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Abstract: During the last decade, significant progresses have been made
in solving the Protein Threading Problem (PTP). However, all previous ap-
proaches to PTP only perform global sequence–structure alignment. This ob-
vious limitation is in clear contrast with the ”world of sequences”, where local
sequence-sequence alignments are widely used to find functionally important re-
gions in families of proteins. This paper presents a novel approach to PTP which
allows to align a part of a protein structure onto a protein sequence in order
to detect local similarities. We show experimentally that such local sequence–
structure alignments improve the quality of the prediction. Our approach is
based on Mixed Integer Programming (MIP) which has been shown to be very
successful in this domain. We describe five MIP models for local sequence–
structure alignments, compare and analyze their performances by using ILOG
CPLEX 10 solver on a benchmark of proteins.
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Local Protein Threading by Mixed Integer
Programming

Résumé : Au cours des dernières décennies, le problème de la reconnaissance
de repliements des protéines ou Protein Threading Problem (PTP) a connu de
grandes avancées. Néanmoins, toutes les méthodes développées ne proposent
que des alignements séquence–structure globaux. Or, les alignements séquence–
séquence locaux ont montrés qu’ils permettaient de détecter des régions fonc-
tionnelles dans des familles de protéines. Ce rapport présente une nouvelle
approche de la reconnaissance des repliements qui permet d’aligner une partie
d’une structure de protéine avec une partie d’une séquence de protéine afin de
détecter des similarités locales. Nous montrons que cette approche, basée sur la
programmation mixte en nombre entiers (MIP), améliore la qualité de la recon-
naissance. Nous avons modélisé les alignements séquence–structure locaux par
cinq modèles MIP que nous comparons et analysons grâce au logiciel CPLEX
10.0 sur un jeu de test de protéines.

Mots-clés : Programmation mixte en nombre entiers, Optimisation com-
binatoire, Reconnaissance des repliements, Alignements séquence–structure de
protéines
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1 Introduction

To exploit the amount of new genomic data, the most important in silico meth-
ods are based on the concept of homology. The principle of homology-based
analysis is to identify a homology relationship between a new protein and a
protein whose function is known. Detecting homology relationships when the
sequences are sufficiently similar is relatively straightforward. There exist ef-
ficient O(N2) algorithms based on dynamic programming techniques to align
protein sequences [1, 2]. Suitable modifications of the fundamental algorithm
enable the user to perform global, semi-global and local alignments (see Fig.1).

Global alignment

Semi−global alignment

Local alignment

Figure 1: Types of alignments. When aligning protein sequences, it is im-
portant to be able to carry out different types of alignments according to the
situation encountered. Top: When aligning proteins belonging to the same
family, global alignments are used, i.e. gaps (illustrated here by dashed lines) at
both ends of the alignments are penalized. Middle: On the other hand, when
one looks for a protein domain in a longer sequence, semi-global alignments
that allow the shorter sequence to be aligned (entirely) along the longer one
are required. Gaps at both ends are not penalized in semi-global alignments.
Bottom: The most general type of alignment is the local alignment, where
only substrings of both sequences can be aligned (this might correspond to a
common domain found in two proteins that are otherwise different).

For remote homologs, i.e. homologous proteins for which the sequences are
no longer similar, sequence alignment methods fail. One, then, must resort to
the good conservation of the 3-dimensional (3D) structures. In such a case, to
figure out a homology relationship between 2 proteins, one aligns the sequence
of the new protein with the 3D structures of known proteins. Such methods are
called fold recognition methods or threading methods since this can be thought
as “threading” the sequence through the 3D structure.

For a long time, threading methods using non local parameters (see section
2.1 for the definition of this term) suffered from the lack of a rigorous method
capable of determining the sequence–structure alignment with the optimal score.
They relied on heuristic techniques, e.g. stochastic techniques such as a Gibbs
Monte Carlo [3]. R. Lathrop showed that, in the most general case, when
variable length alignment gaps are allowed and pairwise amino acid interactions
are considered in the score function (i.e. non local parameters), the problem of
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4 Collet & al.

aligning a sequence onto a 3D structure is NP-hard [4]. The algorithm proposed
by Lathrop & Smith was the first for finding the global alignment with the
optimal score [5]. Since then, other methods have been developed that improved
the efficiency of the global sequence–structure alignment algorithms [6, 7, 8, 9].

This study focusses on the local sequence–structure alignment problem. We
propose an approach based on integer programming which expands upon our
previous results [7, 9]. To the best of our knowledge, no attempt has been
done previously for solving this problem. We show experimentally that such
local sequence–structure alignments improve the quality of the prediction. This
allows threading methods to cover the whole spectrum of alignment types needed
to analyze homologous proteins.

2 Outline of the Protein Threading Problem

In this section we use classical notations and definitions concerning PTP as
given in [5].

2.1 Definition of alignments

Query Sequence A query sequence is a string of length N over the 20-letter
amino acid alphabet. This is the amino acid sequence of an unknown protein
which must be aligned to structure templates from a given database.

Structure Template All current threading methods replace the 3D coordi-
nates of the known structure by an abstract template description in terms of
blocks, neighbor relationships, distances, environments, etc (see Fig 2). Blocks
correspond to the most conserved parts of the structure, usually the secondary
structure elements (SSEs : α-helices and β-strands). We consider that a struc-
ture template is an ordered set M of m segments or blocks. Block k has a fixed
length of Lk amino acids.

N

C
A B C

D

Figure 2: Proteins as contact maps. A) “ribbon” representation of a protein
with 3 α helices, B) only the secondary structure elements, here the 3 helices,
are taken into consideration, C) dotted lines represent interactions between
positions in the helices, i.e., residues in contact, D) contact map representation
of the protein, double headed arrows correspond to the dotted line in C. In the
blocks respectively 6, 4 and 8 amino acids can be aligned.

INRIA



Local Protein Threading by Mixed Integer Programming 5

Let I ⊆ {(k, l) | 1 ≤ k < l ≤ m} be the set of blocks interactions. The graph
G = (M, I) with a set of vertices M (|M | = m) and a set of edges I, is called
the generalized contact map graph (see Fig 3).

Alignments The alignment of a sequence with a 3D structure can be de-
scribed as positioning the blocks along the sequence. Such an alignment is called
feasible if blocks preserve their original order and do not overlap. An alignment

Figure 3: Example of alignment. Alignment of query sequence of length
N = 24 and template containing m = 3 blocks of lengths L1 = 6, L2 = 4 and
L3 = 8. An arrow is drawn between 2 blocks if there is at least one position
in each block which are in interaction in the 3D structure. The corresponding
generalized contact map graph is given by G = (M, I), where M = 1, 2, 3 and
I = {(1, 2), (1, 3), (2, 3)}

is completely determined by the starting positions of all blocks along the se-
quence. In fact, in the classical PTP, it is more convenient to use relative posi-
tions instead of absolute positions. If block k starts at the jth query character,
its relative position is rk = j−

∑k−1
i=1 Li. In this way the possible (relative) posi-

tions of each segment are between 1 and n = N−
∑m

k=1 Lk+1. The set of possible
alignments (feasible threadings) is T = {(r1, . . . , rm) | 1 ≤ r1 ≤ · · · ≤ rm ≤ n}.

The cardinality of this set (the search space size of PTP) is given by |T | =
(

m+n−1
m

)

, which is a huge number even for small instances (for example, if
m = 20 and n = 100 then |T | ≈ 2.5 × 1022).

With this definition of the PTP, gaps are not allowed within blocks. They
are confined to loops joining the blocks.

2.2 Network flow formulation

In order to develop an appropriate mathematical model, PTP has been refor-
mulated in [7, 10] as a network optimization problem. Let G = (V, E) be a
m-partite graph with vertex set V and edge set E. The vertex set V is orga-
nized in n×m grid as shown in Fig 4. The vertex (i, k) (where i stands for row,
while k stands for column) corresponds to the relative position of the block k

along the sequence. The graph G is called an alignment graph. To preserve
blocks order, each edge ((i, k), (j, l)) ∈ E satisfies the condition i < j and k < l

(i.e. all edges are southwest-northeast oriented). For this reason, the align-
ment graph can be also thought as a directed graph, and since we search for a
southwest-northeast oriented path in this graph, there is no ambiguity when we
sometimes indicate the edges of a given vertex as input or output edges.

A feasible path F in the alignment graph G is a set of exactly m vertices
F = {vi1,1, vi2,2, . . . , vim,m} such that ik ≤ ik+1, ∀k, and 1 ≤ k < m (i.e. a
non-decreasing set of vertices). It is easy to see the one-to-one correspondence
between the set of feasible threadings (or matchings) and the set of feasible
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6 Collet & al.

positions

segments

k=1 k=2 k=3 k=4 k=5 k=6

i=4

i=3

i=2

i=1

Figure 4: Example of alignment graph. The thick line path corresponds to
the threading in which the relative positions of blocks are 1,2,2,3,4,4. Dashed
line edges represent non local interactions where the set of block interactions is
I = {(1, 3), (2, 5), (3, 5)}.

paths in G.

A cost Cik is associated to each vertex (i, k) as defined by the scoring func-
tion. Cik is a local score that depends only on the location of the block k at
position i along the sequence. To each edge ((i, k), (j, l)) we associate a cost
Cikjl as defined by the scoring function. Cikjl is a non local score that depends
on the location of blocks k and l on positions i and j along the sequence. We
say that an edge is activated by a feasible path if both ends are on the path.
The subgraph induced by the activated edges of a feasible path is called an aug-

mented path. The main result from [7] claims that solving PTP is equivalent to
finding the optimal (in our case the longest) augmented path in the alignment
graph G.

2.3 Mixed Integer Programming Formulation

Let yik be binary variables associated with vertices in the previous network.
Then yik is 1 if block k is at position i and 0 otherwise (vertex (i, k) is activated
or not). To take into account the interaction costs, we introduce a second set
of variables 0 ≤ zikjl ≤ 1, with (k, l) ∈ I and 1 ≤ i ≤ j ≤ n. The variable
zikjl is set to 1 if the corresponding edge is activated. Finding the optimal
augmented path in graph G (i.e. solving PTP) is then equivalent to maximizing
the following function :

m
∑

k=1

n
∑

i=1

Cikyik +
∑

((i,k),(j,l))∈E

Cikjlzikjl (1)

INRIA
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This objective function is subject to the following constraints:

n
∑

i=1

yik = 1 k ∈ [1, m] (2)

i
∑

j=1

yj(k+1) −

i
∑

j=1

yjk ≤ 0 k ∈ [1, m − 1], i ∈ [1, n − 1] (3)

yik ∈ {0, 1} k ∈ [1, m], i ∈ [1, n] (4)

yjl =

j
∑

i=1

zikjl (k, l) ∈ I, j ∈ [1, n] (5)

yik =

n
∑

j=i

zikjl (k, l) ∈ I, i ∈ [1, n] (6)

0 ≤ zikjl ≤ 1 ((i, k), (j, l)) ∈ E (7)

This model, known as MYZ and first introduced in [7], has been shown to
outperform the MIP model used in the RAPTOR package [6] for large PTP
instances. Both models (MYZ and RAPTOR) are solved by first relaxing con-
straints (4), i.e., letting yik be real variables such that 0 ≤ yik ≤ 1. This allows
the use of a Linear Programming (LP) technique. The solution of the LP tech-
nique is then used as a lower bound in a subsequent branch & bound algorithm
that finds the integer solution.

3 Local alignments : towards better PTP mod-
els

Constraints (2) from the above model force each block (i.e SSE) to be aligned
with the query sequence. However, proteins belonging to the same family do
not always have the same number of SSEs. Forcing all blocks to be aligned with
the sequence results in spurious alignments with bad scores. Such alignments
prevent the method to detect remote homologs. To tackle this issue, we develop
new models that allow a block to be omitted (not aligned) if its score with all
other interacting blocks is negative. Such an approach realizes local sequence–
structure alignments.

Towards this goal, we slightly modify the definition of a feasible path by
accepting that any non-decreasing set of vertices is a feasible path of the align-
ment graph G (i.e. the cardinality of a feasible path could be now less than
m). Obviously, there is a one-to-one correspondence between the set of local
alignments and the set of feasible paths in G.

In a local alignment, each block can be aligned with the whole sequence
because the number of omitted blocks is not known in advance. It follows
that relative positions are no longer meaningful. Thus, each block k takes
nk = N −Lk +1 absolute positions along the sequence. This results in columns
having different heights in the network flow formulation and leads to the need of
using an “offset” to move from one column to the next (this offset is illustrated
in Fig 5).

In order to implement the mechanism for omitting blocks during an align-
ment, we propose two schemes : (i) we modify constraints (2) to allow the sum

RR n° 7122
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positions

segments

k=1 k=2 k=3 k=4 k=5 k=6

i=4

i=3

i=2

i=1

offset

of size

L2

i=5

Figure 5: Example of flexible alignment graph. The path in thick lines
corresponds to the threading in which: blocks 1, 2, and 4 are omitted, and
blocks 3, 5, and 6 are on positions 1, 3 and 5. All edges in E are represented.
Because of absolute positions, notice that a offset of size Lk is needed to go from
column k to the followings (blocks sizes are : 2,3,2,3,2,2).

positions

segments

k=1 k=2 k=3 k=4 k=5 k=6

(1) (2) (3)

i=5

i=4

i=6

i=7

i=3

i=2

i=1

Figure 6: Example of a flexible alignment graph with dummy vertices.
Dummy vertices are the small gray circles. This illustrates the same alignment
as in figure 5 but not all edges are represented for clarity. (1) dashed lines
represent D to D paths, (2) dotted lines represent D to R paths, and (3) gray
lines represent R to D paths. Notice that an offset of size Lk is needed to move
from a real vertex ik to the next (be it dummy or real). No offset is needed
when moving from a dummy vertex.

of a column to be zero, (ii) N + 1 dummy vertices are added in every column.
If a dummy vertex is activated in a column, the corresponding block is omitted.
In the second scheme, two types of vertices exist : real (R) and dummy (D).
This generates 4 types of subpaths: R to R , R to D, D to R, and D to D (as
shown in fig 6).

According to the above two schemes, we implemented 5 models : Compact
model (CM) for the first one and Extended models (EM1, EM2, EM3, EM4)
that make use of the dummy nodes. These models are described below.

INRIA



Local Protein Threading by Mixed Integer Programming 9

3.1 Mathematical models

In the following models, we use N , m, Lk, I, Cik, Cikjl, yik, zikjl notations from
section 2.3 and the following :� nk = N − Lk + 1 is the number of possible positions of block k along the

query sequence.� E = {((i, k), (j, l))|(k, l) ∈ I, 1 ≤ i ≤ nk, i + Lk ≤ j ≤ nl} is the set of
edges.

All models share the same objective function:

max

m
∑

k=1

nk
∑

i=1

Cikyik +
∑

((i,k),(j,l))∈E

Cikjlzikjl (8)

3.2 Compact model (CM)

The objective function (8) is subject to the following constraints:

yik ∈ {0, 1}, k ∈ M, i ∈ [1, nk] (9)

0 ≤ zikjl ≤ 1, ((i, k), (j, l)) ∈ E (10)
nk
∑

i=1

yik ≤ 1, k ∈ M (11)

nl
∑

j=i+Lk

zikjl − yik ≤ 0, (k, l) ∈ I, i ∈ [1, nk] (12)

j−Lk
∑

i=1

zikjl − yjl ≤ 0, (k, l) ∈ I, j ∈ [1, nl] (13)

yik +

min(nl,i+Lk−1)
∑

j=1

yjl ≤ 1, 1 ≤ k ≤ l ≤ m, i ∈ [1, nk] (14)

nk
∑

i=1

yik +

nl
∑

i=1

yil −

nl
∑

j=Lk+1

j−Lk
∑

i=1

zikjl ≤ 1, (k, l) ∈ I (15)

Constraints (11) correspond to constraints (2) in MYZ model and they im-
pose a block to have one position or zero (i.e to be omitted). Constraints (12)
and (13) force node activation if an outpout (resp. input) edge is activated.
Constraints (14) keep blocks order and impose that they do not overlap. Fi-
naly, constraints (15) impose the activation of an edge if its ends are activated.

3.3 Extended model 1 (EM1)

Based on the compact model, each extended model is an attempt to find a more
similar model with MYZ [7] which was shown to be efficient for global align-
ments. EM1 extends the compact model by adding dummy positions for each
column. An active dummy position in a column means that the corresponding
block is deleted.

RR n° 7122



10 Collet & al.� dik ∈ {0, 1} are dummy variables added for all extended models.

The objective function (8) is subject to constraints (9), (10), (12), (13) and (15)
from CM. We add the following constraints:

dik ∈ {0, 1}, k ∈ M, i ∈ [1, N + 1]

(16)

nk
∑

i=1

yik +

N+1
∑

i=1

dik = 1, k ∈ M (17)

j
∑

i=1

dik +

min(j,nk)
∑

i=1

yik −

j
∑

i=1

dik−1 −

j−Lk−1
∑

i=1

yik−1 ≤ 0, k ∈ [2, m], j ∈ N + 1

(18)

Constraints (17) replace constraints (11) with the use of dummy nodes. Our goal
was to transform these inequalities in equalities. The use of dummy nodes also
change constraints (14) into constraints (18). One can notice that, m − 1, the

number of constraints (18) is smaller than, m∗(m−1)
2 , the number of constraints

(14).

3.4 Extended model 2 (EM2)

This model extends EM1 by adding edges between dummy vertices and original
vertices (or real vertices). The aim of this model is to transform constraints (12)
and (13) in equalities.� rdikjl ∈ R, (k, l) ∈ I, (i, j) ∈ RD are dummy variables representing an

edge from a dummy vertex to a real vertex(with RD = {(i, j) |(k, l) ∈
I 1 ≤ i ≤ nk, i + Lk ≤ j ≤ N + 1}).� drikjl ∈ R, (k, l) ∈ I, (i, j) ∈ DR are dummy variables representing an
edge from a real vertex to a dummy vertex(with DR = {(i, j) |(k, l) ∈
I, 1 ≤ i ≤ j ≤ nl}).

The objective function (8) is subject to constraints (9), (10), (15), (16), (17),
(18) and to the following constraints:

0 ≤ rrikjl ≤ 1, (k, l) ∈ I, (i, j) ∈ RD (19)

0 ≤ drikjl ≤ 1, (k, l) ∈ I, (i, j) ∈ DR (20)

nl
∑

j=i+Lk

zikjl +

N+1
∑

j=i+Lk

rdikjl − yik = 0, (k, l) ∈ I, i ∈ [1, nk] (21)

j−Lk
∑

i=1

zikjl +

j
∑

i=1

drikjl − yjl = 0, (k, l) ∈ I, j ∈ [1, nl] (22)

Constraints (12) and (13) are replaced by constraints (21) and (22) which are
equalities.

INRIA



Local Protein Threading by Mixed Integer Programming 11

3.5 Extended model 3 (EM3)

This model extends EM2 by adding edges between dummy vertices.� ddikjl ∈ R, (k, l) ∈ I, (i, j) ∈ DD are dummy variables representing an
edge from a dummy vertex to a dummy vertex(with DD = {(i, j) | 1 ≤
i ≤ j ≤ N + 1}).

The goal of this model is to have equality constraints like (21), (22) applied to
dummy vertices. The objective function (8) is subject to constraints (9), (10),
(16), (18), (19), (20), (21), (22) and to the following:

0 ≤ ddikjl ≤ 1, (k, l) ∈ I, (i, j) ∈ DD (23)

N+1
∑

j=i

ddijkl +

nl
∑

j=i

drijkl − dik = 0, (k, l) ∈ I, i ∈ [1, N + 1] (24)

j
∑

i=1

ddijkl +

j−Lk
∑

i=1

rdijkl − djl = 0, (k, l) ∈ I, j ∈ [1, N + 1] (25)

Constraints (24) (resp (25)) impose the activation of one and only one edge going
out (resp. in) a dummy node. These constraints replace activation constraints
(15).

3.6 Extended model 4 (EM4)

This model is based on EM2. In this model, we try to delete constraints (15).
The objective function (8) is subject to constraints (9), (10), (16), (17), (18),
(19) , (20) , (21), (22) and to the following :

nl
∑

j=i

drijkl − dik ≤ 0, (k, l) ∈ I, i ∈ [1, N + 1] (26)

j−Lk
∑

i=1

rdijkl − djl ≤ 0, (k, l) ∈ I, j ∈ [1, N + 1] (27)

In this model we replace constraints (15) by constraints (26) and (27).

4 Results

4.1 MIP models comparison

4.1.1 Benchmark

These five MIP models have been implemented with Ilog CPLEX 10.0 Library
in our protein threading package FROST [11]. We also randomly created a
benchmark of 100 alignments to compare their performances. Each alignment
can be solved in less than 1000 seconds with CPLEX MIP solver for all mod-
els. Alignments have been processed on a cluster of computers with 2.5GHz
AMD Opteron biprocessors and 4MB of memory. Comparisons of models have
been carried out using four measures : the number of variables, the number of
constraints, the relative gap, and the computation times.

RR n° 7122



12 Collet & al.

4.1.2 Number of variables and constraints

CM obviously has the smallest number of variables because there is only real
nodes and real edges. EM1 is larger than CM because dummy nodes are added.
Then EM2 and EM3 follow due to the addition of edges. EM2 and EM4 have
the same number of variables. In summary, based on the number of variables,
the ranking of the models is: CM < EM1 < EM2 = EM4 < EM3.

EM1 is the model with the smallest number of constraints. Although EM1
has more variables, dummy nodes create less constraints (18) compared to con-
straints (14) in CM for the same effect. EM1 and EM2 have similar structure,
but EM1 has also less constraints than EM2. Finally, EM3 and EM4 have the
largest number of constraints, about twice the number of constraints in EM1.

4.1.3 Relative Gap

The relative gap (RG) is the relative difference between the solution of the
relaxed problem (LP ) and the optimal solution (OPT ): RG = LP−OPT

OPT
. RG is

a good indicator of the efficiency of the model since the smaller RG, the easier
for the branch & bound algorithm to find the solution.

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,02 0,04 0,06 0,08 0,1 0,12

EM3 Relative Gap

R
e
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ti

v
e
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a

p

EM1 & EM2

EM4

CM

Figure 7: Relative gap of CM, EM1, EM2 and EM4 compared to
relative gap of EM3 for 100 alignments. EM3 relative gap values are on
the thick line. One can notice that EM3 and EM4 are the tightest models, and
that EM1 always give an equal relative gaps with EM2. Overall, the tightest
model is EM3 because it gives a tighter (or equal) relative gap than EM4 for all
instances.

Figure 7 shows that EM3 and EM4 give tighter relative gaps compared
to other models. In fact, EM3 always gives a tighter relative gap than any
other model. Moreover, EM3 finds the optimal solution by solving the relaxed
problem for 77% of alignments. This rate if greater than for CM (37%), EM1
and EM2(64%), and EM4(75%).

4.1.4 Computation Times

Figure 8 presents statistics on computation times for the five models. EM1 and
EM2 seem to be the fastest models compared to CM, EM3 and EM4.

Actually, EM1 computation times are always smaller than the others.

INRIA
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Figure 8: Statistics on computation times of each model for 100 align-
ments. Times are in seconds on a logarithmic scale. A box represents 50%
of instances, the thick line inside is the median. The ends of lines represent
maximum and minimum values. EM1 and EM2 are the fastest models.

4.2 Biological considerations

In order to measure the quality of local alignments, we need accurate alignments
between proteins. These alignments are provided by structural alignments of
proteins. We used the TopMatch server [12, 13] for alignments of two proteins
and the Mammoth server [14] for multiple structure alignments.

4.2.1 Local similarities

A first improvement of a local alignment approach compared to a global align-
ment approach is to align a long template with a small sequence. Such align-
ments are not allowed by global alignments because all blocks must be aligned.
For example, the TopMatch alignment of proteins 9gaaA (length 180) and 1apyB
(length 141) show that 1apyB is a sub domain of 9gaaA (85% structure simi-
larity and 40% sequence identity). Thus, a global alignment between template
9gaaA and sequence 1apyB is impossible. However, with a local alignment, a
part of 9gaaA can be deleted and the subdomain can be aligned with 1apyB as
illustrated in figure (9).

Core : 9gaaA

Query : 1apyB

Structural alignment

Query : 1apyB

Core : 9gaaA
Frost Local alignment

90% of exact matching

Figure 9: Alignment of proteins 9gaaA and 1apyB by TopMatch and
FROST. Although 9gaaA is larger than 1apyB, a local alignment is possible.
Moreover, FROST local approach produces a coherent alignment with the Top-
Match structural alignment (90% of exact matching).
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4.2.2 Better alignments

In section 3 we presented the problem of having proteins with similar structures
but not the same number of SSEs. Such a case is illustrated in figure (10.A).
Template 1qddA is aligned with sequence 1rjhA. These two proteins share a
common domain (76% structure similarity and 21% sequence identity) but the
first three blocks of 1qddA (in gray) are not in this domain. Because the global
alignment approach imposes these three blocks to be aligned with the sequence,
it results in a decrease of the overall score and in a spurious alignment.

FTQTKTFHEASEDCISRGGTLSTPQTGSENDALYEYLRQSVGNEAEIWLGLNDMAAEGTWVDMTGARIAYKNWETEITAQPDGGKTE

NEDRETWVDADLYCQNMSGNLVSVLTQAEGAFVASLIKESGTDDFNVWIGLHDPKKNRAWHWSSGSLVSYKSWGIGAPSS---VNPG

-TNA-TWVDADLYCQNM-GNLV---TQAEGAFVASLIKESG----NVW--LHD-------------------WHW------------

PQARIS----TNA----CYYFN----TWVDADLYCQNM---GNLV----TQAEGAFVASLIKESG-----NVW---LHD----WHW-PQARIS----TNA----CYYFN----TWVDADLYCQNM---GNLV----TQAEGAFVASLIKESG-----NVW---LHD----WHW-PQARIS----TNA----CYYFN----TWVDADLYCQNM---GNLV----TQAEGAFVASLIKESG-----NVW---LHD----WHW-PQARIS----TNA----CYYFN----TWVDADLYCQNM---GNLV----TQAEGAFVASLIKESG-----NVW---LHD----WHW-

NEDRETWVDADLYCQNMSGNLVSVLTQAEGAFVASLIKESGTDDFNVWIGLHDPKKNRAWHWSSGSLVSYKSWGIGAPSS---VNPG

FTQTKTFHEASEDCISRGGTLSTPQTGSENDALYEYLRQSVGNEAEIWLGLNDMAAEGTWVDMTGARIAYKNWETEITAQPDGGKTE

B)  Local Alignment (score = 50.69)

A)  Global Alignment  (score = 7.30)
1rjhA:
Frost Align:
Best Align:

1rjhA:
Frost Align:
Best Align:

Figure 10: Frost Global and Local Alignments of core 1qddA with
query 1rjhA. ”Best Align” is the alignment obtained by Mammoth structural
alignment tool [14]. Frost alignment is in bold. A) Gray blocks are aligned
although they are not in the structural domain shared by 1qddA and 1rjhA.
This results in an alignment which is totaly different from the best alignment.
B) Because two gray blocks have been omitted, local alignment approach gives
a better score and an alignment more coherent with the best alignment (frames
correspond to exact matchings between Frost and Mammoth alignments).

A local alignment permits to omit blocks when needed (i.e. based on score
function) as illustrated in figure (10.B). The deletion of two gray blocks results in
a better score and an alignment which is more consistent with the best alignment
found by Mammoth.

5 Discussion

This paper deals with the description and the comparison of five MIP models
for local alignments. We do not explore the sensitivity and specitivity of the
approach from a biological point of view. Such statistics about recognition rates
and quality of alignments need a huge amount of alignments and are beyond
the scope of this paper.

Based on the compact model, we develop four extended models. The aim
of these extended models is to find a similar model to MYZ. MYZ has been
proven to be very efficient and to give an optimal solution for 95% of cases by
solving the relaxed problem. Our assumption is that a close model to it would
be as efficient for local alignments as MYZ is for global alignments. EM3 is
the closest model to MYZ because it uses very similar equality constraints. By
always giving the tighter relative gap, EM3 confirms our hypothesis.

Aligning difficult instances (i.e. long sequences with long templates) with
the CPLEX solver is too slow for a massive usage. For this reason, we need
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to develop a fast dedicated algorithm based on one of our models. Usually, we
use the model with the tightest relative gap but in this case, the tightest model
(EM3) is also the slowest (section 4.1.4) and the largest (section 4.1.2). Thus,
choosing the best model for the development of a dedicated solver is still an
open research problem on which we are currently working.

Although the local alignment approach seems to behave as we expected, it
completely relies on the score function. Indeed, a block is omitted if its score
decreases the overall alignment score, i.e. its score is negative. But we do not
know if 0 is the right boundary to decide to omit a block. We are currently
looking for an automatic learning method to evaluate the correct boundary for
a given score function.

6 Conclusion

This paper describes a method allowing local alignments of protein sequences
and structures. As far as we know, this is the first attempt to propose alignments
that give the possibility of omitting parts of the 3D structure that might not
be conserved in remote homolog proteins. Results show that our algorithm is
indeed capable of omitting blocks when required. The accuracy of the resulting
alignment strongly depends on the quality of the score function. It is likely that
score functions adapted to the local alignments will contribute for the success
of the approach.

Local alignments have been modelled and tested with the CPLEX 10 solver.
This is a general purpose solver for integer programming problems that is very
convenient for rapidly testing new ideas. However, our computation experiments
show that it is not enough rapid for our particular problem. We show that EM1
and EM3 are respectively the fastest and the tightest model. The next step is
to choose one of these models to create a dedicated algorithm in order to solve
difficult instances and to evaluate the recognition rate of the local alignment
approach.
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