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Abstract—We define a method for incorporating strong prior
shape information into a recently extended Markov point process
model for the extraction of arbitrarily-shaped objects from
images. To estimate the optimal configuration of objects, the
process is sampled using a Markov chain based on a stochastic
birth-and-death process defined in a space of multiple objects.
The single objects considered are defined by both the image
data and the prior information in a way that controls the
computational complexity of the estimation problem. The method
is tested via experiments on a very high resolution aerial image
of a scene composed of tree crowns.

I. INTRODUCTION

Object detection from optical satellite and aerial images
is one of the most important tasks in remote sensing image
analysis. The problem arises in many applications, both civil-
ian and military, e.g. tree counting and species classification
for biomass or biodiversity estimation; and bird counting for
monitoring population changes. Nowadays the resolution of
aerial images is approaching a few centimetres. At this level
of resolution, the geometry of objects is clearly visible, and
needs to be taken into account for accurate object extraction.

Stochastic point process models are known for their ability
to include this type of information. A probability distribution
is defined on the space of configurations composed of multiple
objects which depends on the relation between the objects and
data, and on the configuration of individual objects as well as
their joint relations. The extracted objects are then those in
the ‘optimal’ configuration, which is usually estimated using
maximum a priori (MAP) estimation.

In previous work, marked point process (MPP) models
have been used for the extraction of road networks [11],
buildings [13] and trees [15], from images of more than 50
cm/pixel resolution. At that level the objects have a simplified
geometrical shape and were thus represented using simple
shape objects, e.g. discs, ellipses, or rectangles.

Recently we lifted this restriction without increasing the
dimension of the space of a single object [10]. A single object
was represented by its boundary, a closed curve, but the set

of possible single objects (i.e. boundaries) was defined not a
priori, but by the image data and a single-object version of
the model. A probability distribution was then defined on the
configuration space of an unknown number of objects.

This approach is well suited to scenes composed of objects
that do not vary too much in shape and size within a class, and
that have smooth enough boundaries. In this case, accuracy in
the number of extracted objects can be achieved by favouring
the smoothness term that controls, as well, the length of the
curve. The model can thus to some degree separate objects that
overlap, but this leads to imprecision in delineating objects.

The aim of this paper is to incorporate into the single-object
model, prior knowledge about the shape of the objects sought,
in order to deal with overlapping objects with complex shapes
without losing their geometric details and without significantly
increasing the computational complexity of estimation.

Our work can also be viewed as an extension of the active
contour methodology [8] to cases in which the number of
objects is unknown a priori, and where shape prior information
is incorporated as well. Much work has been already done
based on the active contour approach. Some of this work,
e.g. [1], includes only weak shape information, essentially
smoothness, but can in principle detect multiple (although not
overlapping) objects using the level set representation [14],
[16]. Other work includes much stronger prior information
about shape [2], [4], [6], [12], but the method used to do
this means that it is difficult to treat an unknown number
of objects (and in practice only single objects are treated).
Cremers et al. [3] treat the problem of image segmentation
into connected components each of which corresponds to one
class of a number of distinct classes of objects, but only one
object can be found in each connected component.

Additionally, the results obtained by these methods may be
very dependent on the initial configuration, since the algorithm
typically used is deterministic gradient descent. Storvik [18]
and Juan et al. [7] respectively use an Markov Chain Monte
Carlo (MCMC) approach and stochastic partial differential



equations (SPDEs) optimization techniques to minimize active
contour energies, but the algorithms make only local changes
to the contour at each iteration, and thus preserve object
number. Srivastava and Jermyn [17] use a stochastic algorithm
together with an energy including strong prior shape infor-
mation for the extraction and classification of objects from
2D point clouds, but only a single object is sought. Tu et
al. [19] use data-driven reversible jump Markov Chain Monte
Carlo (RJMCMC) dynamics to solve a problem of general
purpose image segmentation, but our work differs, first, in
addressing a specific problem rather than general possibilities;
and second, in using birth-and-death rather than RJMCMC
dynamics. The advantage of birth-and-death dynamics is their
faster convergence, due to the fact that at each iteration, several
objects are simultaneously added to the current configuration
without any rejection probability.

The remainder of the article is organized as follows. In
section II, we describe the single-object space and the single-
object term in the energy function. In section III, we describe
the multiple-object space and the full energy. In the same
section, we describe the sampling and estimation algorithm. In
section IV, we present experimental results, and in section V
we conclude.

II. SINGLE-OBJECTS

As mentioned, the single-object space will not be de-
termined a priori to consist of simple geometrical shapes,
but rather will be constructed using the image data and a
model describing configurations of individual objects. We
model individual object boundaries as closed planar curves
γ : [0, 2π] → V ⊂ R2 lying in the image domain V . The
set of closed curves we will consider here consists of ‘star
domains’ parameterized by (x0, δr(t)), where x0 ∈ R2 and
δr : [0, 2π]→ R is a radial variation around a circle γc(t) of
radius r0 ∈ [rmin, rmax] centred at x0 ∈ V , where t ∈ [0, 2π].
Then,

γ(t) = x0 + γc(t) + δγ(t) , (1)

where δγ is the radial variation expressed in Euclidean coor-
dinates. More explicitly,

γ(t) = x0 + ((r0 + δr(t)) cos θc(t), (r0 + δr(t)) sin θc(t))
= (xx0 , x

y
0) + (r0 + δr(t)) (cos(t), sin(t)) .

We suppose that we are given an energy function E defined
on a space Γ of these curves (with appropriate restrictions to
ensure that everything is well-defined). This energy function
will depend on the image data also, as it will be detailed below
in the article.

Given an initial curve γ ∈ Γ, we can then perform gradient
descent to arrive at a local minimum of E, giving a second
curve, γ̃ ∈ Γ. The map ·̃ : Γ → Γ takes every curve to the
local minimum in whose basin of attraction it lies. Now define
the space C to be a set of circles lying in the image domain,
with radii r0 ∈ [rmin, rmax], parameterized by arc length. The
single-object space we consider is Γo = C̃. The possible single
objects are thus locally adapted to the data. Then despite

allowing for potentially arbitrarily shaped star domains, the
dimension of the single-object space remains small: if we fix
the centre of the circle in C, i.e. the ‘point’ in the marked
point process, the ‘mark’ is one-dimensional, being equivalent
to the circle’s radius.

A. Single-object energy

To define the space Γo, we have to define the energy E. In
this paper, we define it as a sum of two terms: a term related
to the curve, i.e. a prior term, and an image term, also called
the data term:

E(γ(t)) = Eimage(γ(t)) + Ecurve(γ(t)) . (2)

The image energy term is defined as a weighted sum:

Eimage(γ) = λg

∫
[0,2π]

dt n(t) · ∇I(γ(t)) (3)

+λG
∫
R(γ)

d2x (G(x)− Ḡ(x)) ,

where n(t) is the (unnormalized) outward normal to the curve;
I is the image; G(x) = (I(x)−µ)2

2σ2 and Ḡ(x) = (I(x)−µ̄)2

2σ̄2 ; and
R(γ) is the interior region corresponding to the boundary γ.
The first term favours boundaries with high image gradients
normal to the boundary. The second term arises from a
Gaussian image model with different means and variances for
the interior and exterior of the objects. Both terms are negative
where γ(t) is well-adapted to the data. The parameters µ, σ,
and µ̄, σ̄, are learned from examples of object and background.

We define Ecurve(t) as a sum of two terms:

Ecurve(γ(t)) = Esmth(γ(t)) + Esh(γ(t)) , (4)

We show below that it can be written in the following form:

Ecurve(γ(t)) =
∫∫

[0,2π]

dtdt′ F (t− t′)δr(t)δr(t′) . (5)

The Esmth(γ) term favours boundary smoothness and a
uniform parametrization of the curve:

Esmth(γ) =
∫

[0,2π]

dt |γ̇(t)|2 , (6)

where γ̇ is the derivative of γ. The second term Esh(γ)
represents the prior energy associated with the curve shape.
It is a quadratic function of δr, which due to invariance to
translations of the origin of the curve, is diagonal in the Fourier
basis on the circle, and has zero mean except at zero frequency.
The latter correspond to changes in radius, and are absorbed in
r0. The energy is thus defined by the variance of each Fourier
component, σ(k)2 = 1

2g(k) . The function g(k) restricts or
favours perturbations of the circle with different frequencies k,
thereby reflecting the specificities of the shapes of the objects
to be detected in the image:

Esh(γ) = 2π
∑
k∈Z

g(k)|δ̂r(k)|2 ,

where
δ̂r(k) =

1
2π

∫
[0,2π]

dt exp(−ikt)δr(t) . (7)



Notice that for our parameterized set of curves, |γ̇(t)|2 =
δ̇r(t)

2
+ (r0 + δr(t))2, so that Esmth(γ) can be written in

following way:

Esmth(γ) =
∫

[0,2π]

dt (δ̇r(t)
2

+ (r0 + δr(t))2)

= 2π

(∑
k∈Z

(k2 + 1)|δ̂r(k)|2 + 2r0δ̂r(0) + r2
0

)
.

Thus, the prior energy Ecurve takes the form:

Ecurve(γ) = 2π
∑
k∈Z

(k2 + 1 + g(k))|δ̂r(k)|2

+2π2r0δ̂r(0) + 2πr2
0 .

Defining a function f(k) = k2 + 1 + g(k), and dropping both
1
π r

2
0 , which is simply an additive constant, and the linear term

1
π r0δ̂r(0), which serves only to change the mean of δ̂r(0),
which we define to be zero, we can write:

Ecurve(γ) = 2π
∑
k∈Z

f(k)|δ̂r(k)|2 . (8)

Now using the inverse Fourier Transform of f(k) and taking
into account equation (7), equation (8) can be written as

Ecurve(γ) =
1

2π

∑
k∈Z

f(k)
∫∫

[0,2π]

dtdt′eikte−ikt
′
δr(t)δr(t′)

=
1

2π

∫∫
[0,2π]

dtdt′δr(t)δr(t′)
∑
k∈Z

eik(t−t′)f(k)

=
1

2π

∫∫
[0,2π]

dtdt′δr(t)δr(t′)F (t− t′) .

Thus we obtain equation (5) where

F (t− t′) =
∑
k∈Z

exp ik(t− t′)f(k) .

The algorithm makes uses of the functional derivative of E:

δE

δγ(t)
=
(

∂E

∂x0(γ(t))
,

δE

δδr(γ(t))

)
, (9)

where the components taking the following forms:

∂E

∂xi0(γ(t))
=
∫

[0,2π]

dt(−n(γ(t))) · ∂i∇I(γ(t))

+
∫

[0,2π]

dt(−n(γ(t))) · ∂iu(γ(t)) ,

with u a vector field satisfying ∇·u = (G−Ḡ) and i indexing
Euclidean coordinates on R2; and

δE

δδr(t)
= λg(r0 + δr(t))∇2I(γ(t))

+λG(r0 + δr(t))(G− Ḡ)(γ(t))

+
1
π

∫
[0,2π]

dt′F (t− t′)δr(t′) .

III. MULTIPLE OBJECTS: MODEL AND ALGORITHM

The multiple-object space is the “exponential” of the single-
object space, i.e. it consists of all configurations of zero or
more objects:

ΩΓo =
∞⋃
n=0

[
Γno/Sn

]
, (10)

where Sn indicates the symmetric group of n elements acting
on the components of the product. Note that the map ·̃ extends
to a map from ΩC (the exponential of C) to ΩΓo . Elements of
ΩC will be denoted ω.

A. Energy

Given a (real, bounded below) function H(ω) on ΩC , we
define the Gibbs distribution µβ in terms of the density p(ω) =
dµβ
dλ (ω) w.r.t. Lebesgue-Poisson measure λ on ΩC :

p(ω) =
z|ω|

Zβ
exp{−βH(ω)} , (11)

with parameters β > 0, z > 0 and a normalizing factor Zβ :

Zβ =
∫

ΩC

dλ(ω) z|ω| exp{−βH(ω)} .

The energy H(ω) takes the form:

H(ω) = c0
∑
i

H1(ωi) +
∑
i 6=j

H2(ωi, ωj) ,

where ωi are the components of ω and c0 is a weighting
parameter. The data term H1, is defined as

H1(ωi) = E(ω̃i) .

The term H2 is the interaction term, which controls the rela-
tions between objects, and, in particular discourages overlaps.
It is defined as

H2(ωi, ωj) =
A(R(ω̃i) ∩R(ω̃j))

min(A(R(ω̃i)), A(R(ω̃j)))
+ δε(ωi, ωj) ,

where

δε(ωi, ωj) =
{
∞, |xi0 − x

j
0| ≤ ε;

0, otherwise,
(12)

A is the area functional and δε is a hard-core repulsion that
prevents two components of ω from coinciding (to some
tolerance ε). Indeed, if there were no interactions between
objects except that they should not coincide, then the optimal
configuration of objects would consist of the negative energy
elements in Γo. The interaction term was thus introduced to
prevent the “condensation” of an infinite number of the lowest
energy single-object in configuration.



B. Sampling and estimation

In order to estimate the configuration of the objects in the
image, we use maximum a posteriori estimation, performed by
sampling from the probability distribution µβ and applying an
annealing scheme. The sampling uses a Markov chain in ΩC
consisting of a discrete-time multiple birth-and-death process
describing all possible transitions from the configuration ω to
the configuration ω′ ∪ ω′′, where ω′ ⊂ ω and ω′′ is any new
configuration. The transition probabilities of this Markov chain
take the form:

P(ω → ω′ ∪ω′′) =
∏
ω′i∈ω′

1
1 + δdβ

∏
ωi∈ω\ω′

δdβ
1 + δdβ

× (zδ)|ω
′′|

(13)
where dβ is the intensity of the death step of the process
detailed in section III-C below.

This Markov chain can be considered as an approximation
of a continuous-time reversible process and converging to
it [5], which, within a logarithmic annealing scheme, guar-
antees uniform convergence to the measure concentrated on
the global minima of the energy function H(ω).

C. Algorithm description

We define C as the set of circles lying in the image domain
V , with radii in the range [rmin, rmax] and with centres at the
image pixels. The curves are represented by a chain of points
in R2 defined to correspond to discrete parameter values tn =
2πn/N for n ∈ {0, . . . , (N−1)}. The circles in C are assumed
to have arc length parametrization, and thus will have equally
spaced points.

The birth step of the process adds an unknown number
of circles to the current configuration with an intensity z
that is independent of the current temperature T = 1/β.
The death step removes a number of components from the
current configuration with a probability that depends on the
current (inverse) temperature β and the energy difference
∆iH(ω) = H(ω\ωi) − H(ω). In more detail, the algorithm
is as follows:

1) Initialization
Discretisation step δ = δ0; inverse temperature β = β0;
Poisson mean z0; radius range [rmin, rmax]; parameters
in E;

2) Birth
a) Sample a configuration of circles with radii

uniformly distributed on [rmin, rmax], from the
Lebesgue-Poisson distribution with intensity z =
δz0, with the addition of a hard core repulsion δε
with ε equal to one pixel, producing configuration
ω ∈ ΩC ;

b) Evolve every circle in ω using gradient descent,
with gradient field given by equation (9), until
convergence, producing configuration ω̃ ∈ ΩΓo ;
and add the obtained elements to the current

configuration (which is empty at the first step);

3) Death
a) For computational efficiency, sort the components

of the current configuration w.r.t. their energy
H1(ωi) = E(ω̃i);

b) Remove each component ωi independently from
the current configuration with probability

pd(ωi, ω) =
δdβ(ωi, ω)

1 + δdβ(ωi, ω)
,

where
dβ(ωi, ω) = e−β∆iH(ω) ; (14)

4) Termination
If all the components added in the birth step are
removed in the following death step, then stop; if not,
then decrease the temperature T = 1

β and time step δ,
(we use a geometric annealing schedule to T and δ),
and go to the birth step.

IV. EXPERIMENTAL RESULTS

Figures 1 and 2 show the results of experiments on one
band of a very high resolution colour infra-red (CIR) aerial
image. The images show the top part of the tree crowns. The
image viewpoint is close to the nadir, i.e. the tree crowns are
seen from almost vertically above.

Figure 1 demonstrates the results of object extraction ob-
tained using three different models. The top right image shows
the configuration obtained using simply-shaped objects, in this
case ellipses. The bottom left image shows the configuration
obtained using the representation and energy described in this
paper, but with no strong shape information, i.e. with Esh ≡ 0,
or equivalently, g ≡ 0. The bottom right image shows the
result obtained using the full energy described in this paper,
i.e. with strong prior shape information included.

Note that for all three experiments there is no curve ini-
tialization, i.e. the initial configuration is empty. The first
birth step creates a certain number of curves depending only
on the Poisson mean z0, but the final number is determined
automatically by the convergence of the annealed birth-and-
death process.

For the third experiment, the function g(k) is defined so as
to discourage low frequencies, and in particular k = 2, in order
to avoid the extraction of two overlapping trees as a single
elongated object, as well as to favour roughly circular objects
with small perturbations corresponding to branches or leaves.
The strong shape information allows us to extract nearby and
even overlapping objects without paying the price of greatly
simplifying their geometry.

Figure 2 shows the result of an experiment on another,
bigger image of 900x900 pixels using the same model pa-
rameters as for the third experiment in figure 1. The image
contains many overlapping tree crowns, but they are separated
into distinct objects thus allowing delineation of the individual



Fig. 1. Top, left: original CIR image of tree crowns, c©CBA. Top, right: final configuration using ellipse-shaped objects. Bottom, left: final configuration using
arbitrarily-shaped objects obtained using an MPP without shape prior. Bottom, right: final configuration of arbitrarily-shaped objects obtained using an MPP
with shape prior. The numbers show the interaction term value H2 (black background) and the data term value H1.



crowns. The computation time of the C++ programme was
25mn on a 2.16GHz processor.

To summarize, an MPP model using simply shaped marks
allows the rapid detection of the objects in an image, but the
geometrical accuracy is very low for objects with complex
shapes. Therefore, this type of model is an appropriate tool for
the detection of objects in low resolution images. The second
approach, an MPP model for the extraction of arbitrarily-
shaped objects with only weak shape information [10], is
geometrically far more accurate, while not increasing the com-
putational complexity unduly. The limitations of this approach,
however, are that because it uses only weak shape information
to define the possible single objects, it cannot, first, detect
different types of objects with similar radiometric character-
istics; and second, separate two or more overlapping objects.
The MPP model for arbitrarily-shaped objects including strong
prior shape information described in this paper deals with
both these limitations. For example, in the bottom left corner
of the bottom left image figure 1, there are two overlapping
tree crowns that are extracted as one object using the second
approach, but which are extracted as two distinct overlapping
objects using the model presented in this paper. Using strong
prior shape information has another advantage: even if the
object to be extracted is partly obscured or cluttered, by,
for example, shadow, like the spiky crowns of spruce trees,
the object may nevertheless, to some degree of accuracy, be
correctly extracted as a single object.

V. CONCLUSION AND PERSPECTIVES

The marked point process framework with simple geome-
tries that has been used in the past for the extraction of
objects from images has been recently extended to arbitrarily
shaped objects. In this paper, we extend this approach further
by incorporating strong prior knowledge about the shape
of the objects sought, without increasing the dimensionality
of the single-object space (and thereby the computational
complexity). The set of possible single objects is defined using
the local minima of an energy that incorporates information
coming from the data and strong prior shape information about
the objects sought. This allows us to deal with configurations
of overlapping objects with complex shapes.

The birth-and-death algorithm used to minimize the
multiple-object energy over configurations of multiple objects
has the advantage that, at every iteration, the current config-
uration is updated by adding multiple objects independently
of the current energy and temperature, which increases the
computational efficiency.

The work in this paper can also be seen as the first step in a
joint tree extraction and classification algorithm. For the class
of images used in our experiments, once the tree crowns are
extracted, one can then classify them into species [9].

The next step consists in further extending the model to
the extraction of objects of several classes in scenes of high
complexity containing overlapping, arbitrarily-shaped objects.
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Fig. 2. Final configuration of arbitrarily-shaped objects obtained using an MPP with shape prior. The numbers show the interaction term value H2 (black
background) and the data term value H1. Original image is a CIR of tree crowns, c©CBA.


