Modular Las Vegas Algorithms for Polynomial Absolute Factorization - Archive ouverte HAL Access content directly
Journal Articles Journal of Symbolic Computation Year : 2010

Modular Las Vegas Algorithms for Polynomial Absolute Factorization

(1) , (2) , (1)
1
2
André Galligo
  • Function : Author
  • PersonId : 835184

Abstract

Let $f(X,Y) \in \ZZ[X,Y]$ be an irreducible polynomial over $\QQ$. We give a Las Vegas absolute irreducibility test based on a property of the Newton polytope of $f$, or more precisely, of $f$ modulo some prime integer $p$. The same idea of choosing a $p$ satisfying some prescribed properties together with $LLL$ is used to provide a new strategy for absolute factorization of $f(X,Y)$. We present our approach in the bivariate case but the techniques extend to the multivariate case. Maple computations show that it is efficient and promising as we are able to factorize some polynomials of degree up to 400.
Fichier principal
Vignette du fichier
bcgHAL2.pdf (247.4 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

inria-00436063 , version 1 (25-11-2009)
inria-00436063 , version 2 (28-01-2010)

Identifiers

Cite

Cristina Bertone, Guillaume Chèze, André Galligo. Modular Las Vegas Algorithms for Polynomial Absolute Factorization. Journal of Symbolic Computation, 2010, 45 (12), pp.1280-1295. ⟨10.1016/j.jsc.2010.06.010⟩. ⟨inria-00436063v2⟩
236 View
341 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More