High resolution SAR-image classification

Abstract : In this report we propose a novel classification algorithm for high and very high resolution synthetic aperture radar (SAR) amplitude images that combines the Markov random field approach to Bayesian image classification and a finite mixture technique for probability density function estimation. The finite mixture modeling is done by dictionary-based stochastic expectation maximization amplitude histogram estimation approach. The developed semiautomatic algorithm is extended to an important case of multi-polarized SAR by modeling the joint distributions of channels via copulas. The accuracy of the proposed algorithm is validated for the application of wet soil classification on several high resolution SAR images acquired by TerraSAR-X and COSMO-SkyMed.
Type de document :
Rapport
[Research Report] RR-7108, INRIA. 2009
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00433036
Contributeur : Vladimir Krylov <>
Soumis le : lundi 18 janvier 2010 - 13:26:37
Dernière modification le : jeudi 11 janvier 2018 - 16:13:46
Document(s) archivé(s) le : jeudi 23 septembre 2010 - 17:28:08

Fichier

RR-7108.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00433036, version 3

Collections

Citation

Vladimir Krylov, Josiane Zerubia. High resolution SAR-image classification. [Research Report] RR-7108, INRIA. 2009. 〈inria-00433036v3〉

Partager

Métriques

Consultations de la notice

354

Téléchargements de fichiers

235