The Hilbert scheme of points and its link with border basis

Mariemi Alonso 1 Jérome Brachat 2 Bernard Mourrain 2
2 GALAAD - Geometry, algebra, algorithms
CRISAM - Inria Sophia Antipolis - Méditerranée , UNS - Université Nice Sophia Antipolis, CNRS - Centre National de la Recherche Scientifique : UMR6621
Abstract : In this paper, we give new explicit representations of the Hilbert scheme of $\mu$ points in $\PP^{r}$ as a projective subvariety of a Grassmanniann variety. This new explicit description of the Hilbert scheme is simpler than the previous ones and global. It involves equations of degree $2$. We show how these equations are deduced from the commutation relations characterizing border bases. Next, we consider infinitesimal perturbations of an input system of equations on this Hilbert scheme and describe its tangent space. We propose an effective criterion to test if it is a flat deformation, that is if the perturbed system remains on the Hilbert scheme of the initial equations. This criterion involves in particular formal reduction with respect to border bases.
Liste complète des métadonnées

Cited literature [27 references]  Display  Hide  Download


https://hal.inria.fr/inria-00433127
Contributor : Bernard Mourrain <>
Submitted on : Saturday, July 31, 2010 - 10:18:07 AM
Last modification on : Wednesday, March 28, 2018 - 2:38:34 PM
Document(s) archivé(s) le : Thursday, November 4, 2010 - 10:18:31 AM

Files

hilbert2.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00433127, version 2
  • ARXIV : 0911.3503

Collections

Citation

Mariemi Alonso, Jérome Brachat, Bernard Mourrain. The Hilbert scheme of points and its link with border basis. 2010. ⟨inria-00433127v2⟩

Share

Metrics

Record views

462

Files downloads

325