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Abstract—The development of embedded systems requires the
development of increasingly complex software and hardware
platforms. Full system simulation makes it possible to run
the exact binary embedded software including the operating
system on a totally simulated hardware platform. Whereas most
simulation environments do not support full system simulation, or
do not use any hardware modeling techniques, or have combined
different types of technology, SimSoC is developing a full system
simulation architecture with an integrated approach relying only
upon SystemC hardware modeling and transaction level modeling
abstractions (TLM) for communications. To simulate processors
at reasonably high speed, SimSoC integrates instruction set
simulators (ISS) as SystemC modules with TLM interfaces to
the other platform components. The ISS’s use a variant approach
of dynamic translation to run binary code. The paper describes
the overall architecture of the SimSoC full system simulator, a
description of the ISS implementation and integration with some
other components. A final section reports results obtained, in
particular simulation of an existing System On Chip that can
run the Linux operating system.

I. INTRODUCTION

The development of embedded systems platforms requires

increasingly large pieces of software running on complex Sys-

tem On Chips. A characteristics of embedded systems is that

a new project (to design a new commercial product) combines

new hardware with new application software. In order to save

time to market, it is important that the software development

can take place before the hardware development is completed.

A simulation environment is necessary to simulate the system

under design so that software developers can test the software

and hardware developers can investigate design alternatives.

For the product developers, the simulation environment is

more valuable if it can achieve full system simulation, that

is, it runs the exact binary software that will be shipped with

the product, including the operating system and the embedded

application. This simulation must be sufficiently fast so that

software developers can run tests with reasonable response

time to support an effective iterative development cycle. This

precludes the use of cycle accurate simulation as used in

hardware development as it is much too slow.

In many projects, the hardware is re-used from former

project, but with evolutions or new components added. Hence,

it is also necessary to support simulation of new hardware

components with enough detail, possibly using simulation

models coming from third party IP providers.

These requirements call for an integrated, modular, full

simulation environment where already proven components,

possibly coming from third-parties, can be simulated quickly

whereas new IP under design can be tested more thoroughly.

Modularity and fast prototyping also have become important

aspects of simulation frameworks, for investigating alternative

designs with easier re-use and integration of third party IPs.

The SimSoC project1 is developing a framework geared

towards full system simulation, mixing hardware simulation

including one or more ISSs, able to simulate complete System-

on-Chips. The SimSoC simulation environment combines two

technologies in a single framework: SystemC/TLM to model

the new IPs and interconnects, and one or more instruction set

simulators (ISS). Each ISS is designed as a TLM model.

In this paper, we present the overall system architecture and

the ISS technology. To achieve fast processor simulation, the

SimSoC ISS technology uses a form of dynamic translation,

using an intermediate representation and pre-generated code

using specialization, a technique already used within virtual

machines.

The hardware models are standard SystemC TLM abstrac-

tions and the simulator uses the standard SystemC kernel.

Therefore, the simulation host can be any commodity com-

mercial off-the-shelf computer and yet provide reasonable

simulation performance.

The rest of the paper is organized as follows. Section II

describes related work in the area of full system simulation,

instruction set simulation and SystemC TLM. Section III

explains the overall structure of the simulator, the integra-

tion between SystemC, TLM and the ISS, and it describes

the dynamic translation technology. Section IV details some

benchmarking. Finally the conclusion offers perspectives for

improving simulation speed.

II. RELATED WORK

Simulation platforms can be characterized by the technolo-

gies they use for simulating hardware components, either

1This project has been partly funded with a grant from Schneider Electric
Corporation in China



some Hardware Description Language (HDL) or only software

emulation; and the extent of the simulation with regard to the

overall platform, whether or not a complete software binary

such as an operating system can be run over the simulator.

To support simulation at reasonable speed for the software

developers FPGA solutions can be used [1]. These solutions

tend to present slow iteration design cycles, they are costly,

and anyway they can only be used when the hardware design

has reached enough maturity to be modeled in FPGA, which

is late in the project.

Other approaches using software based simulation usually

implies two separate technologies, typically one using a Hard-

ware Description Language, and another one using an instruc-

tion set simulator (ISS). Then some type of synchronization

and communication between the two must be designed and

maintained using some inter-process communication. Gerin et.

al. [2] have presented such a SystemC co-simulation environ-

ment. It offers modularity and flexible usage but it uses an

external ISS. Fummi et. al have implemented [3] an integrated

simulation environment that reaches fair integration, however

there are still two main simulation software interconnected

through the use of external GDB debugger program, and the

SystemC kernel has to be modified. In SimSoC, we use stan-

dard, unmodified, SystemC, and no additional synchronization

mechanism is required.

A. SystemC-TLM

SystemC has become the standard to represent hardware

models, as it is suitable for several levels of abstraction, from

functional models to synthetizable descriptions. It is defined

by an IEEE standard [4], and comes with an open-source

implementation.

SystemC is a C++ library that provides classes to describe

the architecture (sc_module...) of heterogeneous systems

and their behavior thanks to processes (SC_THREAD...) and

synchronization mechanisms (sc_event...). The architecture

is built by executing the elaboration phase, which instantiates

modules and binds their ports. Next, the SystemC simulator

schedules the SystemC processes. A SystemC process is either

eligible or running or waiting for a SystemC event. There is

at most one running process at a time. A process moves from

eligible to running when it is elected by the scheduler. The

elected process explicitly suspends itself when executing a

wait instruction (i.e. the scheduling policy is not preemptive).

If the running process notifies an event, then all processes

waiting for this event move from waiting to eligible.

Transactional level modeling (TLM) refers both to a level

of abstraction [5] and to the SystemC-based library used to

implement transactional models [6]. The transaction mecha-

nism allows a process of an initiator module to call methods

exported by a target module, thus allowing communication

between TLM modules with very few synchronization code.

Expressing the semantics of SystemC in a TLM context has

been investigated in [7].

B. Instruction Set Simulation

An instruction-set simulator (ISS) is used to mimic the

behavior of a target computer processor on a simulation

host machine. The main task of an ISS is to carry out

the computations that correspond to each instruction of the

simulated program. There are several alternatives to achieve

such simulation. In interpretive simulation, each instruction

of the target program is fetched from memory, decoded, and

executed, as shown in Figure 1. This method is flexible and

easy to implement, but the simulation speed is slow as it wastes

a lot of time in decoding. Interpretive simulation is used in

Simplescalar [8].

fetch decode execute

memory

datainstructions
binary

Fig. 1. Interpretive simulation

A second technique is compiled simulation (see Figure 2),

also called static translation. The application program is

decoded in a preliminary compilation phase and translated

into a new program for the simulation host. The simulation

speed is vastly improved [9], [10], but it is not as flexible

as interpretive simulation. The application program must be

entirely known at compile time, before simulation starts. This

method is hence not suitable for application programs which

will dynamically modify the code, or dynamically load new

code at run-time, or applications like Java Virtual Machines

that include a JIT compiler itself generating new code [11].

decompiler C code compiler
(e.g. gcc)

binary
executable

host

execute
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Fig. 2. Compiled simulation

A third technique to implement ISS is dynamic trans-

lation [12]–[14]. With dynamic translation (see Figure 3),

the target instructions are fetched from memory at runtime,

like in interpretive simulation. They are decoded on the first

execution and the simulator translates these instructions into

another representation which is stored into a cache. On further

execution of the same instructions, the translated cached

version is used. If the code is modified during run-time,

the simulator invalidates the cached representation. Dynamic

translation combines the advantage of interpretive simulation

and compiled simulation as it supports the simulation of

programs that have either dynamic loading or self-modifying

code,

In the past decade, dynamic translation technology has been

favored, such as [15]–[17] . The target code to be executed
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Fig. 3. Dynamic translation

is dynamically translated into an executable representation.

Although dynamic translation introduces a compile time phase

as part of the overall simulation time it is expected that this

translation time is amortized over time.

C. Virtual Machine

Full system simulation is also achieved in so called Virtual

Machines such as QEMU [18] and GXemul [19] that em-

ulate the behavior of a particular hardware platform. These

emulators are each using ad-hoc techniques to simulate hard-

ware components. Although they contain many hardware

components emulation, these models are non standard and

non interoperable. For example any of each device model

from one emulator cannot be reused into the other emulator.

In particular, simulating parallel system on one computer

requires some form of scheduling. How these tools schedule

parallel entities is not well specified enough to guarantee the

compatibility between third-party models. SimSoC relies on

the SystemC norm to avoid this problem.

III. SIMSOC

SimSoC is implemented as a set of SystemC TLM mod-

ules. The global architecture is depicted in figure 4. The

hardware components are modeled as TLM models, therefore

the SimSoC simulation is driven by the SystemC kernel. The

interconnection between components is an abstract bus. Each

processor simulated in the platform is abstracted as a particular

class.
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Fig. 4. SimSoC architecture

The goal of the SimSoC ISS is to simulate the behavior

of the target processor with instruction accuracy. It emulates

execution of instructions, exceptions, interrupts and virtual to

physical memory mapping. The processor drives the transla-

tion of binary code. When the program counter points to an

instruction that has not been translated yet, the translation is

called, otherwise the cached translated code is executed. The

translation is actually achieved on a memory page basis.

A. SimSoC ISS

In order to compare different techniques, and to provide

different levels of trade-offs of accuracy vs. speed, we have

implemented three kinds of instruction simulation correspond-

ing to three modes that the simulator can run.

The first mode, named M0, is interpretive simulation. This

is the basis from which we can compare performance. The

second mode (M1) is dynamic translation with no specializa-

tion. This mode shows the performance improvement obtained

with dynamic translation compared to interpretive simulation.

The third mode (M2) is dynamic translation with specialized

pseudo instructions as described below. This mode shows the

performance improvement obtained with specialization over

standard dynamic translation as in M1 mode.

SimSoC dynamic translation uses an intermediate repre-

sentation that is partly dependent on the target architecture,

but does not involve the maintenance cost of a compiler,

similar to [19]. SimSoC intermediate representation is totally

independent of the host (both machine architecture and oper-

ating system), as long as the host platforms supports the C++

language.

To optimize performance, we have pursued two paths. First,

offload most of the compiling work by pre-compiling most

of the simulation code with maximum optimization. Second,

exploit partial evaluation specialization techniques to optimize

generated code.

Partial evaluation is a compiling optimization technique,

also known as specialization [20]. The basic concept of

specialization is to transform a generic program P , when

operating on some data d into a faster specialized program

Pd that executes specifically for this data. Specialization can

be advantageously used in processor simulation, because data

can often be computed at decoding time, and a specialized

version of the generic instruction can be used to execute it.

The simulation code then uses fewer tests, fewer memory

accesses and more immediate instructions. This technique has

been used to some extent in the IC-CS simulator [21].

Potentially there are 2
32 specializations of a 32-bit instruc-

tion set, which would lead to a huge amount of specialized

code. In practice however, many binary configurations are

illegal and some instructions are more frequently executed than

others. By specializing the most frequently used instructions

to a higher degree than the less frequent ones, one can reduce

the number of specialized functions to a manageable amount

of code.

The SimSoC binary decoder can be generated by a decoder

generator, the Instruction Set Compiler. It takes as input a



specification file and produces the C++ architecture specific

decoder. This decoder computes every possible value that can

be statically determined at that time for partial evaluation

and caches re-used values into the data structure of the inter-

mediate representation. For example some ARM architecture

instructions may have an immediate value argument shifted by

another immediate value and the carry of the resulting shifted

value is used in computing the carry bit resulting from that

instruction. Such values can be pre-computed at decoding time

to select the partially evaluated code that should be used as

described below.

As a SimSoC ISS includes pre-compiled code loaded at

start-up time, therefore it is not dependent upon the host

binary format and operating system. The decoder dynamically

constructs an intermediate representation that maps the binary

instructions to this precompiled code.

The precompiled code consists of specialized code, which

can be generated by a code generator. This code can be more

or less specialized for each instruction class. For almost every

variant of an instruction, a specialized version of the code

is maintained in a large multidimensional table storing the

specialized code for this particular case. Each such element

in the table is called a semantic function. The decoding phase

mostly amounts to locating the appropriate semantic function

for that specialized instruction. For example, regarding the

ARM architecture, it is worth specializing the move and load

instructions in the always condition code, and it is less

valuable specializing arithmetic instructions in the rare case

the condition code is not always and the S bit is set. It is

then pre-compiled and loaded into the table by the simulator.

The code generator is parameterized to generate more or

less specialized instructions [22], which can be tuned based

on the analysis of the simulated application. For example,

the SimSoC code generator generates for the subset of data

processing and simple load store instructions 14280 semantic

functions, and a total code size of a few Megabyte of code

for the entire simulator, which is reasonably small compared

to the available memory size on simulation hosts.

B. Transaction Level Modeling

The SimSoC ISS need to access memory and other devices:

1) when it fetches an instruction which is not translated yet;

2) when it execute a load/store instruction (e.g. ldr, strh,

ldm, etc). The SimSoC provides two modes: one basic generic

mode and an optimized mode.

The basic mode uses the Blocking transport interface

of the OSCI TLM-2 standard [6], which has been de-

signed for untimed simulation as our ISS. This inter-

face requires that each target module exports a function

void b_transport(TRANS &trans). We use the de-

fault tlm_generic_payload for the transaction type, as

recommended by the OSCI to ease interoperability. Conse-

quently, to communicate to another component, the processor

creates a transaction object, by providing at least an address,

a command (read or write), a pointer to data and a data size.

Next it calls the b_transport function on this object. The

bus will next forward the transaction to the memory or a device

according to the memory map. Eventually, the b_transport

method of the corresponding target module will be executed.

This way, the SimSoC ISS is compatible with all untimed

models of hardware which follows the OSCI recommendation

for transactional modeling.

The optimized mode uses the concept of Direct Memory

Interface (DMI) as suggested by the OSCI TLM-2 documen-

tation. However, we do not use the OSCI implementation.

Indeed, the dynamic translation mechanism used by the ISS

requires that the translated code is stored in the memory

TLM module in order to accommodate multi-core platforms

with shared memory, such that the code translated by one

processor may be used by another processor, or invalidated

if another initiator writes into the binary code location. We

wrote our own direct memory interface such that the processor

can fetch a previously translated instruction, and the memory

can check for code modification for each write access. The

processor MMU can then access memory directly when DMI

is enabled, generating a real transaction only for accesses to

other devices. The DMI can be reconfigured or disabled or

enabled at runtime.

The ISS communicates with other components using in-

terrupt signals too. The OSCI TLM-2 does not target in-

terruption modeling, so we had to define our own inter-

face. Each interrupt initiator (e.g. a timer) contains a port

sc_port<IT>, and each interrupt target (e.g. a processor)

contains an sc_export<IT>, where IT is the C++ inter-

face struct IT {virtual void interrupt(bool

new_signal_state)=0};. The interrupt method of

our ISS sets a boolean member irq_pending according to

the new signal state and the interruption masking bits (e.g. bits

F and I of the CPSR for ARM ISS), and notifies a SystemC

event if required.

C. MMU Simulation

The Memory Management Unit (MMU) of a microproces-

sor is the hardware component that controls memory access

and enforces the policy set by the application software, typ-

ically the operating system. On every memory access, the

MMU checks whether it is a valid access, otherwise routes the

instruction to an exception mechanism. Additionally, on some

processors, such as ARM and PowerPC, the MMU performs

the translation of virtual addresses to physical addresses.

Because it is involved on each memory access, it is a critical

element in the overall performance of a microprocessor and

of a simulator.

The main task of the MMU is to find whether or not a virtual

address is mapped into real memory, and check its access

rights. It does this by constructing an associative table named

the Table LookAhead Buffer (TLB) associating for each entry

an address to the real memory location and the access rights

defined by bits in the TLB entry.

Initially, the MMU is inactive. When the software starts-

up the MMU, it must have prepared the page tables and the

TLB so that the MMU will find the destination address in



the TLB and table walk. The hardware associative search is

done simultaneously for all entries in the table. If the table

look up fails, an exception is raised named TLB miss. On

some architectures, when the TLB search fails, the hardware

performs itself a page table walk. Then the MMU also has a

pointer on the page table location in memory so that it can

search for the requested entry. If that table walk also fails, then

an exception is raised, allowing the software to terminate the

program or provide a new page table. If the location is found

it is added to the TLB. The TLB fills up progressively. When

the TLB is full and a new memory access is required some

older reference is trashed out.

An issue with regards to the virtual to physical memory

mapping is the MMU simulation speed. The MMU hardware

associative TLB search is a constant time operation, but a

software table search is dependent upon the TLB size. Whereas

hardware performance increases with a larger TLB size, the

simulator performance may decrease with larger TLB size...

However there are two aspects in the MMU simulation

depending on the simulation goals. If the goal is to run

the application software to verify its functional properties,

measuring the TLB misses is not important. In that case, it

is not necessary to simulate the TLB with its exact size.

A constant time performance can be achieved using a large

TLB mapping the entire address space. Indeed, the virtual

memory space is very large but finite. The number of 4K bytes

pages on a 32 bits architecture is at most 2, therefore using a

TLB of 2 entries (4 Megabytes of memory) makes it possible

to implement a MMU TLB lookup in constant time. This in

principle does not scale up well for 64 bits architecture. But

in fact, in embedded systems applications, even if the address

space is using 64 bits, the amount of memory actually used

by the application remains limited. Therefore it is possible to

build a two level sparse table with segments (of 4 Gigabytes

each) mapped by the first level table, and still achieve constant

time lookup.

SimSoc implement both a configurable fixed-size TLB for

the applications that want to measure the TLB misses, and the

wholly mapped address space with constant time lookup.

Another aspect of memory management in simulation using

dynamic translation is the coherency between the translation

cache and simulated memory. If a program is modified, for ex-

ample because the operating system is paging out this code and

paging in new code. The translated code becomes obsolete,

and presumably new translated code will be generated when

the new code is activated. The simulator must hence detect

memory write operations that overwrite previously translated

code and the corresponding translated cached code must be

invalidated.

It is not efficient to check for every memory store instruction

if the destination address corresponds to one of the cached

instructions. The technique used in SimSoC consists in using

the simulation host MMU to perform this. Whenever, some

code is translated, the page storing the code on the simulation

host machine is marked as read-only. Whenever a simulated

instruction is attempting to write into such location, the host

operating system raises an exception. The exception handler

can then flush the translation cache, modify the access bit to

let the write operation terminate.

D. Parallelism and Scheduling

Each instance of ISS contains a SystemC process,

such as most of the device models. A SystemC process

must release control to the scheduler (e.g. through the

wait() primitive), otherwise it keeps control and prevents

other processes from executing. For example, the code

“while(!irq_pending){}” is wrong since it would

block the simulation if executed: since the other processes

are not executed, they cannot generate an interruption.

Concerning our ISS, we could simulate very faithfully the

parallelism by executing a wait after each instruction, followed

by an interrupt test. Unfortunately, the wait instruction is

very time costly (at most a few millions per second with

the QuickThread library used by SystemC). We evaluate in

section IV two solutions, that can be combined: 1) executing

a wait instruction every N instructions; 2) placement of

wait instructions based on the identification of logical System

Synchronization Points as explained in [23].

IV. EXPERIMENTS WITH ARM ISS

All experiments below are run on a Intel Quad@2.66GHz;

the whole simulator is compiled with g++-4.2 -O3. The

embedded software is cross-compiled with arm-elf-gcc

version 4.1.1.

A. Application benchmark

We have developed a cryptographic benchmark using an

open source library from the XYSSL project [24]. This bench-

mark encrypts and decrypts some data with the algorithms

implemented by this library. Results are given by table I,

for arm32 mode and thumb mode (16-bit instructions), for

optimized and non-optimized embedded code. We have run

GXemul [19] on the same benchmark.

TABLE I
RESULTS FOR THE crypto BENCHMARK

no dynamic transl. with dynamic transl.
no DMI DMI no DMIa DMI GXemul

arm32 479 s 291 s 108 s 28.1 s 58.1 s
-O0 7.2 Mips 11.8 Mips 32 Mips 123 Mips 59.4 Mips

arm32 123 s 86.5 s 12.8 s 6.85 s 18.7 s
-O3 7.8 Mips 11.1 Mips 75 Mips 140 Mips 51.2 Mips

thumb 1699 s 929 s 164 s 81 s thumb
-O0 5.9 Mips 10.8 Mips 61 Mips 123 Mips mode

thumb 275 s 161 s 21.6 s 14.7 s not
-O3 5.9 Mips 10 Mips 75 Mips 110 Mips available

aexcepted for the dynamic code translator

These experiments show that the dynamic translation can

accelerate the simulation by a factor of 10. When using

DMI, SimSoC is more efficient than GXemul, which uses a

similar dynamic translation technique, even though it uses Sys-

temC/TLM interfaces and synchronization. In thumb mode,

the same source program compiles to more instructions, hence

a longer simulation duration whereas the speed expressed in

Mips is similar to arm32 mode.



B. Transmission benchmark

We consider now a system composed of two subsystems

linked by a model of null-modem cable; each subsystem

contains an ARM processor, a bus, a memory and a model

of UART, all described at the TLM level of abstraction. This

system is represented on figure 5. The embedded software

transmits data from one subsystem to the other, using software

flow control based on CTS and RTS signals.

: IRQ : ad hoc: TLM interface

UART UART

ARM

BUS BUS

PROCESSORPROCESSOR

ARMMEMORY MEMORY

NULL MODEM

Fig. 5. Architecture of the transmission benchmark

The results displayed in table II show the influence of

SystemC synchronization. Using a wait after every simulated

instruction (most of these synchronization points are then

useless), the speed transfer between the two UARTS reaches

a maximum of 49 Kb/s. The speed reaches 1.46 Mb/s when

synchronizing upon every 128 instructions. However a better

result of 2.18 Mb/s can be obtained by detecting idle loops

in the binary code to replace them with synchronization

points and issuing the wait calls at appropriate places in

transaction operations. With only one wait instruction every

256 instructions, we observe a wrong behavior, meaning that

the simulation is not faithful enough.

TABLE II
RESULTS FOR THE TRANSMISSION BENCHMARK

wait every N instructions wait on send
N=1 N=16 N=64 N=128 and idle loop

42.1 s 3.78 s 1.89 s 1.42 s 0.950 s
49 Kb/s 550 Kb/s 1.10 Mb/s 1.46 Mb/s 2.18 Mb/s

C. System On Chip simulation

As a proof of concept, we have developed a simulator to

simulate a commercially available System-On-Chip, namely

the SPEAr Plus600 circuit from ST Microelectronics. This

SoC contains among other components two ARM926 sub-

systems (dual core), together with ARM UART and interrupt

controllers, and many additional components, there are over

40 components in the SoC. We have developed functionally

accurate simulators for all components directly necessary to

boot Linux, in particular the interrupt controller, the UART,

the Ethernet controller, the memory controller, the NAND flash

memory controller and the serial memory controller. For other

components that are not directly used by the Linux operating

system, we have built stub simulation components such that

the Linux drivers don’t crash, although the simulation is not

accurate.

The Linux operating system for this SoC is available from

ST Microelectronics. Therefore it is possible to test the sim-

ulator by running this Linux kernel binary software on the

simulator.

The SPEAr Plus simulator based on SimSoC simulates the

serial memory that contains the compressed Linux boot, as the

real device. The bootloader reads the Linux kernel from serial

memory, uncompresses it and finally starts Linux.

The Linux operating system then boots in a few seconds and

networking commands such as ping can be used effectively.

A simulated SoC can be connected to another simulator

using TCP/IP protocol, this simulator running on the same

machine or on a remote machine, thanks to tunneling Ethernet

packets to the remote simulator.

D. Other Properties

The SimSoC simulator can be built entirely with open

source software. It can be built with the open source SystemC

library, and uses the GNU tools to build. We expect to release

SimSoC as open source software when the code has reached

stability.

The simulator can be connected to any debugger using the

GDB protocol to debug simulated programs, although it does

not support yet Linux kernel debugging.

V. CONCLUSION

We have presented in this paper the SimSoC simulation

framework in order to run full system simulation, with a focus

on the ISS technology. The SimSoC framework integrates into

a single simulation engine SystemC/TLM hardware models

with a dynamic translation ISS designed as a TLM model,

remaining fully SystemC compliant, requiring no further syn-

chronization with additional outside components.

A SimSoC ISS performs dynamic translation of the target

code into an internal representation, using specialized func-

tions to optimize performance. Our current developments of

the technology are experimenting with further improvements

of the simulation speed, in particular the idea of generating

host machine code from the intermediate representation in a

parallell thread. SimSoC is planned to be distributed as open

source software.

A complete simulator has been developed and tested for

the ARM5 instruction set. Two more ISS’es are under devel-

opment for the PowerPC and MIPS, for which the M0 and

M1 mode have been developed, but not yet the M2 mode.

Actually we are investigating an M3 mode that will be much

faster using native code compilation technique.
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