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Abstract: The diffusion orientation distribution function (ODF) can be recon-
structed from ¢-ball imaging (QBI) to map the complex intravoxel structure of
water diffusion. As acquisition time is particularly large for high angular resolu-
tion diffusion imaging (HARDI), fast estimation algorithms have recently been
proposed, as an on-line feedback on the reconstruction accuracy. Thus the ac-
quisition could be stopped or continued on demand. We adapt these real-time
algorithms to the mathematically correct definition of ODF in constant solid
angle (CSA), and develop a motion detection algorithm upon this reconstruc-
tion. Results of improved fiber crossing detection by CSA ODF are shown, and
motion detection was implemented and tested in vivo.
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Reconstruction en ligne de la fonction de
distribution d’orientation en angle solide constant
et application & la détection du mouvement en
imagerie de diffusion & haute résolution angulaire

Résumé : La fonction de distribution d’orientation de diffusion (ODF) peut
étre reconstruite a partir d’imagerie Q-ball et permet alors de cartographier la
structure complexe de la connectivité cérébrale par tractographie & partir de
limagerie par résonance magnétique de diffusion (IRMd). Pour répondre ef-
ficacement aux problémes liés au temps d’acquisition des séquences d’images
IRMd, particuliérement long pour ’imagerie & haute résolution angulaire, des
algorithmes d’estimation et de reconstruction en temps réel de ’ODF ont été
récemment proposés. Dans ce rapport de recherche, nous adaptons notre précé-
dente contribution sur I’estimation temps réel de ’ODF au cas de ’ODF calculée
en angle solide constant et on montre comment tirer profit de notre formalisme
a base de filtrage de Kalman pour ’estimer en temps-réel et 1'utiliser pour dé-
tecter d’éventuels mouvement opérés par un patient au cours de ’acquisition.
L’algorithme de détection de mouvement fait plein usage des résultats inter-
meédiaires fournis par la reconstruction de 'ODF par filtrage de Kalman et
permet de décider en temps réel de la nécessité de continuer ou de stopper
I’acquisition en cours. Une expérience a été menée pour tester et valider cette
approche. Nous montrons sur nos résultats que les croisements de faisceaux de
fibres sont mieux détectés par ’ODF en angle solide constant, et que I’approche
proposée permet effectivement de bien détecter le mouvement opéré par un pa-
tient. Cette approche offre de nouvelles perspectives dans ’amélioration des
protocoles d’acquisition d’TRM de Diffusion.

Mots-clés : Estimation temps-réel, imagerie de diffusion & haute résolution
angulaire, imagerie g-ball, fonction de distribution d’orientation, estimation de
mouvement, filtrage de Kalman.
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1 Introduction

Diffusion Magnetic Resonance Imaging (MRI) is a recent technological advance
which has rapidly been considered by the medical community as a help for diag-
nosis and preoperative planning. By measuring the local diffusion properties of
water molecules, it allows to infer underlying tissue structure and physiological
properties. White matter fiber bundles are especially well suited to this analysis.
By mapping the Orientation Distribution Function (ODF), i.e. the angular in-
formation of the diffusion Probability Density Function (PDF), ¢-Ball Imaging
(QBI) [I] can resolve complex intravoxel structure. So as to speed up the re-
construction, analytical computation of the ODF has further been proposed [2],
allowing ODF reconstruction in a clinical context. Recently, the commonly used
ODF definition was corrected to match the definition of the marginal PDF of
diffusion in a Constant Solid Angle (CSA) [3,[4]. This moves the community to-
wards more accurate models, and more flexible algorithms to reconstruct these
models.

An important limitation of the widespread adoption of diffusion MRI by
clinicians remains its sensitivity to patient motion. It is indeed delicate to com-
pensate patient motion through registration of the Diffusion Weighted Images
(DWTI) prior to model estimation [5]. A real-time (on-line) reconstruction algo-
rithm has recently been proposed [6l [7], together with an acquisition sequence
designed to be optimal whenever the scan is interrupted. This is based on a
Kalman filter adaptive approach. In this work, we extend the framework pro-
posed in [7]: we adapt it to reconstruct the CSA ODF, and show how to use
this as a motion detection tool during acquisition.

In Section 2, we review the estimation of CSA ODF and present the subse-
quent changes in the Kalman filter implementation. We also propose a solution
to the motion detection based on the incremental estimation of the diffusion
signal. Section 3 presents experimental results of fiber crossing detection from
synthetic and real data, comparing the original ODF to the CSA ODF, and
results on how motion is readily detected in wivo with our method. Section 4
concludes with a review of the contributions.

2 Material and Methods

2.1 Kalman filtering with ODF in constant solid angle
The ODF has originally been defined and estimated in QBI as [1]:

ODF iy (@) 1= % /0 T peraydr ~ %FRT{S(@)} (1)

with P(r@) the 3D probability function (PDF) of the diffusion of water molecules,
S(a) the diffusion signal in the direction @, FRT the Funk-Radon transform
[1, 8], and Z the normalization constant which needs to be computed. Z is re-
quired because, by lacking the Jacobian factor r2, the above definition of ODF
is not the actual marginal PDF of diffusion in a given direction in CSA (see
[3,4]). It was shown in [3] that, by considering the Jacobian factor, the follow-
ing expression for the CSA ODF can be derived, better resolving multiple fiber
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orientations:

ODFcga (@) = / P(ra)r?dr
0

1 1 2 N
o + @FRT {Viln(-InE(a))}

Q

where E(4) := S(@)/So with Sy the baseline image, and V3 the Laplace-
Beltrami operator. The above dimensionless and intrinsically normalized for-
mula obviates the need for post-processing such as manual normalization or
artificial sharpening. The framework has been extended to multiple g-shells in
[A.

A robust implementation of the original ODF was proposed in [2] 10, 11],
which uses a least square error scheme to approximate the signal in the spherical
harmonic (SH) basis, and then computes the FRT analytically. This method
has also been exploited in [3] to calculate the CSA ODF, where In(—In E(4)),
instead of S(4), is approximated in the SH basis and the FRT and V# operators
are afterwards computed analytically. Additionally, [2] introduces a regulariza-
tion term proven to be useful especially when dealing with noisy data.

While this implementation scheme can be very efficient for offline computa-
tion of the ODFs, the required pseudo-inversion may be computationally too ex-
pensive for real-time reconstruction of almost a million ODFs in a single HARDI
scan. Besides, in online ODF estimation, we do not expect intuitively that the
new measurement at each iteration bring such fundamental information as to
necessitate re-solving the entire system of equations. Kalman filtering [12], is
generally the first and simplest answer in such cases where we desire to minimize
the computational cost of the real-time solution to a growing linear problem by
making optimum use of the solution at each step to update it on the fly. A par-
ticular Kalman filtering framework has been proposed in [6] to incrementally
compute the original QBI ODFs taking into account the regularization factor in
[2]. Recently, the authors of [7] showed the sub-optimality of [6] and suggested
a new implementation of the method which does not compromise the optimality
of the Kalman filter.

In this work we use the same approach as in [7], yet this time to compute the
CSA ODFs [3] on-line. This is again done by SH approximation of the double
logarithm of the signal, instead of the signal itself:

R
In(—InE(d)) = Y &;Y;(a),

j=1
where {Y;, j =1, ..., R} is the I-th order SH basis for real and symmetric
functions on the unit sphere [2], R = (I+1)(142)/2 is the dimension of this basis,
and € = (¢;);=1, ..., r the corresponding vector of coefficients. An incremental

computation of the coefficients ¢ lets us reconstruct the CSA ODF at each step,
in a similar way as done offline in [3]. The corresponding Kalman filter equations
are:

¢o = Elcg]

Py = El(c—&)(c—é)T]

Py, = (Py'+AL)!

gr = Pp X[ (XpPpaX{ +07)"

"
o
|

(I—grXy)Pr_1

¢, = €1 +8r(yr — XiCr_1)
INRIA
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where y; = In(—In E(dy,)) is the double logarithm of the signal measured in the
direction ug, Xy, is the k-th row of the SH matrix X, where X ; = Y;(dy). Py
and gy are standard notations for the Kalman covariance matrix and gain, and
o? is the covariance of the signal measured at iteration k. For more details on
the parameters, vectors and matrices, we kindly refer the reader to [7].

Finally, the SH coefficients of the CSA ODF are computed as:

1 L
PG J=1
é/, =
j .
1 4 Ix3X..X(i41) 4 .
=) nne e =G J>1

where [; is the order associated to the j-th element of the modified SH basis
(see [2, B] for details). We emphasize that at each iteration, we estimate the
same ODF as we would obtain by off-line processing.

2.2 Motion detection

The Kalman filter introduced in Section [2.1]reconstructs the spherical harmonics
coefficients € to best fit the signal In(—1In(E)), for the ¢ norm. After a few
iterations, the estimate ¢;_; is stable enough to predict with good accuracy the
next signal outcome yy.

However, if the subject moves within the scanner, the diffusion weighted
images will no longer be registered to the baseline image, and pixels will not
match from one volume to another. An abnormal increase in the prediction error
of the diffusion signal during on-line reconstruction is a direct and expected
consequence of patient motion. We propose to use this quantity as an indicator
to warn the scanner operator to stop the scan in such a situation, as the next
acquisitions would hardly be useful for ODF reconstruction. For each iteration,
we calculate the prediction error € = yr — XxCr_1 at each voxel, and compute
the average squared prediction error on the whole masked volume.

Next, we present results of simulated and in vivo fiber crossing detection, as
well as motion detection.

3 Experiments and results

3.1 Results on artificial data

We simulated fiber crossing by generating diffusion images from the sum of two
exponentials:

B(a) = 5 (e7" P14 om0 P2t 2)
where D; is a diagonal matrix with diagonal entries (9,2,2) and Dy is D,
rotated about the y-axis, once by 60° and another time by 90°. Assuming an
apparent diffusion coefficient (ADC) of 0.7x 1072 mm? /s (the mean diffusivity in
brain parenchyma), these diffusion values correspond to a b-value of 4800 s/mm?.
The ODFs were reconstructed in the fourth order SH basis using 30 iterations.
The results are shown in Fig. [I]for CSA QBI, and also for original QBI followed
by Laplace-Beltrami sharpening (I — aVi operator, see [13]), with parameter
a = 0.15 chosen to produce the optimal results. CSA QBI was shown in [3] to
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Figure 1: Incrementally reconstructed ODFs from synthetic data with fiber crossings
of (a) 60° and (b) 90°, for iterations 1 to 30 (left to right), using (top) CSA QBI, and
(bottom) original QBI with Laplace-Beltrami sharpening.
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Figure 2: Coronal slice: CSA ODF, after iteration 100 of the Kalman filter. The
ODFs are shown on the tensor Fractional Anisotropy map.

resolve the fiber crossings starting at a smaller angle compared to the original
QBI. Accordingly, we can see in Fig. [1] that the 60° crossing is better resolved
by the CSA ODF at most iterations, and the 90° crossing is reconstructed
equally well by both methods. Additionally, further experiments demonstrated
that Kalman filtering in practice converges slightly faster when used with the
CSA ODF than the original ODF (rate of convergence was smaller by 0.001 for
crossing angles less than 50°, and about the same for larger angles).

3.2 In vivo motion detection

A sequence of 200 directions computed following the optimal sampling scheme
of [7] was implemented on a Siemens 3T scanner at the Center for Magnetic Res-
onance Research, University of Minnesota, to scan a healthy volunteer. During
the acquisition, the subject was asked to tilt his head after about 80 diffusion
weighted images were acquired. A pilot sequence without motion was also ac-
quired for comparison (see Fig. .

INRIA
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Figure 3: Axial slices of two baseline images: (left) before and (right) after the motion
occurred.

14 Average Squared Prediction Error

— 200 dirs, Regular

— 200 dirs, With motion
1.2 1
1.0
0.8
0.6H
0.41
0.2

50 100 150

Figure 4: Comparison of the average squared prediction error with and without mo-
tion.

The motion was quantitatively investigated (but not corrected) through rigid
registration of two baseline images acquired before and after the motion occured.
We used the Slicer3 rigid registration module, which estimated the transforma-
tion to be a rotation of about 20° around the z-axis, combined with a small
translation. Axial views of both positions are shown in Fig.

The Kalman filter of Section 2.0l was used to estimate the SH coefficients of
the double logarithm of the signal, with a regularization parameter A = 0.006.
The voxel-wise squared prediction error was calculated at each iteration of the
Kalman filter, and averaged over the relevant part of the imaging volume. This
region of interest was defined by a simple thresholding of the baseline image.

In Fig.[4] we compare the evolution of the reconstruction error during both
acquisition sequences. For the pilot acquisition, the fit gets better as new mea-
surements are acquired, and the prediction error decreases, as expected. On the
contrary, there is a sudden increase in prediction error for the second experi-
ment, at a point corresponding exactly to the motion (iteration 80).

RR n°® 7102
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4 Conclusion

We have adapted and extended the on-line reconstruction algorithm to the
mathematically correct CSA ODF; our Kalman filtering solution is shown to
detect crossings in white matter along the acquisition and reconstruction pro-
cess beyond what was possible with regular ODF. We have also studied local
changes in diffusion signal induced by subject’s motion, and have shown that
motion could be detected on-line when a coherent increase in prediction error
is reported over the imaging volume. We believe these improvements provide
the clinicians with a more accurate and more flexible tool for QBI acquisition
and analysis, in particular for children or patients who have difficulty sustaining
prolonged scanning sessions.

The next challenging step towards these objectives could be the development
of a motion compensation solution to combine with the Kalman filter. Real-time
model estimation also opens the way for a wide variety of on-line post-processing
methods, such as scalar index computation or fiber tractography, giving valuable
feedback to the operator.
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