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Abstract

With the development of the communication infrastructures, the number of applications collaborating at large scale

increases. To maintain, and continue to deliver services of good quality to the end-users, very-large-scale applications

continuously adapt themselves, depending on the changes in their surrounding. Stabilization of the system thus

becomes a keystone issue in the adaptation process, in order to reduce the system reconfiguration cost. Existing

approaches, for the stabilization of very-large-scale systems, provide solutions that are partially efficient. For example,

learning-based stabilization algorithms give good results in predicting application behaviors, but still suffer from their

weak reactivity. In this paper, we propose an approach of combining different goals-oriented stabilization algorithms,

in order to provide sustainable and efficient stabilization for large-scale systems.
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1. Introduction

Because of the huge amount of data that they are intended to process, very-large-scale systems need to retrieve

only relevant information from the data flow, in order to perform the system adaptation. To optimize the system

adaption process, stabilization mechanisms are required. The concept of context region defined in Quality of Object

(QuO) [1], is an example of a stabilization mechanism that advocates a strict partition of context space, to reduce

the adaptation side effects. However, context regions do not handle application behavior during the transition of the

system from one state to another. On the contrary, some stabilization algorithms based on learning strategies, such as

Bayesian Network (BN) are much more efficient in handling that issue. But, despite some good results in predicting

application behavior, even during the state transition, they still suffer from weak reactivity. The stabilization process

can be more efficient, if the stabilization mechanisms can be adapted to the processed data. We call stabilization

mechanisms, the set of algorithms or techniques aiming at regulating the responsiveness of adaptive system. This

paper describes an adaptive stabilization approach for composing stabilization algorithms in order to increase their

efficiency and accuracy.

The rest of the paper is organized as follows. Section 2 presents the motivations and challenges of the stabilization

for very-large-scale systems. Section 3 discusses some related works. Section 4 describes our stabilization approach.

We show some simulation results in Section 5. Finally, we conclude in Section 6.

2. Motivations & Challenges

Motivations With the growing complexity of software nowadays, the cost (time, money) of maintaining applica-

tions in a changing environment increases exponentially. Therefore, there is a high demand for self-managing system
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  Figure 1: Self-Adaptive Distributed Application

achieving desired quality requirements with a reasonable cost. Self-adaptive software answers to this demand. Such

systems are able to monitor, to detect significant changes, to decide how to deal with, and to act consequently. When

changes in the application environment frequently occur, it is important to limit system reconfigurations in order to

keep a good tradeoff between the adaptation cost and the system performance. This is specially true, when dealing

with large-scale self-adaptive applications where the communication cost can be expansive. On this specific issue,

stabilization mechanisms play a key role allowing to reduce adaptation cost. As an example of a motivation scenario,

and to easily point out challenges of the stabilization issue for large-scale self-adaptive application, we consider the

“Trucks Tracking” scenario. This scenario is the subject of SALTY ANR project 1.

Trucks Tracking scenario: We consider a self-adaptive application for the management of the truck fleet (800.000

to 1.000.000 trucks), of a company specialized in the transport of fragile products. All the trucks do not have the same

characteristics. Some are equipped with good air conditioning system, while other provide robust slip system. In

the same way, transported goods do not have the same requirements. Some are very sensitive to the temperature

variation, when other need high security system. The overall objective of the system is to make sure the trucks reach

their destination on time. The application must be able to detect stop times, temperature variation inside containers,

security violation access and truck position. The application is also connected to remote services like the weather

service or the city traffic service. Self-adaptive application, must also notify destination logistic platforms about truck

arrival. If one truck gets into trouble, the system can remap the route of other trucks to help it. All aforementioned

information is sent to the central location platform which processes and decides which adaptation process can be

triggered. Figure 1, provides an illustration of the scenario.

From the analysis of data exchanged between the nodes of the application, several adaptations can result, such as,

the frequency of the positioning requests, or the level of allocated resources. Given the large amount of data involved,

and the distributed nature of the application, a naive technique consisting of sending all data for analysis cannot be

effective. Therefore, stabilization mechanisms must be implemented.

Challenges In our opinion, two important challenges are to be met, when dealing with stabilization of self-adaptive

applications in a large-scale distributed environment. The first challenge is to find the right level of stabilization, so

1SALTY ANR project: a research project funded by the french research agency. http://salty.unice.fr
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that the application can be reactive enough to reflect important variations in the surroundings. Secondly, when self-

adaptive applications are running, new features (data, services) can be added to fill specific needs. In this particular

case, to be efficient, the stabilization mechanism need to be adapted in order to take into account the new added

features. We believe that an adaptive strategy for the composition of stabilization algorithms is the beginning of the

solution to move towards more accurate and efficient stabilization of self-adaptive system. In the next section, we

present our proposition on this issue.

3. Related Work

Stabilizations techniques are used in the project TEA [2]. The principal limitation of this project is that im-

plemented stabilization techniques are tightly coupled to application architecture and cannot easily be replaced or

modified. [3], presents the PHOENIX project which targets the management and monitoring of distributed system

(clusters) processing many heterogeneous data. To improve the performance of the system monitoring, and detect

emergency situation just when they happen, PHOENIX introduces delta operator (DO) with other first order logic

operators. DO allow evaluation of signal amplitude variation, so the data flow is relayed only when it reach the re-

quired threshold value. Despite good results recorded by the method, one of the main drawbacks is that the PHOENIX

platform does not support extension of new operators, and that the stabilization method is targeted for quantitative

numerical data. In [4], Padovitz suggested an architecture to handle stabilization issue in self-adaptive systems on the

base of Kalman’s filter learning algorithm. The main limitation of that approach was the weak reactivity of the system

compared to other approaches.

From the “Truck Tracking” scenario presented in the previous Section 2, we can notice the following points

concerning the system reconfiguration.The amount of information to process for the geographical localization of

trucks, is huge and variable: (i)- the number of trucks to track , (ii)- variable frequency of the requests , (iii)- variable

precision of the positioning information. In order to provide a good service, the system must implement dynamic

adaptation mechanisms. Implementing learning-based stabilization algorithm like Dempster-Shaffer (DST) [5] or

Bayesian Network (BN), will improve the knowledge of the system about the environment, but at the same time will

introduce latency in detecting new changes. The method proposed by Padovitz et al. [4], in the case of the scenario

is not suitable, because of the complexity of the mathematical expression determining the instability of the system,

which increases with the number of arguments.

To the best of our knowledge, a unique stabilization algorithm that could meet all requirements of self-adaptive

applications does not exist. In fact, in the context of very-large-scale systems, the stabilization strategies require to be

flexible enough in order to adapt to the evolution of the environment. We believe that, in the perspective of improving

the management of stabilization process for self-adaptive systems, a solution can be found in the flexible combination

of several existing approaches.

4. Flexible Context-Aware Architecture

This section presents our stabilization approach for self-adaptive systems. We consider that in order to boost

flexibility and efficiency, stabilization issue should be handled separately from decision-making basics concerns. For

the general case of an autonomic control loop [6], we suggest to integrate stabilization blocks at two levels of the chain

processing information data: Firstly, after acquisition of raw data from different probes or sensors, and secondly,

after the decision-making block. Figure 2 depicts this architecture. The purpose of the first stabilization block,

located between data collectors and decision-making blocks, is to filter data coming from collectors and to forward

to decision-making only significants values that could lead to system reconfigurations. This considerably reduces

access to decision-making module, resulting in a gain of performance for the system, since running decision-making

processes is quite often a costly procedure for the application. The purpose of the second stabilization block, located

in our architecture between decision- making block and actuator, is to optimize the work of actuators by finding the

suitable moment when reconfigurations of the system can be executed. This issue has a significant impact when

dealing with distributed applications, where the decision-making structure and the application are not hosted on the

same machine.

In order to meet flexibility requirements for an efficient stabilization of self-adaptive applications, we propose to

define a model dedicated to the composition of stabilization algorithms.
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Figure 2: Flexible context-aware architecture

4.1. Composition Model

Our composition model defines how to combine different stabilization mechanisms in order to meet flexibility in

the application. The model consists of two modalities of composition: Horizontal and Vertical composition.

4.1.1. Horizontal Composition

Learning-based stabilization algorithms, like Dempster-Shaffer (DST) [5] or Bayesian Network (BN), while pro-

viding a good efficiency in predicting contextual changes, introduce a latency in detecting variations in the application

environment. This weakness can be filled in, by associating to learning-based algorithms other algorithms with a

higher reactivity speed.

Horizontal composition consists in executing concurrently several stabilization algorithms. The idea behind this

concept is to benefit from passive and reactive stabilization techniques by combining them adequately. The detection

of irregular application’s behavior can be done by combining a reactive algorithm like Delta Operator (DO) , and

less reactive algorithm like Dempster-Shaffer (DST) algorithm, through a composition rule (CR). A CR can be some

simple rule like “ max(vn, vn+1) ⇒ proceed value”, where vn, vn+1 are context values, or a more complex rule

involving Quality of Context (QoC) of the processed data. Hence, using this composition model can help to improve

accuracy of the stabilization process while keeping a reasonable level for the reactivity of the system. We will further

detail to this example in section 5.

4.1.2. Vertical Composition

Vertical composition in our approach consists in applying sequentially two or more stabilization algorithms on the

same data set. Some works [7], suggest that it can be interesting in terms of performance for stabilization of context

information to apply successively several algorithms of stabilization on the same sample of data. A good illustration

of that idea is the work of Sekkas et al. [7] where the authors compare the efficiency of using Bayesian Network (BN),

Dynamic Bayesian Network (DBN), and Fuzzy Logic (FL) alone or in a combined way. In our approach we believe

that, the combination of algorithms using vertical composition can increase efficiency of the stabilization. In order to

limit the overhead introduced by the use of several algorithms, “cheap” (low execution cost) algorithms are found at

the beginning (bottom) of the stabilization chain while “expensive” (high execution cost) algorithms are on the top

of the architecture. This association rule is mostly justified by the fact that, the amount of processed data decreases

from the bottom to the top, thus more costly algorithms at the top of the architecture would have to process less data,

decreasing by the same way the overall cost of the stabilization process, which is tightly bound to the amount of

context information processed.

Figure 3 gives an illustration of the composition model. From left to right, we have horizontal composition,

then vertical and finally the combination of the both types of composition. Combination of both primitive composi-
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Figure 3: Composition Models

tion models in our approach can be beneficial for the stabilization process in order to meet accuracy and efficiency

properties.

5. Evaluation and Simulations

In the previous sections, we presented a novel approach in order to meet flexibility when dealing with stabilizations

issues in pervasive applications. We suggested to use composition of algorithms based on the presented composition

model. Algorithms composition offers the possibility to maximize the efficiency of the stabilization process at a

relative low cost for the application. While in most of the existing systems, the decision-making module applies a

generic algorithm to processed data, our approach offer the possibility to adapt the stabilization mechanism to the

data being processed. To evaluate our proposition, we have made some experimental simulations that illustrate the

feasibility of our approach. Our simulations are based on COSMOS [8](Context Entities Composition and Sharing).

We also use the simulation engine SIAFU [9] to generate contextual informations.

The scenario for this simulation is similar to the one presented in Section 2, because the application performs

some adaptations depending on the changes in the environment. In the current scenario, we have temperature sen-

sors simulated by the simulator engine that send data concerning the temperature of the environment. Time elapsed

between two consecutive readings from sensors is 0.3 second. Collected values have an accuracy close to 0.1. The

overall objective of the application process will be to detect all the relevant variations in the application environment,

around the range of 24◦C to 25.5◦C. We consider that a relevant variation in the environment, is a variation that persist

along three consecutive readings from the sensors.

The first implemented algorithm, is “Delta operator” (DO) [3]. The choice of the threshold value is motivated

by the data sample’s variance, in order to choose the most appropriate value. The second implemented algorithm is

Kalman filter. The central point for Kalman’s filter algorithm is the determination of the matrix of transition A, in this

case we defined the transition matrix as following: Given A the transition matrix, given xk−1, zk−1, R the prediction,

the value of measured variable at k − 1 step and the variance respectively. We have defined ε,∆ then A as follows:
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Figure 4: Stabilized application behavior - Kalman filter and Delta operator

Figure 5: Comparatives curves of stabilized application behavior

∆ = xk−1 − zk−1, ε = R ∗ zk−1

Ak =























Ak−1 f or |∆| ≤ ε
zk−ε

xk−1
f or |∆| > ε and ∆ < 0

zk+ε

xk−1
f or |∆| > ε and ∆ > 0

Figure 4 shows the curves of the application behavior without stabilization, stabilized with KF, and stabilized with

DO. As expected, application stabilized with DO is very reactive, we can notice that around t = 2s for example,

the curves of the application without stabilization and stabilized with DO are almost indistinguishable. Figure 5

shows application’s behavior curves when combining the both algorithms using our model, in this case an horizontal

composition. On Figure 5, the curve of the behavior of the application stabilized with both KF and DO algorithms is
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Figure 6: Filtration rate measurements

represented. On that graph, we can notice two things. Firstly, the detection of the first event for the application occurs

earlier (zone B) than for an application stabilized by KF only. That is due to the fact that the application benefit from

the reactivity property of DO algorithm. Secondly, we can notice that when an event is detected the behavior of the

system does not change suddenly (zone A or zone B) even when the next raw value processed by the system does

not belong to the target area. That last point is a property that the system inherited from KF algorithm. Obviously,

the composition model offers a good compromise between a reactive and less reactive system. Finally, to characterize

our system we have measured the filtration rate, the results of the measurement are depicted in 6. We can notice that

resulting application (DO+KF) has the same filtrating rate as the application application stabilized only with KF.

6. Conclusion

In this paper, we have proposed an adaptive approach for context stabilization in a distributed environment. For

that purpose, we suggest two modalities of composing stabilization algorithms in order to increase accuracy and

efficiency of the stabilization. We showed a simulation example to illustrate the feasibility of our approach. In the

future, we plan to probe this approach on a real very-large-scale platform like an experimental or a production grid.
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