Skip to Main content Skip to Navigation
Reports

Planar graphs with maximum degree Delta\geq 9 are (\Delta+1)-edge-choosable -- short proof

Nathann Cohen 1 Frédéric Havet 1
1 MASCOTTE - Algorithms, simulation, combinatorics and optimization for telecommunications
CRISAM - Inria Sophia Antipolis - Méditerranée , Laboratoire I3S - COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués
Abstract : We give a short proof of the following theorem due to Borodin~\cite{Bor90}. Every planar graph with maximum degree $\Delta\geq 9$ is $(\Delta+1)$-edge-choosable.
Document type :
Reports
Complete list of metadata

Cited literature [17 references]  Display  Hide  Download

https://hal.inria.fr/inria-00432389
Contributor : Nathann Cohen <>
Submitted on : Monday, November 16, 2009 - 1:13:50 PM
Last modification on : Monday, October 12, 2020 - 10:30:17 AM
Long-term archiving on: : Tuesday, October 16, 2012 - 2:10:22 PM

File

RR-7098.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00432389, version 1

Citation

Nathann Cohen, Frédéric Havet. Planar graphs with maximum degree Delta\geq 9 are (\Delta+1)-edge-choosable -- short proof. [Research Report] RR-7098, INRIA. 2009. ⟨inria-00432389⟩

Share

Metrics

Record views

386

Files downloads

300