R. Collaborative and . Tools, GCC with ICI, CCC, cBench and UNIDAPT frameworks to enable self-tuning computing systems

. Edinburgh-optimizing-software, EOS) to enable fine-grain source-to-source program iterative optimizations and performance prediction

. Eu-milepost-project, MachIne Learning for Embedded PrOgramS opTimization)

. Papiex, Performance analysis tool designed to transparently and passively measure the hardware performance counters of an application using PAPI

B. Aarts, M. Barreteau, F. Bodin, P. Brinkhaus, Z. Chamski et al., OCEANS: Optimizing compilers for embedded applications, Proc. Euro-Par 97, pp.1351-1356, 1997.
DOI : 10.1007/BFb0002894

J. Abella, S. Touati, A. Anderson, C. Ciuraneta, J. C. Dai et al., The mhaoteu toolset for memory hierarchy management, 16th IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation, 2000.

F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin et al., Using Machine Learning to Focus Iterative Optimization, International Symposium on Code Generation and Optimization (CGO'06), 2006.
DOI : 10.1109/CGO.2006.37

F. Bodin, T. Kisuki, P. Knijnenburg, M. O. Boyle, and E. Rohou, Iterative compilation in a non-linear optimisation space, Proceedings of the Workshop on Profile and Feedback Directed Compilation, 1998.
URL : https://hal.archives-ouvertes.fr/inria-00475919

M. Byler, J. R. Davies, C. Huson, B. Leasure, and M. Wolfe, Multiple version loops, Proceedings of the International Conference on Parallel Processing, pp.312-318, 1987.

J. Cavazos, C. Dubach, F. Agakov, E. Bonilla, M. O. Boyle et al., Automatic performance model construction for the fast software exploration of new hardware designs, Proceedings of the 2006 international conference on Compilers, architecture and synthesis for embedded systems , CASES '06, 2006.
DOI : 10.1145/1176760.1176765

J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. O. Boyle et al., Rapidly Selecting Good Compiler Optimizations using Performance Counters, International Symposium on Code Generation and Optimization (CGO'07), 2007.
DOI : 10.1109/CGO.2007.32

K. Cooper, P. Schielke, and D. Subramanian, Optimizing for reduced code space using genetic algorithms, Proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pp.1-9, 1999.

K. Cooper, D. Subramanian, and L. Torczon, Adaptive optimizing compilers for the 21st century, Journal of Supercomputing, vol.23, issue.1, 2002.

P. C. Diniz and M. C. Rinard, Dynamic feedback: An effective technique for adaptive computing, Proceedings of the SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pp.71-84, 1997.

B. Franke, M. O. 'boyle, J. Thomson, and G. Fursin, Probabilistic source-level optimisation of embedded programs, Proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), 2005.

G. Fursin, Iterative Compilation and Performance Prediction for Numerical Applications, 2004.

G. Fursin, J. Cavazos, M. O. Boyle, and O. Temam, MiDataSets: Creating the Conditions for a More Realistic Evaluation of Iterative Optimization, Proceedings of the International Conference on High Performance Embedded Architectures & Compilers, 2007.
DOI : 10.1007/978-3-540-69338-3_17

G. Fursin and A. Cohen, Building a practical iterative interactive compiler, 1st Workshop on Statistical and Machine Learning Approaches Applied to Architectures and Compilation (SMART'07), 2007.
URL : https://hal.archives-ouvertes.fr/inria-00128507

G. Fursin, A. Cohen, M. O. Boyle, and O. Temam, A Practical Method for Quickly Evaluating Program Optimizations, Proceedings of the 1st International Conference on High Performance Embedded Architectures & Compilers (HiPEAC), number 3793 in LNCS, pp.29-46, 2005.
DOI : 10.1007/11587514_4

URL : https://hal.archives-ouvertes.fr/inria-00001054

G. Fursin, C. Miranda, S. Pop, A. Cohen, and O. Temam, Practical run-time adaptation with procedure cloning to enable continuous collective compilation, GCC Developers' Summit, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01257279

G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-tov et al., Milepost gcc: machine learning based research compiler, Proceedings of the GCC Developers' Summit, 2008.
DOI : 10.1007/s10766-010-0161-2

URL : https://hal.archives-ouvertes.fr/inria-00294704

G. Fursin, M. O. Boyle, and P. Knijnenburg, Evaluating Iterative Compilation, Proceedings of the Workshop on Languages and Compilers for Parallel Computers (LCPC), pp.305-315, 2002.
DOI : 10.1007/11596110_24

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.4652

G. Fursin, M. O. Boyle, O. Temam, and G. Watts, Fast and accurate method for determining a lower bound on execution time. Concurrency: Practice and Experience, pp.271-292, 2004.

G. Fursin and O. Temam, Collective optimization, Proceedings of the International Conference on High Performance Embedded Architectures & Compilers, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00445326

B. F. Tournavitis, Z. Wang, and M. O. Boyle, Towards a holistic approach to auto-parallelization: Integrating profile-driven parallelism detection and machine-learning based mapping, Proceedings of the ACM SIGPLAN 2009 Conference on Programming Language Design and Implementation (PLDI'09), 2009.

T. Glek and D. Mandelin, Using gcc instead of grep and sed, Proceedings of the GCC Developers' Summit, 2008.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge et al., MiBench: A free, commercially representative embedded benchmark suite, Proceedings of the Fourth Annual IEEE International Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538), 2001.
DOI : 10.1109/WWC.2001.990739

K. Heydemann and F. Bodin, Iterative compilation for two antagonistic criteria: Application to code size and performance, Proceedings of the 4th Workshop on Optimizations for DSP and Embedded Systems, 2006.

K. Hoste and L. Eeckhout, Cole, Proceedings of the sixth annual IEEE/ACM international symposium on Code generation and optimization , CGO '08, 2008.
DOI : 10.1145/1356058.1356080

V. Jimenez, I. Gelado, L. Vilanova, M. Gil, G. Fursin et al., Predictive Runtime Code Scheduling for Heterogeneous Architectures, Proceedings of the International Conference on High Performance Embedded Architectures & Compilers, 2009.
DOI : 10.1007/978-3-540-92990-1_4

URL : https://hal.archives-ouvertes.fr/inria-00445304

P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley et al., Finding effective optimization phase sequences, Proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pp.12-23, 2003.

C. Lattner and V. Adve, LLVM: A compilation framework for lifelong program analysis & transformation, International Symposium on Code Generation and Optimization, 2004. CGO 2004., 2004.
DOI : 10.1109/CGO.2004.1281665

J. Lau, M. Arnold, M. Hind, and B. Calder, Online performance auditing: Using hot optimizations without getting burned, Proceedings of the ACM SIGPLAN Conference on Programming Languaged Design and Implementation (PLDI), 2006.

S. Long, G. Fursin, and B. Franke, A Cost-Aware Parallel Workload Allocation Approach Based on Machine Learning Techniques, Proceedings of the IFIP International Conference on Network and Parallel Computing number 4672 in LNCS, pp.506-515, 2007.
DOI : 10.1007/978-3-540-74784-0_51

J. Lu, H. Chen, P. Yew, and W. Hsu, Design and implementation of a lightweight dynamic optimization system, Journal of Instruction-Level Parallelism, 2004.

L. Luo, Y. Chen, C. Wu, S. Long, and G. Fursin, Finding representative sets of optimizations for adaptive multiversioning applications, 3rd Workshop on Statistical and Machine Learning Approaches Applied to Architectures and Compilation (SMART'09), 2009.
URL : https://hal.archives-ouvertes.fr/inria-00436034

J. Mars and R. Hundt, Scenario Based Optimization: A Framework for Statically Enabling Online Optimizations, 2009 International Symposium on Code Generation and Optimization, 2009.
DOI : 10.1109/CGO.2009.24

F. Matteo and S. Johnson, FFTW: An adaptive software architecture for the FFT, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.1381-1384, 1998.

A. Monsifrot, F. Bodin, and R. Quiniou, A Machine Learning Approach to Automatic Production of Compiler Heuristics, Proceedings of the International Conference on Artificial Intelligence: Methodology, Systems, Applications, LNCS 2443, pp.41-50, 2002.
DOI : 10.1007/3-540-46148-5_5

M. O. Boyle, Mars: a distributed memory approach to shared memory compilation, Proceedings of the Workshop on Language, Compilers and Runtime Systems for Scalable Computing, 1998.

Z. Pan and R. Eigenmann, Fast and effective orchestration of compiler optimizations for automatic performance tuning, Proceedings of the International Symposium on Code Generation and Optimization (CGO), pp.319-332, 2006.

D. D. Sean-callanan and E. Zadok, Extending gcc with modular gimple optimizations, GCC Developers' Summit, 2007.

B. Singer and M. Veloso, Learning to predict performance from formula modeling and training data, Proceedings of the Conference on Machine Learning, 2000.

B. Starynkevitch, Multi-stage construction of a global static analyser, GCC Developers' Summit, 2007.

M. Stephenson and S. Amarasinghe, Predicting Unroll Factors Using Supervised Classification, International Symposium on Code Generation and Optimization, 2005.
DOI : 10.1109/CGO.2005.29

M. Stephenson, M. Martin, and U. O. Reilly, Meta optimization: Improving compiler heuristics with machine learning, Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pp.77-90, 2003.

S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. August, Compiler optimization-space exploration, International Symposium on Code Generation and Optimization, 2003. CGO 2003., pp.204-215, 2003.
DOI : 10.1109/CGO.2003.1191546

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.1622

M. Voss and R. Eigenmann, ADAPT: Automated De-coupled Adaptive Program Transformation, Proceedings 2000 International Conference on Parallel Processing, 2000.
DOI : 10.1109/ICPP.2000.876107

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.8914

M. J. Voss and R. Eigemann, High-level adaptive program optimization with adapt, Proceedings of the eighth ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming (PPoPP), pp.93-102, 2001.

R. Whaley and J. Dongarra, Automatically Tuned Linear Algebra Software, Proceedings of the IEEE/ACM SC98 Conference, 1998.
DOI : 10.1109/SC.1998.10004

M. Zhao, B. R. Childers, and M. L. Soffa, A model-based framework: an approach for profit-driven optimization, Proceedings of the Interational Conference on Code Generation and Optimization (CGO), pp.317-327, 2005.