
HAL Id: inria-00433472
https://inria.hal.science/inria-00433472

Submitted on 19 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A computability perspective on self-modifying programs
Guillaume Bonfante, Jean-Yves Marion, Daniel Reynaud

To cite this version:
Guillaume Bonfante, Jean-Yves Marion, Daniel Reynaud. A computability perspective on self-
modifying programs. 7th IEEE International Conference on Software Engineering and Formal Meth-
ods - SEFM 2009, Nov 2009, Hanoi, Vietnam. �inria-00433472�

https://inria.hal.science/inria-00433472
https://hal.archives-ouvertes.fr

A computability perspective on self-modifying programs

Guillaume Bonfante, Jean-Yves Marion, and Daniel Reynaud-Plantey

Nancy University – LORIA,

615, rue du Jardin Botanique, BP-101, 54602 Villers-lès-Nancy, France

Guillaume.Bonfante—Jean-Yves.Marion—Daniel.Reynaud-Plantey@loria.fr

Abstract—In order to increase their stealth, malware com-
monly use the self-modification property of programs. By doing
so, programs can hide their real code so that it is difficult
to define a signature for it. But then, what is the meaning
of those programs: the obfuscated form, or the hidden one?
Furthermore, from a computability perspective, it becomes
hard to speak about the program since, its own code varies
over time. To cope with these issues, we provide an operational
semantics for self-modifying programs and we show that they
can be constructively rewritten to a non-modifying program.

Keywords-Self-modifying code, semantics, computability,
virus, obfuscation

I. INTRODUCTION

Self-modifying programs are programs which are able

to modify their own code at runtime. Nowadays, self-

modifying programs are commonly used. For example, a

packer transforms any program into a program with equiva-

lent behavior, but which decompresses and/or decrypts some

instructions. Thus, packers transform programs into self-

modifying programs. Another example of self-modifying

programs are just-in-time compilers.

Self-modifying techniques allow obfuscation of codes,

thus protecting the intellectual property of the program

authors. Besides of these positive applications, malware

heavily use self-modification to armour themselves and to

avoid detection, and so throw the self-modification paradigm

in the dark side of programming.

There are lots of reasons to study self-modifying programs

from both a theoretical and a practical point of view. One

reason is to be able to have a good understanding of what can

be done with self-modifying programs. Another reason is to

provide tools to analyse them in the context of malware. We

may foresee difficulties of such an analysis by reading for

example the introduction of [1]. As opposed to traditional

programs, we do not have a static access to the instructions

of a self-modifying program. That is why, we shall introduce

pseudo-programs, that is programs for which we just have a

fragment of the listing (corresponding to the current step of

a computation). Indeed, a self-modifying program may write

and run some new code and it cannot be predicted a priori

without execution. So we just have a partial view of the

code. In short, runtime analysis is very hard even for trained

professional reverse engineer but currently remains the only

practical approach. On the other hand, we are not aware

of any effective static analysis for self-modifying programs.

This situation certainly comes from the lack of studies on

self-modifying constructions. To our knowledge, there are

only a few scientific papers on this topic, and without

being exhaustive, we may mention: [2] which proposes

an axiomatic semantics, and [3] which tries to provide a

semantics.

More recently in [4], we developed a dynamic type

system and a tool, TraceSurfer, in order to analyse self-

modifying binary programs, to recognize packer signatures

and to establish some non-interference like properties on

binary code. TraceSurfer outputs a view of the relations

between layers of dynamic code (monitoring, generation,

secure erasing). We have observed that the strategies of the

virus writers are sophisticated. This is one of our motivation

for a deep analysis of self-modifying programs.

This study is an attempt to contribute to the understanding

of self-modifying programs. For this, we provide some

semantics. Next to the traditional approaches, operational,

axiomatic and denotational semantics, we claim that deob-

fuscation also plays the role of a semantics. Obfuscation

usually hides the real code of a program by transforming

it according to some rules. In some way, the real code still

exists, but in a hidden form. Deobfuscation then consists in

rediscovering the initial code within the fog.

Our contribution is to show that classical computability

results may give a better understanding of self-modifying

programs and deobfuscation. This study follows the spirit of

the works of Jones [5], [6]. Our main result is a constructive

interpretation of Rogers’s isomorphism theorem. The orig-

inal result says that given two (acceptable) programming

languages, there is an effective isomorphism between both

languages. In our context, we use Rogers’s construction

to define a computability semantics of a self-modifying

program.

II. AN ABSTRACT ASSEMBLY LANGUAGE

One point here is about the design of the assembly

language. In a ”real” machine language, addresses and

values are encoded say by 32-bit words and so they are

finite. Let us cite Jones at that point “We here have a

paradoxical situation: that the most natural model of daily

computing on computers, which we know to be finite,

is by an infinite (i.e., potentially unbounded) computation

model.”. For this reason, we use an infinite model, however,

we have tried to keep things as finite as possible. We use

finitely many registers, finitely many instructions (of fixed

size) and memory cells contain only one letter. But, in order

to deal with unbounded addresses, since they are stored

in registers, we allow the content of these registers to be

unbounded.

The rationale of our model of a machine is to put the focus

on one (unilateral) infinite storage tape, where instructions

are loaded, executed and potentially transformed. Registers

serve only for the computation of intermediate values and

for the storage of the current instruction address.

In that sense, our model differs from the usual random

access machine (RAM) model which puts efforts on registers

(in particular, register machines employ a denumerable set

of registers). As a matter of fact, our model is closer to a

counter machine (CM). Since we have only a finite number

of registers, our model is less powerful than a RAM. On

the other hand, it is closer to the functioning of current

computers.

Anyway, what makes the present model different from

these two standard models is that we store the program

within the configuration, not in an idealized stable world.

Consequently, usual simulations of (say) Turing Machines

by RAM, and all classical results and notions (such as

specializers, self-interpretation, padding, Kleene’s fixpoint

Theorem and so on) must be reconsidered in the present

context.

A. The syntax

Let B be a finite set of letters modelling bytes. B∗ denotes

the set of finite words over B. We call elements in B∗

addresses or pointers. From now on, we suppose that there

is a blank character � ∈ B. On B∗, we use the following

operations.

• |w| denotes the size of words.

• The concatenation operation is written with a dot.

• Given a word w, we denote by wi its i-th letter, begining

with index 0, that is w = w0.w1 · · ·w|w|−1.

Furthermore, we suppose given an arithmetic on pointers

by means of an isomorphism between (B\{�})∗ and N,

let us say via ι : (B\{�})∗ → N
1. Then, ι−1(0) is the

initial address, ι−1(ι(w)+1) returns the ”next” address, etc.

To avoid tedious notations, we will no longer make a clear

distinction between addresses and natural numbers, and we

will write w + k where w is an address and k an integer.

The context shows what is going on. We extend ι to words

w ∈ B∗, saying that ι(�nu) = ι(u�n) = ι(u) with u ∈
(B\{�})∗ and n ∈ N. In other words, a � used as prefix or

suffix is transparent for ι. As a matter of fact, one will have

1Actually, since definitions are totally relative to ι, the isomorphism could
not be computable. However, in order to provide a concrete implementation
of the machine, we require it to be so.

observed that such an arithmetic is largely used in low-level

programming languages.

Finally, let R be a finite (non empty) set of registers.

Without loss of generality, one of these registers is ip , the

instruction pointer. The choice of the other registers belongs

to the design of the framework (the machinery).

A function ρ : R→ B∗ is named a register valuation and

a function σ : B∗ → B is called a store. S denotes the set

of stores. In the present settings, we do not introduce the

notion of stack. This could be done without harm.

The function 0 : R → B∗ is the constant function r 7→
0. For stores, � : B∗ → B is the function w 7→ �. We

introduce an update function on stores. Given σ : B∗ → B,

k ∈ N and a word w ∈ B∗, we write σ[k ← w] for the

store:

σ[k ← w] : B∗ → B

v 7→

{

σ(v) if v < k or v ≥ k + |w|
wi if v = k + i

In other words, looking at the store as a tape, it means that

one writes the word w from the index k. Finally, we use

the notation σ(m..n) where m ≤ n ∈ N for the word

σ(m).σ(m + 1) · · ·σ(n). If n < m, then σ(m..n) is the

empty word.

The abstract assembly language (ASL) is:

LOAD r r r CPY r r MOV r r

TEST r r JUMP r STOP

L_SHIFT r r R_SHIFT r r

L_CCAT l r R_CCAT l r

OP r r r NOT r

with r and l respectively register names and letters and

OP ∈ {ADD, SUB, MUL, DIV, MOD, CCAT, EQ, LEQ, AND, OR}.

The concrete syntax of the assembly language (CAL) is

an encoding of the ASL with words in B∗. To avoid being

too abstract, we provide now such an encoding. However,

one should keep in mind that we essentially use only one

feature of this encoding: the language of instructions must

be prefix, that is there are no words w1, w2 ∈ CAL such that

w1 = w2.u with u ∈ B∗. The reason is that instructions are

encoded in memory. Therefore, at one address in the store,

there should be no ambiguity on the current instruction to

be executed.

Let us consider words mov, l shift, add, ... ∈ (B\{�})∗

to encode the ASL lexemes2. Registers are encoded in the

same way by words ip, ap, ... ∈ (B\{�})∗ which are taken

to be different from the latter ones.

By a clever choice of the encoding words, we can suppose

that the encoding of ASL instructions is a prefix language.

Moreover, we can even suppose that encoded instructions

all have the same size, say K.

2One could use B
∗, but this condition ensures that non-self modifying

programs can be written in (B\{�})∗, a property used for Theorem 11.

Due to the fact that CAL is prefix, the ternary relation

instr defined below is actually a (partial) function S ×
B∗ → CAL:

(σ, k, w) ∈ instr⇔ σ(k..k + |w| − 1) = w.

Thus, we will write instr(σ, k) to mention the unique

instruction w such that instr(σ, k, w) if such an instruction

exists. Otherwise, we write instr(σ, k) = ⊥.

Traditionally, a program has a fixed text. Its code is a list

of instructions invariant wrt any run, on which analyses can

be performed. In the context of self-modifying programs,

the situation is different because we don’t have access to

the whole code. The code evolves during a computation and

may depend on the input. So we introduce the notion of

pseudo-program.

Definition 1. A pseudo-program is a piece of text p ∈ B∗

which potentially contains the code which will be executed.

To distinguish pseudo-programs from arbitrary strings, we

use a type writer font and we use P as an alias for B∗ for

the set of pseudo-programs.

Contrary to what happens in the usual case, one cannot

make a clear distinction between instructions and data since

some data may become instructions after being rewritten and

vice versa. So, we cannot define a pseudo-program to be a

string in CAL∗ which would be the natural presentation for

non self-modifying programs.

III. OPERATIONAL SEMANTICS

A configuration is given by a couple (ρ, σ) where ρ is a

register valuation and σ a store. Configurations caracterize

the states of the machine.

Definition 2 (Operational Semantics). The successor rela-

tion on configurations is defined in Figure 1. As usual, we

write (ρ, σ) →n (ρ′, σ′) the fact that (ρ, σ) = (ρ0, σ0) →
(ρ1, σ1) → · · · → (ρn, σn) = (ρ′, σ′) and →∗ is the

transitive closure of →.

One may have observed that indirect addressing is done

via the store. Since we have only finitely many registers, we

can name them directly. However, to denote some particular

window in the memory, we use two registers, one for the

begining and one for the length of the window.

From the remaining of the section, we suppose given a

the domain of computations Σ∗ where Σ ⊆ B. In particular,

one will have observed that pseudo-programs (by making

Σ = B) can be used as data of some other programs.

Given a pseudo-program p ∈ P and k words w1, . . . wk ∈
Σ∗, the initial configuration (for these words) is de-

fined as c0(p, w1, . . . , wk) = (0,�[0 ← p, |p| + 1 ←
w1.�.w2.� · · ·�wk]).

A function φ : (Σ∗)k → Σ∗ is computed by a

pseudo-program p if for all w1, . . . , wk ∈ Σ∗, we have

c0(p, w1, . . . , wk) → (ρ1, σ1) → · · · → (ρn, σn) where a)

instr(ρn(ip)) = stop, and b) ρ(out) = φ(w1, . . . , wk)
with out a given and fixed register. Conversely, a program

p computes the unique function φ : B∗ → B∗ such that:

• φ(x) = ρ(out) if one has c0(p, w1, . . . , wk) →
(ρ1, σ1) → · · · → (ρn, σn) and instr(ρn(ip)) =
stop.

• φ(x) is otherwise undefined.

This function is written JpK.

A. Some examples

For the notation of programs, we use the semi-column

instead of the dot to denote the concatenation of words.

Example 1. Let us introduce some syntactic sugar. Given a

word w, we define:

l ccat w r , l ccat w|w|−1 r;

l ccat w|w|−2 r;

...

l ccat w0 r

To test if a register r equals some word w ∈ B∗ and jump

otherwise to the content of the register p, we use:

testw r p , l ccat w tp1 ;

eq r tp1 ;

test tp1 p

where tp1 is a temporary register.

The following program computes the length of its first

argument (written in (B\{�})∗).

Example 2. Registers are r, s, ap, out, b, p.

length , l ccat k1 r; l ccat k2 s;

l ccat k3 b; l ccat 1 ap ;

load r ap p; test� p s;

add ap out out ; add ap r r

jump b; stop

where k1 is the address of the argument (that is the size of

the program plus one), k2 is the address of the instruction

stop and k3 is the address of the instruction load r ap p.

We present in Appendix A a technique to compute the kis.

This technique will be used later on and, in particular, in

Proposition 8.

B. The robustness of the model

One first point deals with the computational cost of each

step of computation. Reading the instructions can be done

in constant time, indeed, we took the precaution to encode

instructions with words of size equal to a constant K. As this

happens for RAM, the unit cost of operations on registers

depends on the size of the content of these registers. We refer

ρ(ip) = k instr(σ, k) = load r1 r2 r3 ρ(r1) = n ρ(r2) = δ σ(m..(m+ δ)) = w k + |instr(σ, k)| = m

(ρ, σ)→ (ρ[ip ← m, r3 ← w], σ)

ρ(ip) = k instr(σ, k) = mov r1 r2 ρ(r1) = w ρ(r2) = n k + |instr(σ, k)| = m

(ρ, σ)→ (ρ[ip ← m], σ[n← w])

ρ(ip) = k instr(σ, k) = op r1 r2 r3 op(ρ(r1), ρ(r2)) = w k + |instr(σ, k)| = m

(ρ, σ)→ (ρ[ip ← m, r3 ← w], σ)

where op ∈ {add, sub, mul, div, mod, ccat, eq, leq, and, or (*)}

instr(σ, ρ(ip)) = l shift r1 r2 ρ(r1) = l.w ρ(ip) + |instr(σ, ρ(ip))| = m

(ρ, σ)→ (ρ[ip ← m, r1 ← w, r2 ← l], σ)
(∗∗)

instr(σ, ρ(ip)) = l ccat l r ρ(r) = w ρ(ip) + |instr(σ, ρ(ip))| = m

(ρ, σ)→ (ρ[ip ← m, r ← l.w], σ)
(∗∗)

ρ(ip) = k instr(σ, k) = test r1 r2 ρ(r1) = ⊤ k + |instr(σ, k)| = m

(ρ, σ)→ (rho[ip ← m], σ)

ρ(ip) = k instr(σ, k) = test r1 r2 ρ(r1) = ⊥ ρ(r2) = m

(ρ, σ)→ (rho[ip ← m], σ)

ρ(ip) = k instr(σ, k) = jump r ρ(r) = m

(ρ, σ)→ (ρ[ip ← m], σ)

ρ(ip) = k instr(σ, k) = not r not(ρ(r)) = b

(ρ, σ)→ (ρ[r ← b, σ)

ρ(ip) = k instr(σ, k) = stop

(ρ, σ)→ (ρ, σ)

ρ(ip) = k instr(σ, k) = cpy r1 r2 ρ(r1) = w

(ρ, σ)→ (ρ[r2 ← w, σ)

(∗) Substration is defined on natural numbers as sub (n,m) = max(0, n −m). Concatenation is ccat (u, v) = u.v. For

binary operations, there are two (arbitrary) values ⊥,⊤, respectively for “true” and “false”. Usually, 0 serves as false, and

otherwise, the value is considered as true. (∗∗) where l ∈ B. The l shift operation on the empty word returns the empty word.

The rule for r shift is analogous, and has been ommitted, so is the rule for r ccat. In case of an instruction op r1 r2 ip,

we put the priority on the normal flow, that is ip = k + |instr(σ, k)| = m after the instruction. The same remark holds

for l shift , l ccat , . . .

Figure 1. The rules of the operational semantics

to Jones [6] for a full discussion about these issues. Anyway,

complexity theory is outside the scope of this paper, so

that we take the simplest notion of time complexity: the

computation length.

Definition 3 (Time complexity). Let p ∈ P , we define

time(p(x1, . . . , xn)) to be its computation length. That is:

time(p, x1, . . . , xn) = min{k ∈ N | c0(p, x1, . . . , xn) →k

(ρ, σ)}, where instr(ρ(ip)) = stop, and is undefined

otherwise.

We say that a program p is static if for all computations

c0(p, w1, . . . , wk)→n (ρn, σn),

• σn(0..|p| − 1) = p,

• the current instruction is an instruction of p, that is

instr(ip , ρn) < |p|.

In other words, the text of the program remains un-

changed, and the instruction pointer never goes outside the

program.

Proposition 4. There is a constant R such that any static

program for a machine with k+1 registers working in time

T (n) (n is the size of the input) can be simulated by a

static program written for a machine with R registers and

a computation time O(T (n)).

Proof: The principle of our simulation is to use 7 regis-

ters to encode the k+1 registers r1, . . . , rk of the simulated

pseudo-program p. Let us call them ip, m, M, np, r, tp0, tp1.

• m contains the maximal length of the registers ri,

• M contains (|B| − 1)m, that is an address on the tape

which is free,

• np contains a word made of m × k “�” symbols is

used to “clean” the memory,

• r encodes the content of the k registers (but not ip).

• and tp0, tp1 are temporary registers.

r is organized as follows ρ(r) = ρ(r1)�
k1 · · · ρ(rk)�kk

where ki + |ρ(ri)| = ρ(m). To get access to the value of

register ri, we perform the following operations:

mov r M; move r in (free) memory

mul i m tp0 ; add M tp0 tp0 ; computes the address of ri

load tp0 m tp0 ; load the content of ri

mov np M clean the memory

To push the value stored in tp0 corresponding to register

ri into r, we perform:

mov r M; as above

mul i m tp1 ; add M tp1 tp1 ;

mov tp0 tp1 ; push tp0 in memory

mul m k tp1 ; load M tp1 r; back in the register

mov np M clean the memory

One may observe that these operations can be done in

constant time. The management of m, M and np is facilitated

by the following observation: the size of the result of each

operation op(m,n) can be easily bounded by O(|m|+ |n|).
Augmenting the values of the three registers m, M and np

accordingly can be done in constant time. Using the program

length of example 2, we can give an initial value to M and

np. It is then routine to write the entire simulation.

IV. SELF-MODIFYING PROGRAMS

Definition 5. A pseudo-program p is said to be self-

modifying whenever it is not stable.S denotes the set of self-

modifying pseudo-programs and N = B∗\S the set of non-

self-modifying pseudo-programs, that is of stable programs.

In other words, for a self-modifying program, either the

code of the pseudo-program has been modified during the

execution, or the instruction pointer goes outside the code.

Actually, there are some room for the definition of self-

modification. One may argue, solution (1), that modifying

the memory within σ0(0 · · · |p| − 1) corresponds to self-

modification. However, there is no reason to restrict the

program to its initial segment: indeed, a program can write a

new instruction in another part of the memory, and then jump

to this instruction. Solution (1) is too restrictive since it does

not deal with some programs which dynamically transform

their code. So, one may imagine to extend the scope of

the definition to the entire memory. That is solution (2): it

corresponds to any program which writes a new instruction

in memory. But, again, since there is no clear distinction

between data and instructions, it may happen that a bunch of

data can be wrongly interpreted as an instructions. And then,

solution (2) considers as self-modifying some programs

which execute only instructions present at the begining.

Example 3. A short (if not the shortest) self-modifying

program is:

cpy ip ap ; gets the address of the current

instruction

l ccat ”stop” r; stores the word stop in r

mov r ap ; rewrites the first instruction

jump ap

where the second “instruction” use the shorthand notation

of Example 1. The jump instruction transfers the control to

the first instruction which has been rewritten to stop.

Definition 6 (Running programs). A program p is said to be

running whenever for all computations c0(p, w1, . . . , wk) =
(ρ0, σ0) → (ρ1, σ1) →∗ (ρn, σn), the sequence

ρ0(ip), . . . , ρn(ip) is increasing. A running program never

goes back.

Running stable programs are executed in a constant num-

ber of steps. Clearly, that subset of programs is not Turing-

complete. But the set of self-modifying running programs is

Turing-complete. This shows one of the fundamental differ-

ence between stable programs and self-modifying programs.

To prove our proposition, we compile any stable program

into a self-modifying program. Since stable programs are

Turing-complete (Proposition 8), the conclusion follows.

Let us consider a stable program p. To avoid technicalities,

we suppose that it is written with n instructions I1 · · · In,

using registers ip , r1, . . . , rk. We suppose furthermore that

ip does not appear as the target of some instruction

op r1 r2 r3. We compile it using the same registers with

4 extra-registers: M, m, tp0, tp1. The principle is to write a

program p′ which simulates the instructions of p. Along the

computation, the content of the ri is equal to the original

content, and the memory looks like

p′
· · ·

p′ p′ σ
′

M
m

copies of p′

where M gives the address of p.σ′ which correspond to

the content of the simulated memory and where m gives the

length of the occupied memory. Initialy, ρ(M) = |p′| and m

is computed by the length proram.

Each instruction I of p is translated to c instructions (see

the translation rules below). Consequently, we have |p′| =
c|p|. The number of copies of p′ in memory is given by

ip div |p′|, and the instruction pointer ip of p′ corresponds

to the execution of the instruction (ip mod |p′|)/c of p. Now,

the rule of the translation are given by:

op r1 r2 r3 7→ op r1 r2 r3

op′ r1 r2 7→ op′ r1 r2

op′′ r1 7→ op′′ r1

mov r1 r2 7→ add r1 M tp0 ; mov tp0 r2

load r1 r2 r3 7→ add r1M tp0 ; load tp0 r2 r3

stop 7→ stop

jump r 7→ r shift mem M m; mul c r tp0 ;

add M tp0 tp0 ; add |p′| M;

jump tp0

test r q 7→ add ip |p′| tp1 ; add c tp1 tp1 ;

mul c q tp0 ; add M tp0 tp0 ;

r shift mem M m; add |p′| M;

test r tp0 ;

jump tp1

• op corresponds to ternary operators, op′ to

binary operators and op′′ are unary operators

(not, l ccat , r ccat),

• op m r1 r2 where m is an integer is a shorthand defined

as in example 1,

• r shift mem M m shifts the memory content from |p′|
letters using M and m and make a new copy of p′ at

address M,

• when ip is used as an operand of some instruc-

tion, we get its content through the instructions:

mod ip |p′| tp0 ; div tp0 c tp0 and replace ip by

tp0,

• the management of m is not shown in the translation,

but it is simple: at each step, multiply it by 2,

• to make all translations have exactly c instructions, we

pad the shorter ones with dummy instructions cpy r r.

V. COMPUTING NON-SELF-MODIFYING PROGRAMS

FROM PSEUDO-PROGRAMS

Now, thinking of self-modifying programs as obfuscated

forms of normal programs, one may argue that the mean-

ing of a self-modifying program is its (one of) non-self-

modifying form.

Definition 7 (Deobfuscating semantics). A deobfuscating

semantics is a function ψ : P → N such that for all p ∈ P ,

we have Jψ(p)K = JpK.

To define an effective deobfuscating semantics, we have to

show that the set of functions computed by pseudo-programs

is Turing complete. There is nothing surprising with that

result. However, to keep a constructive approach, and since

some part of the definitions are used later on, we provide a

complete proof of it.

For that sake, we introduce a slight variant of GOTO-

programs as employed by Jones in [6]. We suppose given

a finite set of variables X1, . . . , Xn ranging on words. A

GOTO-program is then given by a list of instructions 1 :
I1, 2 : I2, . . . , n : In with instructions being given by:

I ::= Xi := nil | Xi := a | Xi := Xj | Xi := l shift Xj

| Xi := ccat Xj Xk | if a goto ℓ | stop

where a ∈ B and ℓ ∈ N. A configuration is given by a

valuation of the variables and the address n ∈ N of the

instruction to be executed. To denote a configuration, we

use the notation (x1, . . . , xn, ℓ). Here, xi is the content of

Xi and ℓ is the current label of the instruction. If ℓ > n
or ℓ = 0 or ℓ labels a stop instruction, the machine

stops. Otherwise, the semantics of instructions is a binary

relation on configurations. Suppose that Iℓ = Xi := nil |
Xi := a | Xi := Xj | Xi := l shift Xj | Xi :=
ccat Xj Xk, then, (x1, . . . , xn, ℓ)→ (x1, . . . , x

′
i, . . . , xn, ℓ+

1) where x′i is computed from the xi’s according to the

right value of the expression. For Iℓ = if a goto ℓ′,
then (a, x2 . . . , xn, ℓ) → (a, x2, . . . , xn, ℓ

′) and otherwise

(x1, x2 . . . , xn, ℓ)→ (x1, x2, . . . , xn, ℓ+ 1).

Proposition 8. Any function computed by a GOTO-program

can be computed by a program in N , and consequently by

a program in P . Conversely, programs in P (and N) can

be simulated by GOTO-programs.

Proof: It is done by a direct simulation of instructions.

We use the registers ri for the variables Xi plus two

extra registers, np contains the empty word, and tp1 is a

temporary register. There is no explicit register for ℓ: actually

ip will follow the flow of GOTO-instructions. Consider a

GOTO instruction I, we associate the following instructions

α(I):

Xi := nil 7→ cpy np ri

Xi := a 7→ cpy np ri; l ccat a ri

Xi := Xj 7→ cpy rj ri

Xi := l shift Xj 7→ l shift rj tp1 ; cpy rj ri;

ccat tp1 rj rj

Xi := ccat Xj Xk 7→ ccat rj rk tp1 ; cpy tp1 ri

stop 7→ stop

if a goto ℓ 7→ cpy np tp1 ; l ccat @Iℓ tp1

testa r1 tp1

where @Iℓ in the translation of α(if a goto ℓ) is an

integer which will be instantiated according to the rest of the

instructions. Given a Turing Machine M = 1 : I1, . . . , n :
In, we translate it as the concatenation of instructions

α(I1).α(I2) · · ·α(In) where the “@Iℓ”s appearing in the

translation are computed as follows. Let us call @Ii the

address of instruction Ii in memory, that is the length of

the string α(I1) · · ·α(In−1). Let us write ⌊I⌋ the size of

its encoding where we dropped the addresses. That is for

instance ⌊left ⌋ = |α(left)| and ⌊if a goto ℓ⌋ =
|α(if a goto ℓ)| − |l ccat @Iℓ tp1|.

The addresses verify:







@I1 = 0
@Ii+1 = @Ii + ⌊Ii⌋+K × |ℓ| if I = if a goto ℓ
@Ii+1 = @Ii + ⌊Ii⌋ otherwise

In other words, we have again a fixpoint equation. It can

be solved as in example 2.

For the other direction, the rules of the operational seman-

tics show clearly that the successor relation is computable,

and then GOTO-computable.

A. N and P are acceptable languages

Proposition 9. The sets N and P of programs are accept-

able languages in the sense of Rogers and Uspenski [7],

[8].

Proof: We have seen that both langages N and P are

Turing-complete. We need to provide two more construc-

tions, a specializer and a self-interpreter for N and P . We

recall that the specializer Sn is defined by the equation

JSn(p, x0)K(x1, . . . , xn) = JpK(x0, . . . , xn). Refering to the

operational semantics, both for N and P , we state that

Sn(p, x0) = p.�.x0 solves the problem.

For the universal function, from Proposition 8, we know

that there is a GOTO-program M such that computing M
on (p, x1, . . . , xn) we get JpK(x1, . . . , xn). Translating this

machine back (with the same Proposition 8), we get a pro-

gram IM such that JIM K(p, x1, . . . , xn) = JpK(x1, . . . , xn).

Remark 10. From its definition, it is straightforward (but it

must be observed) that the specializer Sn is efficient: that

is, time(Sn(p, x0)(x1, . . . , xn)) = time(p(x0, . . . , xn)).

We end this part with Kleene’s recursion theorem. In [9],

we have shown its central role in computer virology. The

theorem can be used as a compiler for viruses. In particular,

we provided a classification of viruses by means of a

stratification of some variants of the Theorem [10].

Theorem 11. [Kleene’s fixpoint] Given a computable func-

tion g : B∗ × B∗ → B∗, there is a program e in N such

that JeK(x) = g(e, x).

Proof: Suppose that g is a program for the function g.

The pseudo-program p1,2, by scanning the memory, pushes

the first argument in register out and lets the memory

unchanged. p2,2 is the second projection, it pushes the

second argument in register out . Finally, we suppose that

clean p cleans the memory from the address stored in p.

The function x, y 7→ g(S1(x, x), y) is then computed by the

following program:

q , l ccat k p. //the length of q

p1,2; cpy out tp0 ;

p2,2; cpy out tp1 ;

clean p; r ccat � tp0 ;

ccat tp0 tp0 tp0 ;

ccat tp0 tp1 tp1 ;

mov tp1 p; g

where k is the length of q3. Defining e = S1(q, q) = q�q,

we have the equalities:

JeK(x) = JS1(q, q)K(x)

= JqK(q, x)

= g(S1(q, q), x) = g(e, x)

B. Semantics by deobfuscation

Proposition 12. The set S is Σ1-complete.

Proof: The formulation of Definition 5 shows that S is

Σ1. We show that it is actually complete. Take a TM M and

call α(M) its translation according to Proposition 8 where

one transforms the translation of stop to

stop 7→ cpy ip tp1 .cpy np tp0 .

l ccat ”stop” tp0 .

mov tp0 tp1 .jump tp1

If the machine halts, one of the instructions stop is

executed. The instruction mov tp0 tp1 writes a stop

instrution, and then we jump to this instruction. Conse-

quently, the program is self-modifying. For a non-halting

machine, as we have seen, the simulation is performed by a

non-self-modifying program. Then, the machine halts iff its

translation is in S, we get the desired result.

This result is important in our quest of deobfuscation as

a semantics. Let us call ψ : P → N , the deobfuscation

semantics we are looking for. It is natural to say that the

semantics of a non-self-modifying program is the program

itself (since it is not obfuscated!). To sum up, we are looking

for a function ψ such that:

(i) Jψ(p)K(x) = JpK(x),
(ii) for p ∈ N , ψ(p) = p.

Unfortunately, there is no such computable function. This

is a corollary of Proposition 12. We prove it ad absurdum.

Suppose that ψ is constructive. Then, we have p ∈ S ⇔
ψ(p) 6= p. Indeed, if p ∈ S, then ψ(p) ∈ N implies that

ψ(p) 6= p. Otherwise, p = ψ(p) by the requirement on ψ.

Consequently, the price of the effectiveness of the deob-

fuscation function is to have a less precise deobfuscation

3Again, we use a fixpoint argument to compute it.

notion: an effective deobfuscation semantics must modify

some non-self-modifying programs.

Theorem 13 (Rogers [8]). There is a computable iso-

morphism between any two acceptable languages, that

is between two Turing complete programming languages

equipped with a specializer and a universal function.

As a corollary, since both N and P are acceptable

languages, there is a computable procedure which sends any

program p ∈ P to some program in N . This isomorphim

actually defines a deobfuscating semantics as mentioned in

the beginning of the Section.

This is, up to our knowledge, an original use of this the-

oretical result as a tool to deobfuscate programs. However,

Rogers’s construction has some drawbacks. First, whenever

the procedure is effective, we have no ideas of its com-

plexity. Second, and toughest point, this (deobfuscating)

semantics does not provide a link between the complexity of

the obfuscated form of a program and its deobfuscated one.

In particular, it could happen that the computations of the

deobfuscated form of a program takes much more time than

its obfuscated form. This goes clearly against the intuition

of (de-)obfuscation. One of the requirements of Rogers

construction is that the morphism is actually bijective. This

feature is meaningless in the present setting, where we only

need a compilation procedure (neither necessarily injective,

nor surjective).

Theorem 14. There is a compilation procedure π : P → N
such that:

• π is computable in polynomial time,

• for each program p ∈ P , we have time(π(p)) =
O(time(p)).

Proof: We use the first Futamura projection [11]. This

construction is quite analogous to the use of a virtual

machine that we use daily to analyse a malware in a safe

environment.

Consider that we have a (relatively) efficient interpreter

IP
N of P programs (written in N), that is the program

IP
N verifies JIP

N K(p, d) = JpK(d) and time(IN (p, d)) =
O(time(p(d))). Then, the following procedure solves the

problem: π : p 7→ S1(I
P
N , p). First, it can be computed in

polynomial time. Indeed, IP
N is a constant parameter and the

definition of S1 shows it is computable in polynomial time.

Second, the compilation is correct:

JS1(I
P
N , p)K(d) = JIP

N K(p, d)

= JpK(d)

And third, for the time complexity of the program p, we

have the equations:

time(S2(I
P
N , p)(d)) = time(IP

N (p, d)) see Remark 10

≤ O(time(p(d))) by hypothesis

So, the last point of the proof is to show the existence of

such an interpreter. Given a pseudo-program with registers

r1, . . . , rn, we simulate it, using registers r′1, . . . , r
′
n plus

some extra registers ip , tp0 , tp1 ,K. The interpreter I is

designed as:

ccatl K K //the length of instructions

ccatl k1 tp1 //tp1 points to cpy tp2 ip’

load ip’ K tp0 //load next instruction

switch tp0 with

case load r1 r2 r3 -> load r’1 r’2 r’3

case mov r1 r2 -> mov r’1 r’2

case op r1 r2 r3 -> op r’1 r’2 r’3

case shiftl r1 r2 -> shiftl r’1 r’2

case shiftr r1 r2 -> shiftr r’1 r’2

case test r1 r2 -> cpy r’2 tp2.

test r’1 tp1

case jump r -> cpy r’ tp2. jump tp1

case stop -> stop

end_switch

add K ip ip.

jump k2

cpy tp2 ip’. jump k2

where k1 corresponds to the address of the instruction

cpy tp2 ip’ and k2 to the instruction load ip’ K

tp0. The switch construct is defined as follows.

switch tp1 with

case w1 → e1
...

case wn → en

,
testw1 tp1 m2.e1.jump k
...

testwn tp1 k.en.jump k

where mi with 2 ≤ i ≤ n points to the instruction

corresponding to the i-th test and k points to the address

at the end of the construction.

It is clear that I is a non-self-modifying program. From

the construction, one may observe that each instruction

is simulated by a finite number of instructions. Conse-

quently, the time loss of our simulation is constant for

each instruction, more precisely, we have time(I(p, d)) =
O(time(p(d))). And lastly, the program above is actually

stable. We have seen in Section III that for these programs,

we could have an encoding of registers at a constant cost.

It is then routine to encode the interpreter with the right

number of registers.

VI. CONCLUSION

We have proposed a computational model which is close

to the functionning of real machines. The program is loaded

in memory, and can be changed along the computations.

This paper rises some open questions. First, we think that

the notion of self-modification should be refined: one way is

to use [4], where the authors show that typing can be used

to characterize pseudo-programs. Secondly, we have shown

that there are no deobfuscating procedure keeping the stable

programs constant. Linked to this question, can we find some

tools to approximate both sets N and S, from above, or from

below? Such techniques find an immediate application in the

verification of the security of a computer systems.Finally,

writing self-modifying program is difficult. We think that

Kleene’s recursion theorem is a major tool to build them.

Indeed, fixpoint programs have access to their own code and,

consequently, can manipulate it. Finally, running programs

can be seen as kind of generalized traces.

REFERENCES

[1] A. Issa, “Raw assault on a poly/metamorphic engine,” in
EICAR, 2009, pp. 173–184, industry paper.

[2] H. Cai, Z. Shao, and A. Vaynberg, “Certified self-modifying
code,” vol. 2007, 2007, pp. 66–77.

[3] S. Debray, K. Coogan, and G. Townsend, “On the semantics
of self-unpacking malware code,” 2008.

[4] J. Marion and D. Reynaud, “Surfing on code waves,” LORIA,
Tech. Rep., 2009.

[5] N. Jones, “Computer implementation and applications of
kleene’s S-m-n and recursive theorems,” in Lecture Notes
in Mathematics, Logic From Computer Science, Y. N.
Moschovakis, Ed. Springer Verlag, 1991, pp. 243–263.

[6] ——, Computability and Complexity: From a Programming
Perspective. Cambridge, MA, USA: MIT Press, 1997.

[7] V. Uspenskii, “Enumeration operators and the concept of
program,” UMN, vol. 11, 1956.

[8] H. Rogers, Theory of Recursive Functions and Effective
Computability. New York: McGraw Hill, 1967.

[9] G. Bonfante, M. Kaczmarek, and J.-Y. Marion, “On abstract
computer virology from a recursion-theoretic perspective,”
Journal in Computer Virology, vol. 1, no. 3-4, 2006.

[10] ——, “A classification of viruses through recursion theo-
rems,” in CIE, ser. Lecture Notes in Computer Science, vol.
4497. Springer, 2007, pp. 73–82.

[11] Y. Futamura, “Partial evaluation of computing process– an
approach to a compiler-compiler.” in Systems, Computers,
Controls, vol. 5, 1971, pp. 45–50.

APPENDIX

Refering to example 2, there is one issue with the ki’s

which we discuss now. One may observe that they are de-

fined by means of themselves. Indeed, consider for instance

k1. The length of the macro instruction l ccat k1 r depends

on |k1|, that is on k1. So, the length of the program depends

on k1. But k1 is defined as the length of the program plus

one!

To solve this, we use a fixpoint equation. Refer-

ing to the definition of l ccat n tp , the size of

these instructions is K × |n| where K has been de-

fined as the length of instructions (see Section II). Let

us introduce α = |l ccat 1 ap |, β = |α| +
|load r ap p.test� p s.add ap out .add ap r.jump b|
and γ = β + |stop|+ 1. Consider now the functions:

f1(x1, x2, x3) = (|x1|+ |x2|+ |x3|)×K + γ

f2(x1, x2, x3) = (|x1|+ |x2|+ |x3|)×K + β

f3(x1, x2, x3) = (|x1|+ |x2|+ |x3|)×K + α

f(x1, x2, x3) = (f1(x1, x2, x3), f2(x1, x2, x3),

f3(x1, x2, x3))

One may observe that (k1, k2, k3) is a fixpoint for the

function f . To compute it, we use the algorithm:

Addr = [1,1,1]

Addr’ = Addr

while(Addr’ != Addr) do

Addr = Addr’

Addr’ = f(Addr) //with f defined above

od

return Addr

If the algorithm ends, then, the result is a fixpoint.

Let us prove that the algorithm terminates. One may ob-

serve that f is contracting for sufficiently large values.

Indeed, let us write δ(m,n) = max(m − n, n − m).
Whatever c > 0 is, by intermediate value theorem,

for all x, y >
1

c× ln(|B| − 1)
, one has δ(|x|, |y|) =

δ(log|B|−1(x), log|B|−1(y)) ≤
1

c
× δ(x, y). We introduce

the distance δ((x1, x2, x3), (y1, y2, y3)) = δ(x1, y1) +

δ(x2, y2) + δ(x3, y3). Take c =
1

6×K
, we compute

δ(f(x1, x2, x3), f(y1, y2, y3)):

= 3×K × δ(|x1|+ |x2|+ |x3|, |y1|+ |y2|+ |y3|)

≤ 3×K(δ(|x1|, |y1|) + δ(|x2|, |y2|) + δ(|x3|, |y3|)

≤ 3×K ×
1

c
× δ((x1, x2, x3), (y1, y2, y3))

≤
1

2
× δ(x1, x2, x3), (y1, y2, y3))

As a consequence, the algorithm converges. Moreover, we

can state that the convergence is geometric wrt the input.

Consequently the compilation procedure can be performed

in polynomial time.

