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ABSTRACT  

Computer-based Interaction analysis (IA) is an automatic process which aims at understanding a computer-
mediated activity. In a CSCL system, computer-based IA can provide information directly to learners for self 
assessment and regulation and to tutors for coaching support. This article proposes a customizable computer-
based IA approach for a generic synchronous CSCL system, i.e., a system that can be customized for different 
learning tasks and different ways of performing these tasks. In a generic system, IA mechanisms must also be 
generic. In the proposed system, called Omega+, a specific submodel specifies the properties and rules that 
customize the IA process for the learning situation defined by three other submodels (process, interaction, and 
artifact submodels) that all parameterize the generic kernel. The feasibility of such a generic model-based IA 
approach is assessed, together with the efficiency of some of its underlying mechanisms and its global 
acceptance by users. 
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Introduction 
 
Computer Supported Collaborative Learning (CSCL) emphasizes the importance of social processes as an essential 
ingredient of learning. CSCL has been recognized as a possible way for preparing people to the knowledge society, 
for achieving deeper learning than traditional methods and for better meeting the expectations of the net generation 
(Resta & Lafferière, 2007). There exist two main approaches for supporting collaborative learning (Jermann et al., 
2001). The first one structures the situation in which the collaboration takes place: the task (e.g., with a learning 
script), the group of learners (e.g., with specific roles), the interaction (e.g., with sentence openers), and the artifacts. 
The second approach involves structuring the collaboration itself through coaching and self-regulation: as the 
collaboration progresses the state of interaction is automatically evaluated by the system with respect to a desired 
state and remedial actions may be proposed. In this article, we focus on the coaching and self-regulation approach 
as a complement to the structuring approach in the context of synchronous CSCL environments, i.e., “same 
time/different places” or “same time/same place” systems. The coaching and self-regulation approach requires 
storing the stream of all relevant interaction events, computing on demand interaction analysis (IA) indicators that 
support tutoring activities, and computing periodically synthetic visual representations of IA indicators that support 
learners’ self-regulation. The tutor and the system together contribute to guide the learners toward effective 
collaboration and learning. 
 
The literature describes many computer-based IA indicators. They can be related to the cognitive, social and 
affective dimensions of interactions. But most of them are dependent of a specific learning activity or a specific 
learning environment (Dimitracopoulou et al., 2004). Building customizable IA tools is recognized as a promising 
research direction “that could help to face the problems of restricted validity field of IA tools, the one of low 
powerfulness of IA output, as well as this of not fulfilment of various users’ profiles” (Dimitracopoulou et al., 2004). 
The idea of building more generic and customizable mechanisms is not restricted to the IA domain, but can impact 
all aspects of CSCL systems. During its first decade, CSCL researchers have produced a large number of ad hoc 
systems focusing on particular situations and contexts, and aiming at triggering specific learning processes. It is the 
case of all early specialized synchronous tools for structured discussion (e.g., Baker et al., 2003), collaborative 
design (e.g., Soller et al., 1999), collaborative knowledge construction (e.g., Suthers & Jones, 1997), collaborative 
modeling (e.g., Baker & Lund, 1996) and collaborative writing (e.g., Jaspers et al., 2001). Many researchers claim 
that this first generation of ad hoc, specialized, and closed tools should be replaced by systems “richer and 
appropriate for various collaborative settings, conditions and contexts” (Dimitracopoulou, 2005), “reconfigurable, 
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adaptive, offering collections of affordances and flexible forms of guidance” (Suthers, 2005), “very flexible and 
tailorable” (Lipponen, 2002). Two research streams, following either the component-based approach (e.g., De 
Chiara et al., 2007; Asensio et al., 2004) or the model-based approach (e.g., LAMS, 2009; Ronen et al., 2006; Bote-
Lorenzo et al., 2004), aim at meeting these expectations. The system described in this article, called Omega+, 
follows the model-based approach: an explicit model parameterizes a generic kernel for flexibly supporting different 
kinds of collaborative applications (Lonchamp, 2006). By providing ad hoc models, teachers can tailor the kernel to 
their specific needs (definitional malleability). Moreover, the behavior of the customized system depends on that 
continuously queried model and can dynamically evolve when the model is modified (operational malleability). It 
must be emphasized that building a fully generic synchronous CSCL system is a real scientific challenge whose 
feasibility is still questionable. COFFee (www.coffee-soft.org), the first open source synchronous CSCL 
environment which provides basic customization capabilities has been released only a few months ago.  
 
Our experiments with an early version of Omega+ have demonstrated that it is very difficult for a tutor to evaluate 
and improve the quality of the interactions between participants in particular when several groups of collocated 
students are working in parallel (while evaluating the artifacts they produce is not harder than in individual paper-
based exercises). Some coaching support is strongly required. Supporting learners’ self assessment and regulation is 
important not only in distributed settings when there is no tutor but also as a complement to tutoring activities.  
 
In a generic system, IA mechanisms must also be generic, i.e., model-based in the case of Omega+. A specific 
submodel, called the “Effects Model”, specifies the properties and rules that customize the IA process for the 
learning situation defined by three other submodels (process, interaction, and artifact submodels) that all 
parameterize Omega+ generic kernel. The central question is again the concrete feasibility of the approach. Thus, the 
major part of this article explains the kind of model and mechanisms that can be proposed. But this description also 
shows to educators concrete examples of high level services which could help them to solve the problems they face 
when teaching in online environments.  
 
The remainder of the article is organized as follows. The second section depicts Omega+ overall approach for 
modeling synchronous collaborative knowledge building activities. The third section discusses the main 
characteristics of the proposal. The central question that is addressed is the feasibility of a generic computer-based IA 
approach for synchronous CSCL systems, i.e., automatic IA mechanisms which can be customized for different 
learning tasks and different ways of performing these tasks. The fourth section aims at evaluating some efficiency 
aspects of the proposed mechanisms on the one hand, and discussing the global acceptance of the system by users on 
the other hand. 
 
 
Modeling Synchronous Collaborative Knowledge Building Activities - Omega+ Approach 
 
An important requirement for effective synchronous collaborative learning is the combination of communication with 
shared work artifacts (Suthers & Xu, 2002). Most synchronous CSCL systems follow the dual interaction spaces 
(DIS) paradigm (Dillenbourg & Traum, 2002), by providing two distinct spaces of interaction. The task space allows 
for the collaborative construction and manipulation of shared artifacts. The communication space is the place where 
dialogue-based interaction, mostly textual, takes place. Several recent DIS systems provide multi tools task spaces 
for manipulating simultaneously complementary artifacts or perspectives (e.g., De Chiara et al., 2007). Figure 1 
summarizes Omega+ conceptual approach of collaborative learning based on artifact mediation which extends the 
model proposed by Miao (2000) with such multiple views. “Representation” and “exploration” information flows 
can be related to Nonaka and Takeuchi’s (1995) “externalization” and “internalization” processes. Knowledge in 
individuals’ minds and the information which is held in the shared artifact can each be defined as being in “conflict” 
or “coherent” state. The term “conflict” is used to describe all situations that can trigger a reaction from learners, 
including inconsistency, incompleteness, contradiction, and impreciseness. At the individual level, learners construct 
new knowledge by integrating new information into their own cognitive structure. Conflicts occur when the new 
information contradicts existing knowledge. Learners must therefore solve this cognitive dissonance (Festinger, 
1957) by constructing a new cognitive structure. At the group level, conflicts occur when one or more learners 
disagree with existing information in the shared workspace (inter or intra-view conflict). In this case, learners in the 
group might negotiate together to construct a new consensual state. This dialogue can trigger learning mechanisms. 
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Figure 1. Omega+ conceptual approach 

 
 
In a non-trivial CSCL application, the learning task is structured into a process including a sequence of phases where 
collaborative learning based on artifact mediation takes place. Within each phase participants can play different roles 
which constraint how they can act (in the task space) and how they can talk (in the communication space). In 
Omega+, a process is a sequence of phases, taking place into rooms: “simple phases”, where all participants 
collaborate to the same task in the same room, and “split phases”, where participants are divided into parallel sub 
groups performing different tasks in different rooms. The corresponding process model, often called “macro-script” 
in the CSCL field (Tchounikine, 2008), is a plan which can be modified during its execution. It does not prescribe 
the execution of phases exactly in the specified order: participants playing the predefined “Room Operator” role have 
two buttons for selecting the next phase to execute, either by following the plan (“Next”) or by selecting another 
existing phase (“Jump”). As depicted by Figure 2, each phase type is characterized by a set of role types, a set of tool 
types for constructing the artifacts and a floor-control policy (FCP) at the environment level (Lonchamp, 2007a) that 
defines who can manipulate which space (“who has the floor in which space”). Application-specific interaction 
protocols can be defined through a set of application-specific roles, a set of typed messages (speech acts) and a set of 
adjacency pairs (Clark & Schaefer, 1989) specifying how message types are related (e.g., a question is followed by 
answers) and which role can speak first. Application-specific FCPs can use application-specific interaction protocols 
(see the “based_on” relationship in Figure 2) for controlling who has the floor either in the communication space 
only or in both the communication space and the task space (see the “impact” relationship between FCPs and tools in 
Figure 2).  
 
More generally, all important concept types (roles, tools, protocols, and FCPs) are specialized into predefined and 
application-specific subtypes. This reflects the fact that Omega+ provides both “hard-coded” features (that cannot be 
changed) and model-based features that are customizable and evolvable by users. More details about the models are 
given in (Lonchamp, 2006). Three submodels are highlighted in Figure 2, corresponding to the process dimension, 
the interaction dimension and the artifact dimension of collaborative learning activities. A fourth one, specifying 
how individual and group performance can be characterized corresponds to the entity called “Effects Model”. This 
submodel, at the heart of the generic IA approach, will be described in the following sections. The four submodels 
serve as four parameters for the generic Omega+ kernel. By providing ad hoc submodels, users can tailor the kernel 
to their specific needs (definitional malleability). Moreover, the behavior of the customized system depends on these 
continuously queried models and can dynamically evolve when a model is modified (operational malleability). 
System customization can be performed in different ways, adapted to the skills and needs of different categories of 
users: by reusing existing combinations of submodels, by building new combinations of existing submodels (i.e., 
following a very high-level configuration process), by creating or customizing submodels through high-level visual 
languages or low-level specification languages, including programming languages. 
 
Figure 3 shows Omega+ client customized for a collaborative process for learning object-oriented analysis with the 
UML language. The communication space on the right includes a protocol model driven chat and an information 
panel. As Jack plays the “Room Operator” role the “Next” and “Jump” buttons are available. The task space on the 
left may contain up to three tools as requested by the process model definition. Tools are either predefined editors  
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Figure 2. Omega+ conceptual model 
 
  

 
 

Figure 3. Omega+ client customized by the different submodels 
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(shared text editor, shared whiteboard) or shared graphical editors customized by artifact models. The task space on 
the left of Figure 3 includes: (1) A read-only text viewer − the colored background shows that interaction is not 
possible − which displays use cases (describing “who can do what” with the system under analysis) created during a 
previous collaborative phase. (2) Two instances of Omega+ generic visual editor customized with the UML class 
diagram model (describing the structure of the system under analysis) and the UML collaboration diagram model 
(describing how the components collaborate for every system operation). During this phase students collaborate for 
building these two diagrams. The model-driven “Circular Work” protocol controls the floor in both spaces in a 
circular order. A learner can explicitly “pass the floor” to the next one in the circle with a “Pass” message (see the 
drop-down list at the bottom of the communication space).  
 
Omega+ provides several additional mechanisms for supporting learners at the cognitive and meta cognitive level, 
like sticky elements (“sticky annotated snapshots”, “sticky notes” and “persistent pointers”) for referencing purposes 
(Lonchamp, 2007b) and a tool for collaborative session history browsing (Lonchamp, 2009). 
 
 
Computer-based IA Supporting Participants’ self-regulation and Tutors’ coaching 
 
The definition of IA indicators is based on the following reasoning. Collaboration is not sufficient per se for 
producing learning effects. Specific kinds of knowledge-productive interactions are necessary like explaining and 
justifying opinions or reasoning, asking each other questions, reflecting upon knowledge (Dillenbourg, 1999). It is 
very difficult to characterize in a generic way such complex interactions and to detect them automatically during a 
collaborative session. It would require a precise understanding by the machine of all exchanged messages. A more 
realistic goal might be to characterize and detect specific “ingredients” of these knowledge-productive interactions 
such as actions with accompanying on-task messages or inter-subjective reactions. It is the approach that is explored 
in this article.  
 
We distinguish between two kinds of variables that are used for computing IA indicators: (1) Predefined task-
independent variables which count simple events at the interface, like the number of messages, or measure direct 
properties associated to these events, like the message size. Task-independent indicators based on these variables 
have been frequently proposed and implemented (Dimitracopoulou et al., 2004). In Omega+, these indicators are 
defined in the Effects Model by a calculus formula and a specification of their presentation (e.g., time series or bar 
chart). (2) Task-dependent variables which are elaborated by complex customizable mechanisms such as text 
classifiers or pattern recognizers. Omega+ provides several of these generic mechanisms whose customization 
information is also specified into the Effects Model. The following subsection discusses a representative set of task-
independent and task-dependent indicators well adapted to the DIS paradigm. In any learning situation teachers can 
select predefined task-independent indicators from a library, create new ones by combining task-independent 
variables, and customize task-dependent indicators. 
   
Participation indicators, like the number of chat messages and the number of task actions, are important because 
collaboration cannot occur within a group unless there is roughly equal participation among its members (Ingram & 
Hathorn, 2004). If some participants do the main part of the work while others barely contribute, then the group is 
not truly collaborating. The balance between conversation events and action events is interesting for measuring a 
correct usage of both modalities by learners in a DIS system. Pure action without dialogue and pure dialogue without 
any action are not likely to occur. Indicators about the communication style can also be helpful. It is the case of the 
average size of produced messages because learners should externalize their ideas and thoughts in an elaborated 
form. It is also important to distinguish between on-task and off-task messages. Off-task messages are useful for 
specific purposes, such as socialization, but should be restricted in quantity for keeping the learners focused on the 
constructive task at hand. For counting on-task and off-task messages a customizable message classification 
mechanism is required. Moreover, interaction requires that group members actively respond to one another, react 
and change their minds as the interaction progresses (Ingram & Hathorn, 2004). The most straightforward approach 
for measuring interaction is to track event patterns that reflect significant interaction episodes: for instance, two 
learners who successively modify the same element (or closely linked elements) of the same shared artifact (Bollen 
et al., 2008). A second possible approach is to track explicit referencing mechanisms usage such as participants’ 
names referencing, message numbers referencing, sticky elements creation and referencing. A third approach is to 
track event patterns showing an individual activity aiming at facilitating collaboration (“facilitation” episodes). For 
instance, when a learner changes something on a shared artifact and immediately after sends a task-related message, 
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hopefully containing some explanation. A customizable mechanism is required for interaction and facilitation pattern 
recognition. Table 1 summarizes this representative set of IA indicators. All of them are implemented in the current 
prototype. 
 

Table 1.  A representative set of IA indicators for DIS systems 
IA Indicator Definition Type 

Number of chat messages TI (Task-independent) Participation 
Number of task actions TI 

Discourse focus Balance between on-task and off-task messages TD (Task-dependent) 
Discourse style Average size of messages TI 

Conversation/action balance Balance between messages and actions TI 
Number of explicit referencing actions  TI Collaborative interaction Number of interaction patterns TD 

Collaborative attitude Number of  “facilitation” patterns TD 
 
 
Omega+ Generic Implementation 
 
Global Architecture 
 
Omega+ supports both tutors and learners. For tutors, a selection of IA indicators is displayed on demand thanks to 
the “IA Stats” button (see Figure 3). Indicators can be presented as (stacked) time series for visualizing their 
temporal evolution and (stacked) bar charts for comparing values of different learners (see Figure 4a). The Effects 
Model specifies some general parameters, such as the time interval between measures for time series, and the 
characteristics of the selected indicators: name, informal description, type (bar chart, time series), value labels, and 
calculus expressions. The examples below are given in the XML format of the Effects Model which can be easily 
decrypted.  
Examples: 

<TimeSeriesDelta ms="30000" /> 
<Diagram name="MeanMessLengthSeries" descr="Time series of the mean length of chat messages" 
type="TimeSeries" labels="length" exprs="ratio: sizeMess nbMess"/>  
<Diagram name="MessVSInteractionChart" descr="Bar chart of the number of chat messages vs. other 
interactions" type="BarChart" labels="chat messages, other interactions" exprs="nbMess, sum: nbWhite nbTextb 
nbDiag" /> 
(sizeMess, nbMess, nbWhite, nbTextb, nbDiag are predefined task-independent variables computed by Omega+ 
generic kernel) 

 
For learners, a “monitoring window” is periodically displayed (see Figure 4b). This window contains visual 
representations of the selected indicators (a green/red square represents a “good/bad value”), a global ranking based 
on all the indicators for motivating the participants and an explicit guidance/advice message associated to the 
indicator having the worse value. The Effects model contains a rule for each indicator which specifies the label, the 
associated message, and the threshold for deciding if the value is “good” or “bad”. 
Example: the rule associated to the discourse focus indicator is  

<Rule name= "DiscourseFocus" threshold="0.35" message="Your discourse should be more focused on the 
task!" />. 
0.35 is the percentage of the mean value that must be at least attained. For each indicator, this value can be 
adjusted empirically to achieve the desired behaviour. If the threshold is set to a negative value the indicator is 
disabled.  

The monitoring window is generated for each participant with a frequency specified in the Effects Model as a 
multiple of the time series delta (<MonitoringDelta nbTimeSeriesDelta="4" />). Figure 4b shows the monitoring 
window generated for Peter. Some indicators are well rated (two green squares) while others are weak (four red 
squares). Peter has the lower global score and receives an advice message about his discourse style (“Write more 
explicit messages!”). 
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The next two subsections focus on the implementation of the customizable mechanisms that compute the task-
dependent variables. 
 

 (a) 

  (b) 

Figure 4. Coaching support (a) and self-regulation support (b)  
 
 
Message Classification 
 
A Naive Bayes Classifier (NBC) (Mitchell, 1997) is used for classifying messages into “on-task” and “off-task” 
categories. The NBC approach is one of the most effective probabilistic approaches for text categorization. The 
method is considered naive due to its assumption that every word in the document is conditionally independent from 
the position of the other words. The classifier learns a set of probabilities from training data during a machine 
learning phase. Unlike other techniques like Latent Semantics Analysis, a large amount of textual input is not 
required. These probabilities and the Bayes theorem are used to classify any document. First, an estimate of the 
probability of this document belonging to each class given its vector representation is calculated. Then, the class with 
the highest probability is chosen as a predicted categorization.  
 
Omega+ NBC learns the task vocabulary by analyzing several files before or during the learning session. First, when 
the session starts, one (or several) file(s), explicitly referenced into the Effects Model are processed (e.g., 
<OnTaskFile file=”usecase.txt” />). These files can contain for instance a textual description of a given diagram type 
or a summary of the instructions given to the learners. The classifier also analyzes during the session all the files 
loaded into the text board (e.g., the problem description submitted to the learners), all the meta-model files which 
serve as parameters for the generic diagram editor (they give in particular the names of all the concepts), and all the 
models created with the customized diagram editors (they give the names of all nodes and links created by the 
learners). Omega+ NBC also includes a “stemming” phase and a “stop words” removal phase. Stemming is the 
process by which words are reduced to their root forms (Lovins, 1968). For example, suffixes are removed, such as 
“-ing” and “-s”, such that “digging” and “dig” become the same word. Stop words are words that occur frequently in 
the language, like “a”, “and”, “the” (e.g., http://www.snowball.tartarus.org/algorithms/english/ stop.txt). Because of 
their frequent occurrence, they may not add any additional information to aid classification, assuming a uniform 
distribution over all classes. English and French stemming algorithms and stop words files are provided in Omega+.  
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Pattern Recognition 
 
In the current implementation, a very simple language is provided for specifying interaction (and facilitation) 
patterns. In the Effects Model, each pattern is defined by an XML expression:  

<InteractionPattern actors="aaa" tooltype1="xxx" tooltype2= "yyy" tools= "ttt" condition="ccc" 
maxtime="mmm" />, 
where (the vertical bar denotes a choice):  aaa and ttt = same | different, xxx and yyy = chat | diagrammer | 
whiteboard | text board, ccc = none | a_condition_name, mmm = n | any.  

This language is extensible as it is possible to create a condition for a particular situation by programming in java a 
dedicated filtering method having the same name than the condition in the “InteractionAnalysis” class of Omega+ 
generic kernel.  
Examples:  

<InteractionPattern actors="different" tooltype1="Diagrammer" tooltype2= "Diagrammer" tools="same" 
condition="sameobject" maxtime="60000" />  
defines an interaction pattern where two different learners modify during the same minute the same object in the 
same diagrammer.  
<InteractionPattern actors="same" tooltype1= "Diagrammer" tooltype2="Chat" tools="different" 
condition="ontask" maxtime= "30000" />  
defines a facilitation pattern where the same learner acts on a diagram and sends an on-task message during the 
next 30 seconds. 

Omega+ server keeps the complete history of chat messages and tool actions and checks all the patterns each time an 
event is inserted by filtering (with the condition method) the events belonging to the specified time interval 
(maxtime).  
 
 
A Preliminary Evaluation Study 
 
The evaluation study has been performed with 24 French students enrolled in a second-year university course in 
computer science. Small groups of three students, randomly assigned to the groups, have received small case 
descriptions and were asked to build UML use case diagrams and UML class diagrams during 30 to 45 minutes 
length collaborative sessions with Omega+. Students were collocated (all in the same classroom) but could not speak 
for avoiding disturbing the other groups. It was hypothesized that Omega+ will stimulate task-related interactions. 
Omega+ client was configured with a read-only text-board for the case description, a customized shared diagram 
editor and a chat tool. Students had free access to the communication space and to the task space and no specific 
process was enforced. Specific control information has been recorded in the session log file: the classification of 
each message by the Bayesian classifier, each recognized pattern associated to its triggering event, and all 
monitoring values periodically computed for each learner.  
 
During this evaluation study three different questions were addressed: the efficiency of the customizable mechanisms 
(classifier and pattern recognizer), the evaluation of the monitoring support by users and the global acceptance of the 
approach. The following subsections discuss each aspect in turn.      
 
 
Message Classification Efficiency 
 
The log file shows all the messages classified as “on task” messages by the automatic classifier. 
Example:   

janv. 30 15:25:27 in ex1 tata says: j’ai mis l’employé (I have put the employee)   
janv. 30 15:25:27       on_task message  

Table 2 gives the results obtained by the Bayesian classifier after a learning phase using a less than one page text file 
describing the two formalisms which are manipulated. The decisions of the classifier (“Classified” column) are 
compared with the decisions of a researcher who has analyzed the messages in the log file after the session 
(“Analyzed” column). For instance, 37% of messages are classified “on task” by both the classifier and the 
researcher. The accuracy was measured at 82% which is very satisfying with a so small machine learning phase. It 
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should be sufficient for characterizing students who are not focused on the task and for characterizing accompanying 
explanations of actions. Errors (18%) have multiple causes which are difficult to eliminate. Here are some examples 
of false “off-task” messages and false “on-task” message (translated from French): 
• Improper word usage: in the message “I place the two functions I mentioned”, the word “function” is used 

instead of “use case” or “case” for a use case diagram and the message is not recognized as being “on-task”. 
• Non explicit reference: the message “I put them” is not recognized as being “on-task” because no distinctive 

word is found. 
• Word improperly recognized: in the message “I am pretty happy of the graph reorganization”, “reorganization” is 

stemmed into “organization” which is part of the actor concept definition in a use case diagram “an actor is a 
person, an organization or a system (…)”; the message is incorrectly classified as an “on-task” message. 

Misspellings, compounding, abbreviations and initialisms (“answ” for answer), frivolous spellings (“okey”) are other 
well-known difficulties (Anjewierden et al., 2007). Students were asked to avoid “chatspeak” and to spell and 
punctuate correctly. 
 

Table 2. Message classification evaluation 
Category Classified Analyzed % Evaluation 

a on task on task 37 Accuracy =  (a + d) / (a + b + c + d) = 82% 
b on task off task 8 Error = (b + c) / (a + b + c + d) = 18 % 
c off task on task 10  
d off task off task 45  

 
 
Pattern Recognition Efficiency 
 
The efficiency of the pattern recognition mechanism mainly depends on the efficiency of the filtering condition. If 
the library of predefined conditions does not contain the adequate method, users can customize an existing condition 
or write a new one from scratch in java. For each pattern, we have qualitatively analyzed all the cases where the 
pattern was recognized to assess the efficiency of the filtering condition. As statistical results would only reflect the 
efficiency of a specific set of filtering conditions the remaining of the section just discusses an example. Figure 4 
gives an excerpt of a log file where the same rule (defined by <InteractionPattern actors="different" 
tooltype1="Diagrammer" tooltype2= "Diagrammer" tools="same" condition="sameobject" max time="60000" />) 
fires twice in the last two lines.  Each line of the log file includes the date and time, the name of the session (“ex1” in 
the excerpt), the name of the learner, the action type (e.g., “says” for a chat contribution, “performs a diagram 
action” for a diagram editor contribution). For a tool contribution, the line includes the tool type and number (e.g., 
“Diagrammer0”) and a tool-dependent action description. This description starts with an action number, followed by 
an action type (e.g., “addVertex”, “newProperties”, “move”). In diagrams vertex have an internal identifier 
composed by the learner’s name followed by a sequence number: “addVertex:Classe:titi5:” means that user titi has 
created a class (“Classe” in French) vertex identified by “titi5”.  
 

 févr. 06 15:10:39 in ex1 titi performs a diagram action: Diagrammer0 52:addVertex:Classe:titi5: 
 févr. 06 15:10:47 in ex1 toto performs a diagram action: Diagrammer0 53:newProperties: numPermisConduire||:toto2:|: 
 févr. 06 15:10:49 in ex1 titi performs a diagram action: Diagrammer0 54:newName:accessoir:titi5:|: 
 févr. 06 15:10:54 in ex1 toto performs a diagram action: Diagrammer0 55:newName:Numéro:titi3:|: 
 févr. 06 15:10:56 in ex1 titi performs a diagram action: Diagrammer0 56:move:336:258:titi5: 
 févr. 06 15:10:56 in ex1 titi performs a diagram action: Diagrammer0 57:move:195:52:toto0: 
 févr. 06 15:10:57 in ex1 titi performs a diagram action: Diagrammer0 58:move:196:72:toto0: 
 févr. 06 15:11:01 in ex1 titi performs a diagram action: Diagrammer0 59:move:190:240:titi3: 
 févr. 06 15:11:02 in ex1 titi performs a diagram action: Diagrammer0 60:move:302:245:titi5: 
 févr. 06 15:11:07 in ex1 tata performs a diagram action: Diagrammer0 61:addVertex:Classe:tata0: 
 févr. 06 15:11:10 in ex1 tata performs a diagram action: Diagrammer0 62:newName:camion:tata0:|: 
 févr. 06 15:11:13 in ex1 tata performs a diagram action: Diagrammer0 63:move:379:306:tata0: 
 févr. 06 15:11:18 in ex1 tata has triggered rule 2 in the following action 
 févr. 06 15:11:18 in ex1 tata performs a diagram action: Diagrammer0 64:newName:accessoire:titi5:|: 
 févr. 06 15:11:27 in ex1 toto has triggered rule 2 in the following action 
 févr. 06 15:11:27 in ex1 toto performs a diagram action: Diagrammer0 65:newProperties: code,nom,nbArtistes,durée||:titi3:|: 

 
Figure 4. Excerpt of a log file with rule triggering 
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The two cases of pattern recognition may be analyzed in the following way. In the first case, the learner with the 
pseudo name “titi” has created a node at the first line (action numbered 52) and has given to this node the name 
“acessoir” which includes a typo (it should be “accessoire” in French, action 54). This typo has been corrected by 
tata (action 64) 28 seconds after. This is a reasonable example of collaboration with a student who reacts to the 
action of another student. In the second case, toto has added several properties to the node “titi3” (action 65). The 
rule was triggered because titi has moved the same node 26 seconds before, when he was changing the graph layout 
(actions numbered 56-60). In this case, there is no semantic relationship between the two events and it is hard to say 
that the two students collaborate. For improving the pattern recognition process it could be possible to test in the 
method associated to the “sameobject” condition a Boolean matrix specifying for all couples of actions of the 
diagram editor if they should be considered or not for triggering the rule (it would be true for “addVertex” and 
“newName” actions and false for “move” and “newProperties” actions). Unfortunately, this kind of matrix cannot be 
fully generic: for instance, the position of a node is significant in a few artifacts and not significant in most others. 
 
 
Users’ evaluation 
 
The monitoring window has been evaluated through qualitative interviews of learners. Personalized advice messages 
are considered as the most effective way of pushing information to them periodically. The global ranking is 
interpreted as a kind of “high score” which can increase the motivation to actively participate. At the opposite, most 
students find too complicated the analytic part which displays all the indicators.  
 
For the coaching support, teachers have suggested a deeper analysis of users’ participation because some learners can 
have a high participation score without a big impact on group performance. For example, in the session summarized 
in Table 3, one can observe that student1 is mainly talking, student2 is actively constructing the shared artifact and 
student3 spends much time for improving the graph layout by moving its nodes and edges. This will be further 
discussed in the conclusion. 
 

Table 3. Participation analysis 
Action Student 1 Student 2 Student 3 Total 

Node creation 3 7 3 13 
Link creation 3 13 3 19 

Node or link movement 39 53 137 229 
Chat contribution 20 15 15 50 

Total 65 88 158 311 
Action/minute 2,8 3,8 6,9 4,5 

 
 
User Acceptance 
 
Globally, the regulation approach generates much more debate and controversy than the structuring approach. 
Structured processes, interactions, and artifacts are well accepted by students like classical pedagogical constraints. 
They do not require deep explanations. At the opposite, computer-based IA is criticized by some students as a “Big 
Brother” approach. The log file shows that some participants fight against the rules by sending nonsense messages 
for impacting the on-task/off-task indicator.  
Example: 

févr. 06 15:20:38 in ex1 tata says: il fait beau à Madrid ? (is the weather good in Madrid?) 
févr. 06 15:20:46 in ex1 titi says: lol 

 
We can thus advise teachers to give precise explanations about the objectives and the implementation of the IA 
support. In blended learning settings we plan to provide a global supervision tool to the tutor where the information 
about all groups working in parallel will be centralized. The information will be verified by the tutor by browsing the 
session history and transmitted by him orally or electronically to the learners. It could be a way to take benefit from 
automatic IA monitoring without these acceptance problems. 
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Conclusion 
 
This article focuses on computer-based IA which provides information directly to learners, in order to assess and 
self-regulate their activity, and to tutors, for coaching the participants. This approach can complement the more 
classical approach that structures the situation in which collaborative learning takes place. A generic model-based 
approach is proposed in the context of synchronous collaborative learning activities. A specific submodel, called the 
“Effects Model”, specifies how IA has to be customized for the specific learning situation defined by the three other 
submodels that parameterize Omega+ generic environment kernel. This work demonstrates that a generic solution is 
feasible. It is possible with the proposed approach to customize the monitoring and coaching support to the situated 
learning task either by selecting predefined indicators or by creating ad hoc indicators, some of them relying on 
customizable mechanisms for machine learning and pattern recognition. We are not aware of any other generic 
computer-based IA approach.  
 
The results of the preliminary study are encouraging in terms of efficiency of the customizable mechanisms and 
system acceptance. It is important for computer-based IA but also, more generally, in the perspective of building the 
flexible and tailorable systems the CSCL community is expecting for the future. The model-based generic approach 
is appealing in that it provides different ways to adapt the generic system to a given context at different levels of 
expertise: by just selecting and reusing existing models, by creating or customizing models through high-level visual 
languages or by enriching the underlying mechanisms through low-level specification languages, including 
programming languages. Therefore, all kinds of users, i.e., educators, instructional designers, and technologists, can 
contribute to system tailoring. However, the actual effects of the proposed IA mechanisms on teaching and learning 
remain unknown for a large part. For a generic environment like Omega+ it is very difficult to reach absolute 
conclusions because experiment results are always dependent of a specific learning situation and system 
customization.  
 
An interesting research perspective is to study the relationships between automatic computer-based IA during the 
learning process and manual IA by human experts after the end of the process. They have different purposes (guiding 
vs. explaining) and follow different approaches. In the same way, a car dashboard displays critical information for 
guiding drivers (e.g., speed, engine temperature, oil pressure) which is very different from the information that 
human experts need for explaining car crashes (e.g., topological, psychological, medical parameters). However, a 
high-level interpretation of how learners behave at a socio-cognitive level, resulting from a careful analysis of 
conversations and actions, could be of a great help for better customizing computer-based IA indicators. For 
instance, a participation indicator will be more accurate if it mainly focuses on the most important actions whose 
characterization is dependent from such a socio-cognitive analysis. We have recently proposed a generic framework 
for post-analyzing synchronous collaborative learning processes (Lonchamp, 2009) and we plan to study how this 
could improve the customization process that is required by the technical approach described in this article.      
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