S. Adachi, J. Lee, F. Peper, and H. Umeo, Kaleidoscope of life: A 24-neighbourhood outer-totalistic cellular automaton, Physica D: Nonlinear Phenomena, vol.237, issue.6, pp.800-817, 2008.
DOI : 10.1016/j.physd.2007.10.015

S. Adachi, F. Peper, and J. Lee, The Game of Life at finite temperature, Physica D: Nonlinear Phenomena, vol.198, issue.3-4, pp.182-196, 2004.
DOI : 10.1016/j.physd.2004.04.010

F. Bagnoli, R. Rechtman, and S. Ruffo, Some facts of life, Physica A: Statistical Mechanics and its Applications, vol.171, issue.2, pp.249-264, 1991.
DOI : 10.1016/0378-4371(91)90277-J

H. Bersini and V. Detours, Asynchrony induces stability in cellular automata based models, 4th International Workshop on the Synthesis and Simulation of Living Systems Artif icialLif eIV, pp.382-387, 1994.

J. Hendrik, B. Blok, and . Bergersen, Effect of boundary conditions on scaling in the " game of Life, Physical Review E, vol.55, pp.6249-52, 1997.

J. Hendrik, B. Blok, and . Bergersen, Synchronous versus asynchronous updating in the " game of life, Physical Review E, vol.59, issue.4, pp.3876-3879, 1999.

A. C. De-la-torre and H. O. Mártin, A survey of cellular automata like the " game of life " . Physica A: Statistical and Theoretical Physics, pp.3-4560, 1997.

N. Fatès, Critical phenomena in cellular automata: perturbing the update, the transitions, the topology, 2009.

N. Fatès and H. Berry, Robustness of the Critical Behaviour in a Discrete Stochastic Reaction-Diffusion Medium, Proceedings of the IWNC'09 conference, 2009.
DOI : 10.1007/978-4-431-53868-4_16

N. Fatès and M. Morvan, Perturbing the Topology of the Game of Life Increases Its Robustness to Asynchrony, Proceedings of the 6th International Conference on Cellular Automata for Research and Industry, pp.111-120, 2004.
DOI : 10.1007/978-3-540-30479-1_12

N. Fatès and M. Morvan, An experimental study of robustness to asynchronism for elementary cellular automata, Complex Systems, vol.16, pp.1-27, 2005.

N. Fatès, M. Morvan, N. Schabanel, and E. Thierry, Fully asynchronous behavior of double-quiescent elementary cellular automata, Theoretical Computer Science, vol.362, issue.1-3, pp.1-16, 2006.
DOI : 10.1016/j.tcs.2006.05.036

P. Grassberger, Synchronization of coupled systems with spatiotemporal chaos, Physical Review E, vol.59, issue.3, p.2520, 1999.
DOI : 10.1103/PhysRevE.59.R2520

H. Hinrichsen, Nonequilibrium critical phenomena and phase transitions into absorbing states Advances in Physics, pp.815-958, 2000.
DOI : 10.1080/00018730050198152

URL : http://arxiv.org/abs/cond-mat/0001070

S. Huang, X. Zou, Z. Tan, and Z. Jin, Network-induced nonequilibrium phase transition in the ???game of Life???, Physical Review E, vol.67, issue.2, p.26107, 2003.
DOI : 10.1103/PhysRevE.67.026107

R. A. Monetti, First-order irreversible phase transitions in a nonequilibrium system: Mean-field analysis and simulation results, Physical Review E, vol.65, issue.1, p.16103, 2001.
DOI : 10.1103/PhysRevE.65.016103

A. Roberto, E. V. Monetti, and . Albano, Critical edge between frozen extinction and chaotic life, Physical Review E, vol.52, issue.6, p.5825, 1995.

W. Poundstone, The Recursive Universe. William Morrow and Company, 1985.