Skip to Main content Skip to Navigation
New interface
Preprints, Working Papers, ...

The Hilbert scheme of points and its link with border basis

Mariemi Alonso 1 Jérome Brachat 2 Bernard Mourrain 2 
2 GALAAD - Geometry, algebra, algorithms
CRISAM - Inria Sophia Antipolis - Méditerranée , UNS - Université Nice Sophia Antipolis (1965 - 2019), CNRS - Centre National de la Recherche Scientifique : UMR6621
Abstract : In this paper, we give new explicit representations of the Hilbert scheme of $\mu$ points in $\PP^{r}$ as a projective subvariety of a Grassmanniann variety. This new explicit description of the Hilbert scheme is simpler than the previous ones and global. It involves equations of degree $2$. We show how these equations are deduced from the commutation relations characterizing border bases. Next, we consider infinitesimal perturbations of an input system of equations on this Hilbert scheme and describe its tangent space. We propose an effective criterion to test if it is a flat deformation, that is if the perturbed system remains on the Hilbert scheme of the initial equations. This criterion involves in particular formal reduction with respect to border bases.
Complete list of metadata

Cited literature [27 references]  Display  Hide  Download
Contributor : Bernard Mourrain Connect in order to contact the contributor
Submitted on : Saturday, July 31, 2010 - 10:18:07 AM
Last modification on : Thursday, August 4, 2022 - 4:52:36 PM
Long-term archiving on: : Thursday, November 4, 2010 - 10:18:31 AM


Files produced by the author(s)


  • HAL Id : inria-00433127, version 2
  • ARXIV : 0911.3503



Mariemi Alonso, Jérome Brachat, Bernard Mourrain. The Hilbert scheme of points and its link with border basis. 2010. ⟨inria-00433127v2⟩



Record views


Files downloads