instance, Wikipedia is edited

by 7.5 million of users and got 10 million of articles in

only 6 years. However, most of CE systems are centralized

with costly scalability and poor fault tolerance. For instance,

the Wikimedia Foundation spent 2.7 million dollars between

2007 and 2008 for maintaining wiki servers1. To overcome

these limitations, we aim to provide a peer-to-peer (P2P) CE

system.

P2P systems rely on replication to ensure scalability. A

single object is replicated a limited number of times in

structured networks (such as Distributed Hash Tables) or a

unbounded number of times in unstructured P2P networks.

In all cases, replication requires to define and maintain

consistency of copies. With a limited number of replicas,

1. http://wikimediafoundation.org/wiki/Donate/Transparency/en

it is possible to maintain strong consistency models such as

sequential consistency. For instance, some P2P replication

systems are based on consensus algorithm [1]. However,

if the number of replicas grows, the communication cost

becomes too expensive. Collaborative editing can rely on

weaker consistency criteria that generate less traffic and that

are more efficient. For instance, Git [2] distributed version

control system relies on causal consistency, Usenet [3] on

eventual consistency, and CoWord [4], a real-time editing

systems relies on CCI consistency .

CCI consistency have been proven suitable for replicated

collaborative system [5]. CCI consistency means Causality,

Convergence, and Intention preservation. Thus, CCI consis-

tency implies causal consistency and eventual consistency.

Intention preservation means that an operation effect ob-

served on a copy, must be observed in all copies whatever

any sequence of concurrent operations applied before.

Many algorithms have been proposed for maintaining

CCI consistency. Some approaches [6], [7] do no support

P2P constraints such as churn. The others [8], [9], [10]

rely on data “tombstones”. In these approaches, a deleted

object is replaced by a tombstone instead of removing it

from the document model. Tombstones cannot be directly

removed without compromising the document consistency.

Therefore, the overhead required to manage the document

grows continuously.

In this paper, we present a new optimistic replication

algorithm called Logoot that ensures CCI consistency for

linear structures, that tolerates a large number of copies,

and that does not require the use of tombstones. This

approach is based on non-mutable and totally ordered object

position identifiers. The time complexity of Logoot is only

logarithmic according to the document size. We validate the

Logoot algorithm with real data extracted from Wikipedia.

In this paper, we show and analyze the results of this

experiment.

2. P2P Collaborative Editing System

We make the following assumptions about P2P Collabora-

tive Editing Systems (P2P CE) and their correction criteria.

A P2P CE network is composed by a unbounded set of

peer P . Objects edited by the system are replicated on set

of replicas R (with 0 < |R| ≤ |P |). Each replica has the

same role and is hosted on one peer. A peer can host many

replicas, each one of a different object. Peers can enter and

leave the network arbitrary fast. We assume that each peer

possesses a unique comparable site identifier.

The modifications applied on a replica are eventually

delivered to all other replicas. We make no assumption about

the kind of dissemination routine through the P2P network or

the propagation time of modifications. When a modification

is delivered to a replica, the modification is applied. Thus,

the replica diverge in the short term. This kind of replication

is known as optimistic replication [11] (or lazy replication).

According to [12], a collaborative editing system is con-

sidered correct if it respects the CCI criteria:

Causality: This criterion ensures that all operations ordered

by a precedence relation, in the sense of the Lamport’s

happened-before relation [13], will be executed in the

same order on every copy (causal consistency).

Convergence: The system converges – i.e. all replicas are

identical – when the system is idle (criteria also known

as eventual consistency).

Intention: The expected effect of an operation must be

observed on all replicas. One definition of operations

intention for textual documents is :

delete A line is eventually removed from the document

if and only if it has been deleted on, at least, one

replica.

insert A line inserted on a replica eventually appears on

every replica. Moreover, the order relation between

the document lines and the newly inserted line must

be preserved on every replica (as long as these lines

exist).

Along these criteria, we add a numerical scalability crite-

ria from [14].

Scalability: The system must handle the addition of users

or objects without suffering a noticeable loss of perfor-

mance.

3. Related Work

In this section, we present the optimistic replication

approaches that are known to scale according to the number

of users in the network.

WOOKI [9] is a P2P wiki system based on Wooto,

an optimization of Woot [15]. The main idea of Woot

is to treat a collaborative document as a Hasse diagram

that represents the order induced by the insert operations.

Therefore, the Wooto algorithm computes a linear extension

of this diagram. WOOKI barely respects the CCI correction

criteria. Indeed, the causality is replaced by preconditions.

As a result, the happened-before relation can be violated in

some cases. The convergence is ensured by the algorithm

by using tombstones.

TreeDoc [10] is a collaborative editing system which

uses a binary tree to represent the document. Deleted lines

are also kept as tombstones. The authors propose a kind

of “2 phase commit” procedure to remove tombstones.

Unfortunately, this procedure cannot be used in an open-

network such as P2P environments. However, this approach

proposes also an interesting general framework called Com-

mutative Replicated Data Type (CRDT) to build distributed

collaborative editors ensuring CCI criteria.

[7] proposes a distributed optimistic replication mecha-

nism in the CRDT framework, that ensures the CCI criteria

but using tombstones and vector clocks. Vector clocks (aka

state vector) have a size proportional to the number of

replicas in the network, and thus are not scalable when the

number of users grow.

The Operational Transformation approach [16], [17], [5],

[18] is a framework for building distributed collaborative

editor. Except MOT2 [8], all algorithms in this framework

require the use of vector clocks and, thus, do not scale.

MOT2 is a P2P peer-wise based reconciliation algorithm.

This algorithm assumes the existence of transformation func-

tions satisfying some properties. To our best knowledge, the

only transformation functions for text document adapted [19]

for MOT2 are the Tombstone Transformation Functions [20]

which are based on tombstones.

Thus, all of the above approaches that are usable on

P2P networks are based on tombstones. According to the

scalability definition, the tombstone cost is not acceptable on

massive editing systems. For instance, for the most edited

pages of Wikipedia2, the tombstone storage overhead can

represent several hundred times the document size. Tomb-

stones are also responsible of performance degradation.

Indeed, in all published approaches, the execution time of

modification integration depends on the whole document

size – including tombstones. Therefore, letting the number

of tombstones growing degrades the performance.

4. Proposition

Our idea is based on the CRDT [10] framework for

collaborative editing. In the CRDT framework, modifications

produced locally are re-executed on remote replicas. There

is no total order on operations, thus, concurrent operations

can be re-executed in different orders. The main idea of

this framework is to use a data type where all concurrent

operations commute. Combined with the respect of the

causality relationship between operations, this commutation

ensures the convergence criteria.

To achieve commutativity on a linear structure, the authors

propose a solution based on a total order between elements

2. http://en.Wikipedia.org/wiki/Wikipedia:Most frequently edited
articles

in the document. More precisely, there is two kinds of

modification :

• insert(pid, text) that inserts the line content text at

the position identifier pid.

• delete(pid) that removes the line at the position iden-

tifier pid.

In the original paper, a tree structure is introduced to

maintain the total order between positions identifier. How-

ever, safely removing elements from this tree requires tomb-

stones. In [7], authors refer also to the CRDT framework but

use vector clocks to obtain this order.

Our idea is to use a position identifier based on a list of

integers for each line. With such an identifier, a line can

be removed from the document model without affecting the

order of the remaining lines.

4.1. Logoot model

A Logoot document is composed by lines defined by:

〈pid, content〉 where content is a text line and pid a unique

position identifier. There is two virtual lines called lB and lE
to represent the beginning and the ending of the document.

The main idea to insert a line is to generate a new position

A such as P ≺ A ≺ N where P is the position of the

previous line and N the position of the next line.

1 〈pid0, lB〉
2 〈pid1, ”This is an example of a Logoot document” 〉
3 〈pid2, ”Here, pid1 ≺ pid2 ” 〉
4 〈pid3, ”And pid2 ≺ pid3 ” 〉
5 〈pid∞, lE〉

To allow operations to commute, position identifiers must

be unique. Also, since a user can always insert a line, we

must be able to generate a position A such as P ≺ A ≺ N
for any P and N .

In the following definition we assume that each site

maintains a persistent logical clock clocks incremented each

time a line is created.

Definition 1. • An identifier is a couple 〈pos, site〉
where pos is an integer and site a site identifier.

• A position is a list of identifiers.

• A position identifier generated by a replica s is a couple

pos, hs where pos = i1.i2.in.〈p, s〉 is a position

and hs is the value of clocks.

Thus, every position identifier is unique since the last

identifier of the list i1.i2.in.〈p, s〉 which contains the

unique site identifier and the value of the logical clock of

this site.

To obtain a total order between positions, we use the

following definition.

Definition 2. • Let p = p1.p2 . . . pn and q =
q1.q2 . . . qm be two positions, we get p ≺ q if and only

if ∃j ≤ m. (∀i < j. pi = qi)∧ (j = n + 1∨ pj <id qj)

• Let id1 = 〈pos1, site1〉 and id2 = 〈pos2, site2〉 be two

identifiers, we get p1 <id p2 if and only if pos1 < pos2

or if pos1 = pos2 and site1 < site2.

We only compare positions – and not logical clocks –

since there can not be, in the same model, two lines with

the same position (see lemma 3).

Finally, the logical view of a Logoot document looks like:

1 〈〈0, 0〉, NA, lB〉
2 〈〈1, 1〉, 0, ”This is an example of a Logoot document” 〉
3 〈〈1, 1〉.〈1, 5〉, 23, ”How to find a place between 1 and 1” 〉
4 〈〈1, 3〉, 2, ”This line was the third made on replica 3” 〉
5 〈〈MAXINT, 0〉, NA, lE〉

4.2. Modifying a Logoot document

On collaborative editing systems such as wiki or VCS,

an edit on a document is not a single operation but a

set of operations (a patch). Lines inserted by a patch are

often contiguous. Thus, to apportion the line positions, we

define the generateLinePosition(p, q,N, s) function which

generate N positions between a position p and a position

q using numbers in base MAXINT (the maximum of the

unsigned integer plus 1). To obtain short positions, it firstly

select the smallest equal length prefixes of p and q spaced

out at least N . Then it apportions randomly the constructed

positions.

1 function generateLinePositions(p, q, N , s)
2

3 list := {};
4 index := 0;
5 interval := 0;
6

7 while (interval < N)
8 index++;
9 interval := prefix(q, index) − prefix(p, index);

10 endwhile

11 step := interval / N ;
12 r := prefix (p, index);
13 for j:=1 to N do

14 list.add(constructPosition(r + Random (1, step),p,q,s));
15 r := r + step;
16 done

17 return list;

The function prefix(p, i) returns a number in base

MAXINT which each digits is pi.pos the integers of the

first ith identifiers of p (filled with 0 if |p| < i). The

function constructPosition(r, p, q, s) constructs a position

〈〈r1, s1〉.〈r2, s2〉.....〈rn, sn〉〉 where ri is the ith digit of r.

We use the following rules to define each si: 1) if i = n
then si = s, 2) else if ri = pi.pos then si = pi.site, 3) else

if ri = qi.pos then si = qi.site 4) else si = s
For instance, on a site s, insertion positions between p =

〈〈2, 4〉〉 and q = 〈〈10, 5〉〈20, 3〉〉 are apportioned in the set

• {〈〈x, s〉〉|x ∈]2, 10[} if N < 8

• {〈〈2, 4〉〈x, s〉〉|x ∈ [0, MAXINT [}∨
{〈〈y, s〉〈x, s〉〉|x ∈ [0, MAXINT [, y ∈]2, 10[}∨
{〈〈10, 5〉〈x, s〉〉|x ∈ [0, 20[} if N ≥ 8

To choose the value of the value of the integer in the

position, any arbitrary choice can be made. However, to

restrain two different replicas to generate concurrently the

same choice, and thus to reduce the grow rate of the position

list, we apply a random function.

To delete a line, we simply generate a delete operation

which contains the position identifier of this line. Then, we

can completely remove this line from the document.

4.3. Integrating remote modifications

Both line insertion and removal can be integrated in a

logarithmic time according to the number of lines in the

document and constant according to the number of the user

in the P2P network. Indeed, we simply use the binary search

algorithm to find the position in the document corresponding

to the position identifier.

Also, the integration of a delete operation can safely

remove the line from the document model, since the total

order between remaining lines is not affected. Moreover,

this removal will free a position identifier that can be

reused. This mechanism reduces the growing rate of position

identifier as shown in section 5.

4.4. Correctness of the approach

To ensure convergence in the CRDT framework, concur-

rent operations must commute. If line positions are unique,

non mutable, and totally ordered, the different replicas can

apply any series of insert operations in any order and obtain

the same result.

The following lemma states that there cannot be two

different lines with the same position on one model.

Lemma 1. If causality is preserved, the position of a line

is unique on each model.

Proof: The last element of the line position contains

the unique identifier of the site which generates the line.

As a result, two different replicas cannot generate the same

position.

A replica can only generates a position different from

every other position in its model.

A replica can generate an insert operation oi of line l2 with

the same position than a line l1 it has previously generated.

However, this is possible only if l1 was previously deleted on

that replica by a (remote or local) delete operation od. Then,

we have the following happens before relationship od → oi.

Thus, if causality is preserved l2 can only be inserted on a

replica where l1 was deleted.

The following theorem states that Logoot ensures con-

sistency criteria. Its correctness is based on the CRDT

correctness proof of [10].

Theorem 2. If causality is preserved, Logoot ensures con-

sistency.

Proof: Since the couple composed of a site identifier

and a clock value is unique, each position identifier is

unique.

According to Lemma 3, each position is unique, and thus

position identifier are totally ordered.

Finally, since Logoot position identifiers are unique, non

mutable and totally ordered, every couple (insert/insert,
insert/delete and delete/delete) of concurrent operations

commutes. Thus, Logoot data type is a CRDT.

The following theorem states that Logoot respects the

intentions of the insert and delete operations as defined

Section 2.

Theorem 3. If causality is preserved, Logoot ensures inten-

tions.

Proof: Since position identifiers are unique and non

mutable, delete operation intention is respected.

According to Lemma 3, each position is unique. Thus,

the Logoot is always able to compute a new position

between two lines. Since positions are non-mutable and

totally ordered, the line order observed on the generation

replica will be preserved on each other replica.

4.5. P2P constraints

In order to be deploy on a P2P network, our approach

needs to satisfy some constraints. It must scales in terms of

peers and support the churn of the network (i.e. peers which

enter and leave the network arbitrarily fast).

Logoot position identifiers support these constraints since

their size and space complexity are constant according to

peers number (no vector clock). We only assume that each

site has a unique identifier. Additionally to position identi-

fiers, Logoot only require a causal dissemination mechanism.

To obtain it, a scalable broadcast such as the lightweight

probabilistic broadcast [21] in association with causal barri-

ers [22] can be used.

Also, the Logoot framework supports network churn since

it does not require any group membership mechanism or

consensus algorithm. It also does not require to know the

number of peers.

The following section discuss about Logoot scalability in

terms of number of edits.

5. Evaluation

The size of Logoot position identifiers is unbounded.

Theoretically, position identifiers can grow each time a line

is inserted. Thus, if no line is ever removed, the size of

the document model overhead can be
∑n

i = O(n2) where

n is the total number of inserted lines. However, due to

the randomized nature of the algorithm, such a worst case

can only arrive with a probability equal to 1/MAXINTn

which is negligible. In practice, lines are often removed and

position identifier are apportioned, thus the overhead size

remains low.

In order to effectively measure the Logoot overhead, we

have replayed the modifications made on some Wikipedia

pages in a Logoot document. For instance, in the proportion-

ally worst result of our test bed (case 2, Figure 4), their is a

total of 43352 identifiers, to be compared with the number

of inserted lines n = 623863.

On another hand, in tombstones-based approaches, the

size of the document model is also unbounded. The Wooto

and Treedoc approaches have a constant overhead for each

inserted line, thus strictly proportional to n. Comparing to

the number of tombstones, the size of each position identifier

remains low. Our approach is sightly less efficient only in a

specific case (see Section 5.2.3).

5.1. Methodology

In our implementation, we use 8-bytes integers for site

identifiers and positions, and 4-bytes integers for the logical

clock, hence, a position identifier contains at least 20 bytes.

For the Wooto approach, we use an 8-bytes integer for

the site identifiers and 4-bytes integers for the logical clock

and the degree. Then, the overhead for each line is 16 bytes.

About the TreeDoc approach, we do not consider the tree

overhead, we only count one 8-bytes integer for the site

identifier and one 4-bytes integer for the counter. Finally,

the overhead for each line is 12 bytes.

To replay the histories of some Wikipedia pages, we

use the MediaWiki API3 to obtain an XML file containing

several revisions of a specific Wikipedia page. Then, using a

diff algorithm [23], we compute the modifications performed

between two revisions. Modifications are simply re-executed

in our model. Since our approach generates each position

randomly, we re-executed ten times each page history to

obtain average values.

We also measure the overhead for Wooto and TreeDoc.

The result obtained for TreeDoc does not take account of

the “stabledel” and “gc” procedures which aim to remove

tombstones. We motivate this choice by the fact that these

procedures require to know the exact number of replicas

which is unknown, unbounded and unstable in P2P net-

works.

The overhead of Wooto and TreeDoc are directly com-

puted from the number and the type of operations performed

3. http://www.mediawiki.org/wiki/API:Query - Properties#revisions .
2F rv

on the document. Indeed, their overhead are directly propor-

tional to the number of inserted lines in the document since

deleted lines remain as tombstones.

We have applied this schema on the top pages of three

categories4 :

• The most edited encyclopedic pages,

• The most edited pages,

• The biggest pages.

For each of the treated pages, we present the average – over

the last 100 edits – overhead of the Logoot, Wooto and

Treedoc approaches. We present the average size of the page

and the number of patches (i.e. edits on the page).

5.2. Results

Figure 1 shows the relative (size of the overhead divided

by the size of the visible document on a logarithmic scale)

overhead of the three different approaches on the most

edited encyclopedic page of the English Wikipedia. Figure 2

shows the absolute overhead. The Logoot overhead remains

constant all along the editing session, while the overhead of

tombstones-based approaches continuously grows.

Finally, the Logoot overhead is inferior to the document

size while tombstones-based approaches require more than

100 times the document size and continuously grows. While

the “George W. Bush” page contains only about 553 lines,

the number of deletions is about 1.6 million. As a conse-

quence, tombstones-based systems are not well-suited for

such documents since we obtain 1.6 million tombstones for

only 553 lines.

Most of the modifications done on Wikipedia pages

consists in updating the content of some existing lines. To

ensure user’s intentions, distributed editing systems handle

such an update as deleting the old content and inserting the

new content. Thus, the number of tombstones grows quickly.

Also, the figure 1 shows several peaks which are mainly

due to vandalism acts. Indeed in some of the most edited

encyclopedic pages of Wikipedia, there is a lot of vandalism

acts done by users, including erasing the whole content of

the page. Every vandalism is reverted by re-introducing the

previously erased content or removing malicious content

introduced. This process adds each time a lot of tombstones

(up to the page size). Introducing a specific undo mechanism

that reuses tombstones such as [19] should reduce the

overhead due to tombstones.

5.2.1. Most edited encyclopedic Pages. The Figures 3, 4

and 5 show the average relative overhead (i.e. the size of

the overhead divided by the size of the visible document)

4. According to http://en.Wikipedia.org/wiki/Wikipedia:Most
frequently edited pages and http://en.Wikipedia.org/wiki/Special:
LongPages on end of November 2008. However, due to some technical
issues (i.e. invalid characters, missing patch, ...), we skipped some of the
top pages, but the first page of each category is presented.

Figure 1. Relative overhead for “George W. Bush” page.

computed on the 100 last revisions of each page for the

approaches Logoot, Wooto and TreeDoc. The column “Size”

indicates the average size of each pages for the 100 last

revisions. Finally, in the column “Number of Patches”, we

show the number of edits done on each pages.

The Figure 3 presents the results obtained on the most

edited encyclopedic pages. The histories of such pages show

a lot of edits as well as vandalism acts. A huge number

of deletions has been performed on such pages, hence,

tombstones-based approaches show an important overhead.

On the contrary, the Logoot overhead remains low.

5.2.2. Most edited Pages. These pages (Figure 4) are

discussion pages or special pages mostly edited by bots. In

such pages, there is no or very few vandalism acts but a lot

of edits.

For all these pages, the Logoot approach is more efficient

than tombstones-based approaches. However, we can notice

that the difference is far more important for pages were data

are very volatile for instance like case 1 (a communication

channel to detect and block vandals) or like case 4 (a

sandbox). The other cases represent discussion pages. Users

ask questions, and other users reply by modifying the page.

Each topic is removed after one week. They are edited in the

same way : mostly adding content at the end of the page and

removing week old topics content at the beginning. Thus,

there is, in these pages, a lot of tombstones but the Logoot

position identifiers grow as well.

5.2.3. Biggest Pages. These pages (Figure 5) are often

lists of elements. If these lists are always edited in the

same way (for instance adding elements at the end of the

page), they represent the worst cases for our approach.

Indeed, the Logoot position identifier will grow the quickest,

especially if insertions are done in many different occasions.

Effectively, in cases 4, 9, and 10, our approach is less

efficient than tombstones-based approaches.

However, these results show that our approach is in

average, even in these disadvantageous real cases, less costly

than tombstones-based approaches.

5.3. Limits of the experimentation

Since Wikipedia uses a centralized wiki, we can expect

a slightly different behavior in a P2P system. For instance,

Wikipedia reduces the impact of concurrent modifications.

In a P2P environment, preventing users to make concurrent

modifications is not a realistic hypothesis. Therefore, con-

current modifications are automatically merged. This will

certainly produce an “inconsistent” document which requires

Figure 2. Absolute overhead for “George W. Bush” page.

the intervention of some user to correct it. Therefore, the

number of edits will certainly be more important in a P2P

wiki than in a centralized wiki.

In Wikipedia, some pages are protected to reduce the

number of vandalism acts. However, such protection mech-

anism is not compatible with P2P constraints. Therefore, in

a P2P wiki, the number of vandalism acts is certainly more

important. Therefore, we expect to obtain more edits and

vandalism acts on a P2P wiki system.

Contrary to the Woot approach, CRDT approaches, in-

cluding ours, requires a causal broadcast to achieve conver-

gence. However, a causal delivery implies an overhead on

each message sent by each replica. The two main mechanism

to achieve a causal delivery are vector clocks [24] and causal

barriers [22]. Vector clocks are not usable in P2P networks

since their sizes are proportional to the number of replica.

Causal barriers have a smaller size, that depend only on the

degree of concurrency of the operations in the network. On

collaborative editing system, this degree remains low : less

than 3 edits per second on the whole English Wikipedia in

average5. However, a realistic measure of the communication

overhead can only be achieved with a corpus of concurrent

collaborative editions.

6. Conclusion

In this paper, we have presented the Logoot algorithm.

Logoot is an optimistic replication algorithm that ensures

CCI consistency on linear structures. Logoot can be used on

structured or unstructured P2P networks. It does not require

tombstones. Therefore, the space overhead remains linear

during the life of the document and no garbage collector is

required.

We validated the logoot algorithm on a corpus extracted

from Wikipedia. The experimentation demonstrates that the

Logoot unbounded list of identifiers associated to each line

5. 2.69 in October 2008 according to http://en.wikipedia.org/wiki/
Wikipedia:Statistics

Pages
Overhead (in percent) Number Size

Logoot Wooto TreeDoc of Patches (in bytes)

1 George W. Bush 8.33 16128.75 14590.79 41563 133146

2 List of World Wrestling Entertainment employees 39.24 8413.41 6310.05 27152 16673

3 United States 8.30 5875.07 4406.31 24781 158242

4 Jesus 9.83 4179.09 3134.32 20271 125669

5 2006 Lebanon War 13.62 927.12 695.34 17780 139458

6 Islam 15.92 2996.30 2247.22 15315 101278

7 Roman Catholic Church 5.92 1129.51 847.13 14378 170380

8 Deaths in 2006 18.51 1747.24 1310.43 14029 21880

9 Canada 17.88 4431.19 3323.39 13992 112589

10 Akatsuki (Naruto) 9.81 389.89 292.42 13929 60638

Average 14.74 4621.76 3715.74 20319 106639

Figure 3. Most edited encyclopedic pages

Pages
Overhead (in percent) Number Size

Logoot Wooto TreeDoc of Patches (in bytes)

1
Wikipedia: Administrator intervention against van-
dalism

27.78 287530.03 215647.52 438330 2369

2 Wikipedia: Reference desk/Miscellaneous 520.21 7492.31 5619.23 148283 133204

3 Wikipedia: Reference desk/Science 186.14 3431.45 2573.59 142722 190858

4 Wikipedia: Introduction 43.74 4195621.30 3146715.98 132693 317

5 Wikipedia: Help desk 58.11 9266.41 6949.81 126509 96256

Average 167.20 900668.3 675501.23 197707 1011.98

Figure 4. Most edited pages

Pages
Overhead (in percent) Number Size

Logoot Wooto TreeDoc of Patches (in bytes)

1 Line of succession to the British throne 23.65 488.30 366.23 3317 376760

2 United States at the 2008 Summer Olympics 52.65 314.71 236.03 2314 314748

3 List of sportspeople by nickname 19.14 82.34 61.75 2332 309576

4 List of Brazilian football transfers 2008 27.08 11.33 8.5 752 287128

5 List of college athletic programs by U.S. State 34.60 48.56 36.42 868 305294

6 List of Chinese inventions 5.11 37.71 28.29 2344 293228

7 List of suicide bombings in Iraq since 2003 13.51 24.55 18.42 1260 215763

8 China at the 2008 Summer Olympics 61.55 134.15 100.61 1552 268720

9 List of urban areas in Sweden 40.04 39.61 29.71 19 108353

10 Table of United States Core Based Statistical Areas 63.55 61.54 46.15 31 252236

Average 34.09 124.28 93.21 1478.9 320899

Figure 5. Biggest pages

stays acceptable in practice. The experimentation also shows

that Logoot has better average performances than the WOOT

and Treedoc algorithms.

In the future, we plan to evaluate Logoot overhead in

time and to extend it to manage more structured data such

as XML documents. We are also working on a group undo

feature.

References

[1] T. Schütt, F. Schintke, and A. Reinefeld, “Scalaris: reliable
transactional p2p key/value store,” in ERLANG ’08: Proceed-
ings of the 7th ACM SIGPLAN workshop on ERLANG. New
York, NY, USA: ACM, 2008, pp. 41–48.

[2] L. Torvalds, “git,” (April 2005), http://git.or.cz/.

[3] R. Salz, “InterNetNews: Usenet transport for Internet sites,”
in USENIX conference proceedings. San Antonio, Texas,

tats-Unis: USENIX, t 1992, pp. 93–98. [Online]. Available:
citeseer.ist.psu.edu/salz92internetnews.html

[4] S. Xia, D. Sun, C. Sun, D. Chen, and H. Shen, “Leverag-
ing single-user applications for multi-user collaboration: the
coword approach.” in CSCW, J. D. Herbsleb and G. M. Olson,
Eds. ACM, 2004, pp. 162–171.

[5] C. Sun and C. A. Ellis, “Operational transformation in real-
time group editors: Issues, algorithms, and achievements.” in
Proceedings of the ACM Conference on Computer Supported
Cooperative Work - CSCW’98. New York, New York, tats-
Unis: ACM Press, Novembre 1998, pp. 59–68.

[6] M. Suleiman, M. Cart, and J. Ferrié, “Concurrent operations
in a distributed and mobile collaborative environment,” in
Proceedings of the fourteenth International Conference on
Data Engineering - ICDE’98. Orlando, Floride, tats-Unis:
IEEE Computer Society, Fvrier 1998, pp. 36–45.

[7] H.-G. Roh, J. Kim, and J. Lee, “How to design optimistic
operations for peer-to-peer replication,” in JCIS, 2006.

[8] M. Cart and J. Ferri, “Asynchronous reconciliation based
on operational transformation for p2p collaborative environ-
ments,” in CollaborateCom, 2007.

[9] S. Weiss, P. Urso, and P. Molli, “Wooki: a p2p wiki-based
collaborative writing tool,” in Web Information Systems En-
gineering. Nancy, France: Springer, December 2007.

[10] M. Shapiro and N. Preguia, “Designing a commutative
replicated data type,” INRIA, Rapport de recherche INRIA
RR-6320, October 2007. [Online]. Available: http://hal.inria.
fr/inria-00177693/fr/

[11] Y. Saito and M. Shapiro, “Optimistic replication,” ACM
Computing Surveys, vol. 37, no. 1, pp. 42–81, 2005.

[12] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving
convergence, causality preservation, and intention preserva-
tion in real-time cooperative editing systems,” ACM Transac-
tions on Computer-Human Interaction (TOCHI), vol. 5, no. 1,
pp. 63–108, Mars 1998.

[13] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system.” Commun. ACM, vol. 21, no. 7, pp. 558–
565, 1978.

[14] B. C. Neuman, “Scale in distributed systems,” in Readings
in Distributed Computing Systems. IEEE Computer Society
Press, 1994, pp. 463–489.

[15] G. Oster, P. Urso, P. Molli, and A. Imine, “Data Consis-
tency for P2P Collaborative Editing,” in Proceedings of the
ACM Conference on Computer-Supported Cooperative Work
- CSCW 2006. Banff, Alberta, Canada: ACM Press, nov
2006, pp. 259–267.

[16] C. A. Ellis and S. J. Gibbs, “Concurrency control in group-
ware systems.” in SIGMOD Conference, J. Clifford, B. G.
Lindsay, and D. Maier, Eds. ACM Press, 1989, pp. 399–
407.

[17] M. Suleiman, M. Cart, and J. Ferrié, “Serialization of concur-
rent operations in a distributed collaborative environment.” in
GROUP, 1997, pp. 435–445.

[18] D. Li and R. Li, “An approach to ensuring consistency in
peer-to-peer real-time group editors,” Computer Supported
Cooperative Work, vol. 17, no. 5-6, pp. 553–611, 2008.

[19] S. Weiss, P. Urso, and P. Molli, “An undo framework for p2p
collaborative editing,” in CollaborateCom, Orlando, USA,
November 2008.

[20] G. Oster, P. Urso, P. Molli, and A. Imine, “Tombstone trans-
formation functions for ensuring consistency in collaborative
editing systems,” in The Second International Conference
on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom 2006). Atlanta, Georgia,
USA: IEEE Press, November 2006.

[21] P. T. Eugster, R. Guerraoui, S. B. Handurukande,
P. Kouznetsov, and A.-M. Kermarrec, “Lightweight
probabilistic broadcast,” ACM Trans. Comput. Syst.,
vol. 21, no. 4, pp. 341–374, 2003.

[22] R. Prakash, M. Raynal, and M. Singhal, “An adaptive causal
ordering algorithm suited to mobile computing environ-
ments,” J. Parallel Distrib. Comput., vol. 41, no. 2, pp. 190–
204, 1997.

[23] E. W. Myers, “An o(nd) difference algorithm and its varia-
tions,” Algorithmica, vol. 1, no. 2, pp. 251–266, 1986.

[24] F. Mattern, “Virtual time and global states of distributed
systems,” in Proceedings of the International Workshop on
Parallel and Distributed Algorithms, M. C. et al., Ed. Chteau
de Bonas, France: Elsevier Science Publishers, Octobre 1989,
pp. 215–226.

