N

N

GosSkip, an Efficient, Fault-tolerant and Self Organizing
Overlay using Gossip-based Construction and Skip-lists
Principles
Rachid Guerraoui, Sidath B. Handurukande, Kévin Huguenin, Anne-Marie

Kermarrec, Fabrice Le Fessant, Riviere Etienne

» To cite this version:

Rachid Guerraoui, Sidath B. Handurukande, Kévin Huguenin, Anne-Marie Kermarrec, Fabrice Le
Fessant, et al.. GosSkip, an Efficient, Fault-tolerant and Self Organizing Overlay using Gossip-based
Construction and Skip-lists Principles. 6th IEEE International Conference on Peer to Peer Computing
(P2P), Sep 2006, Cambridge, United Kingdom. 10.1109/P2P.2006.19 . inria-00436689

HAL Id: inria-00436689
https://inria.hal.science/inria-00436689
Submitted on 14 Mar 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00436689
https://hal.archives-ouvertes.fr

GosSkip, an Efficient, Fault-Tolerant and Self Organizing Overlay Using
Gossip-based Construction and Skip-Lists Principles

Rachid Guerraoui, Sidath B. Handurukanhde Kévin Huguenin
School of Computer and Communication Sciences, ENS Cachan/IRISA
EPFL, Switzerland Rennes, France
Anne-Marie Kermarrec Fabrice Le Fessant Etienne Rivere
INRIA/IRISA, INRIA-Futurs/LIX, Universie de Rennes 1/IRISA,
Rennes, France Palaiseau, France Rennes, France
Abstract being the number of nodes in the overlay) is a result of the

This paper presents GosSkip, a self organizing and fully dis- inherent tradeoff between efficiency and expressiveness in

tributed overlay that provides a scalable support to data storage distributed systems. The fact that the only querying inter-
and retrieval in dynamic environments. The structure of GosSkip, face iS exact-match and that hashing is used to determine
while initially possibly chaotic, eventually matches a perfect set of tN€ placement of data to nodes lose the initial ordering of
Skip-list-like structures, where no hash is used on data attributes, OPI€CtS. As a result, the possibility of richer query mecha--
thus preserving semantic locality and permitting range queries. nlsms. such as rahge qu.erle_s or nearest neighbor queries is
The use of epidemic-based protocols is the key to scalability, fair- "€Strained, or exhibits crippling costs.
ness and good behavior of the protocol under churn, while pre- ~ Some work has been done to propose structured over-
serving the simplicity of the approach and maintaining O(log(N)) ays that keep this ordering on objects names. Mercury [5]
state per peer and O(log(N)) routing costs. In addition, we pro- Stores objects described by a set of attributes. To each at-
pose a simple and efficient mechanism to exploit the presence offibute corresponds aring, on which objects ordering is pre
multiple data items on a single physical node. GosSkip’s behavior S€rved, thus providing a support for range queries. To en-
in both a static and a dynamic scenario is further conveyed by ex- sure load balancing, however, distributed node-count his-
periments with an actual implementation and real traces of a peer tograms gathering of the naming space have to be per-
to peer workload. formed, and the behavior of this scheme in face of a high
churn rate remains unclear. Another set of distributed data
structures that avoid hashing to ensure load balancing, and
that permit both query efficiency and an expressiveness that
1 Introduction and Background is higher than DHTSs, are based on the Skip-List structure.
Peer to peer networks are distributed networks where no” SKip-List is a doubly-linked list where objects with sub-
centralization is used, especially for locating and quegyi sequent names are linked on the f'TS‘ I_evel (l&yelSome
data. The desired properties of such systems include, dut ar pointers at each (.)bje.Ct permits a Skip L'St.to rese_mble abal-
anced tree, forming increasingly sparse linked lists aheac

not limi | lancing amon rticipating n . .
ot ted to, load balancing among participating nodes, level. In aperfect Skip lista levelh pointer at a node tra-

resilience in face of churn and high expressiveness of queryverses exactly’2nodes, while for Skip-Nets [11] or proba-

mechanisms. Above all, a peer-to-peer network has to be, .". . -)
o ; . - bilistic Skip-lists [14], the structure resembles a randwad
scalable, and this is particularly important for the efing balanced tree, witld(log V) insertion and querying costs

of search algorithms and construction costs of overlays. W.h.o. and a similar ton-down querving strateav. However
Generic P2P overlays [15, 16, 17, 21] usually provide _- P al p-down querying gy. 1o '
a Skip List uses only one linked list per level, thus imply-

the functionality of a distributed hash table (DHT). They . . o
- . o ing a high load on nodes participating on upper levels, and
can be used to efficiently locate an object specified by a key o .
penalizing the whole structure upon deletion of such nodes.

(e.g, a filename) within a large set of nodes. They ensure, . :) .
load balancing in terms of hosted objects per node and scaI—Wh'Ie this was not an issue for centralized data structures,

o . , these two points are a concern for a peer-to-peer data struc-
ability but the search efficiency (usually @(log(N)), N ture. Skip-graphs [3] are similar to Skip-Lists but use sev-

*This work was done when the author was affiliated with EPFL eral concurrent linked lists for levets 0, to balance the

Keywords: Gossip-based protocols, self-organization,
data structures, skiplist

load of query propagation and ensure fault resilience.-Skip peers.
webs [2] are based on the same concepts for multidimen- GosSkip organizes peers in such a way that they form
sional data. They provide@(log N/ loglog N) query cost a sorted doubly linked list (or ring). Once a peer has lo-
in single dimension an@(log N) in multiple dimensions. cated himself in the sorted list, links to level-0 neighbors
However, all these distributed data structures rely on a de-are straightforward to implement. For each peer, additiona
terministic construction of the overlay (and on leavingisee longer links/;, for levels1 < i < log, (IN) skip overk®
using a fair leaving procedure) and need additional mecha-peers. These links form a set of perfect skip lists, progdin
nisms to repair themselves in presence of node failures. the functionality of balance#l-ary tree:O(log, N) search

On the other hand, gossip based protocols have proverand insertion costs. In a single skip list, a peer has a proba-
efficient for the construction and maintenance of disteldut bility of being part of each levelequal to%. This can lead
systems. Gossip techniques have been successfully usetb a high load of query propagation on the top-level nodes.
in many settings [12] including database maintenance [8], In GosSkip, this is not the case as every peer is present in all
multicast [6], routing tables management [19] and atteébut log, (V) levels and has an equal probability of being part of
based publish/subscribe systems [10]. Their application t any query path. The load of query propagation is thus bal-
the maintenance of overlay networks [7, 18, 20] has shownanced uniformly among all peers.
their ability to gracefully deal with churn, building self- peer management In GosSkip, a peer is associated to
organizing networks able to resist to the loss of a large partone data element. Its management is the responsibility of
of the network without collapsing. Gossip techniques en- the physical nodg¢computing entity) that published this el-
able to keep overlay construction algorithms simple yet ef- ement. For the sake of clarity, we assume for now that there
ficient, without the need for explicit overlay reconstrocti is a one-to-one mapping between peers and physical nodes,
mechanism in case of node departures. and we come back to this issue in Section 5. The mapping of

Contributions: In this paper, we propose the design and Peers to node can be modified to move application objects
implementation of GosSkip, a distributed data structuce pr ~ according to some heuristics (physical proximity, commu-
viding a better tradeoff between query expressiveness andlication patterns) but such techniques do not modify the al-
query efficiency than DHTs. As in the above systems, gorithms and their description is out of the scope of this
GosSkip has the important property of preserving contentPaper.

Ipcality i_n the semantic space. _GosSkip Iinfipplica- 3 Overlay Construction

tions objects(rather than computing entities) in a struc-
ture that eventually resembles a set of exact balanced trees In this section, we describe the mechanisms used to cre-
while balancing the load of queries uniformly among peers. ate and maintain the GosSkip overlay.

GosSkip is built using a gossip-based protocol and is re-Joining and leaving the network. When a peer wants
silient to high churn rates. Overlay construction messagesto join the overlay, it simply sendsjaoi n message to a
can be piggy-backed on top beart beatmessages which peer already participating in the system as in most p2p al-
are in any way present in most distributed systems. An eval-gorithms [15, 16]. The join message progresses in the sorted
uation of GosSkip behavior both in a static and dynamic list until the peer location is found and the peer is then in-
scenarios is performed using a deployed implementation ofserted still preserving the sorted order. Then, as gossip me
the protocol and a real workload of a file sharing applica- sages are exchanged in the system, the peer is gradually in-
tion. The paper is organized as follows: basic principles tegrated in the upper level lists. When a peer wishes to leave
are given in Section 2 and the details of algorithms in Sec- the system, it just stops gossiping messages and will grad-
tion 3. Section 4 gives evaluation results of the protocel us ually be discarded from the neighbor lists. Besides, a peer
ing real traces and in dynamic settings. Section 5 proposedailure is detected by its neighbors which in turn remove it
an approach to leverage the presence of multiple peers on &om their list of neighbors triggering the creation of a new
physical node and improve routing and robustness. level O link instead.

Establishing long links. GosSkip relies on gossip mes-
sages to construct long links. This message can be piggy-
GosSkip is a structured peer-to-peer overlay linking ap- backed over maintenance or applications messages that al-
plication objects in a distributed data structure. We vhillg ready exist in the network. To ease description, we will
discuss indifferently of data elements as bepegrsin the denote asight handandleft handneighbors on level the
overlay. Each peer has a name that depicts its semantic fopeer that directly follows (respectively precedes) a peer i
the application. The only necessary property is that thesea list. Each peer periodically sends gossip messages to the
names follow a deterministic total ordering. Then, the posi peers on the right hand side first, as shown in Figure 1.
tion of a data element is fully determined by its name. For Each message consists of a collection of entries. Each
the remaining of the papery will denote the number of entry is composed of an identifiee.§), IP address; I1d1 in

2 GosSkip at a Glance

Figure 1), its associated data item (d1 in Figure 1) and aleft. Hence peers can forward level-1 messages leftward. If
counter. As in all gossip-based protocols, time at each peetthe level is an even number, the message is forwarded to the
is divided in periods of fixed duration. Each new period, right, else to the left. Once a level-1 message with counter
each peer forwards a subset of the entries it receives durset to O is received by a peer, that peer learns about another
ing the last period. It also adds an entry with its own id, peer on the right that i8 hops awayé€.g, in Figure 1 peer 1
data item and a counter set to zero along with the forwardedlearns about peer 3 when peer 1 receives a level-1 message
entries. Each peer increments the counter of every entry itfrom peer 3).
receives before forwarding it. Once received, if the counte Peers with their level 0, 1 and 2 neighbors are shown in
at peerp is equal tok-1 (k is a configurable system param- Figure 1. The lines in Figure 1 depict paths of the messages
eter, gives the number of peers each link skip over, and inand as well as long links between peers. For simplicity,
Figure 1 we considék as 2) the entry is not further gossiped only a limited number of links are shown: in reality each
(by simply removing it from the message) and ppedds peer has level 0, 1 and 2 neighbors. This scheme can be
the peer associated with the removed entry together with thefurther extended to form links of greater length by gosgipin
information associated with that entry to its neighbor list another set of messages among level 2 neighbors and so
(e.g, as in Step 3 of Figure 1, peer 3 adds Id1 to its neigh- on. More precisely, additional links are constructed as the
bor set together with d1). Peers have neighbors on right andsystem size grows. The number of links maintained by a
left hand sides, maintained respectively in rightward- and peer is bounded b@log N. If a given peer does ndtear
leftward-neighbor lists. These neighbor lists represkatt from a neighbor before Eme outperiod, it removes the
routing state of each peer. corresponding link.

Note that, as a result of removing entries from messages,
once the counter reaches paramétdr, the size of the gos- Algorithm 1 Message reception
sip message (in terms of entries) is limitedit@ntries ir- 1: Uupon RECEIVE (message msg) with msg.levélby
respective of the network size. At the end of this process, peer:
peers know about other peers that areops away, on the 2 outbuffer < null

. . . . 3: for all entities e msgdo
left hand side. These steps are depicted in Figure 1 wWhere 4. if e.counter= 0 AND / Othen

is set to 2. Immediate neighbors (i.e., one hop away) peers 5: if I MOD 2=0then _

are level-0 neighbors and neighbors that areops away 6: I'eﬂward'”e'ghbors-adﬂ[e-Peef"d’e-Peef'Va'Ue])
: : - . else

are levelk nelghbors._ For example, as in Figure 1, node 1 rightward-neighbors.addfe.peer-id.e.peer-value])

and 2 are level-0 neighbors while node 1 and 3 are level- o end if

1 neighbors. Likewise, each message is associated with al0: end if

level representing the level of the neighbors between which 11: if €.countee= k-1 then
. 12: if Il MOD 2=0then

the message is sent.

13: leftward-neighbors.adbdf 1,[e.peer-id,e.peer-value])
P Tt 14: else
//’ «— \\\ ;Z‘Sige 15: rightward-neighbors.add{ 1,[e.peer-id,e.peer-value])
/,// Level 1 . ~ . 16: end if
P message NS .
e S 17: else
! (j/ 2 3 . s b 18: e.counter— e.countes#-1
19: out-buffef < out-buffef U {e}
— — e 20: endif
<1d1, d1, 0> <1dl, dl, 1> <Jdidit> 21: end for
<Id2, d2, 0> <lId2, d2, 1>
Level 0 message <Id3, d3, 0>
Level 0 message
Level 0 message - - -
@ Algorithm 2 Message emission
No(;ie ?S(irogs ‘enti(tiy (if - 1: At peeri
252 ncighboun at 2: for all neighbors in level € [0..1;;,42] do
Level 1 . for eacht % (I + 1) secdo

msg«— out-buffey

e < [myID,myValue,0]
msg«— msgu {e}
msg.levek— [

; ; . i if 1 MOD 2=0th
Higher level gossip messages.GosSkip is fully built by : send mag to iem”me diate rightward-neighbor at level

iterating on this algorithm at each level. To set additional 5. gge

long links (that skips over more peers), peers gossip simila 11: send msg to immediate leftward-neighbor at lével
set of messages but only among level-1 neighbors. Note12: end if

that level-0 messages are forwarded from left to right: as a ﬁf en‘;’}grfor

result, peers on the right come to know about peers on the—

Figure 1. Gossip-based construction

i A

3.1 Gossiping Algorithm Efficient and fault-tolerant spreading. While routing
Algorithm 1 and Algorithm 2 show the pseudo-code of Provides the very same exact-match interface as a DHT,

the gossip construction of links. In the pseudo-cqukser- GOSSkIp preserves_, the ordering of data items in the |iS_t.
valuerefers to the data item associated to an external peerThis permits to define a more general query model, that is
andmyValuerefers to the local peer’s data item. aspreading algorithmwhich is both used as a range query

Message reception. Algorithm 1 describes the steps car- Mechanism and to propagate messages among peers with
ried out by a peer when it receives a message of level the same value. This algorithm is designed to cope with dy-
Once a gossip message is received, one out of two possinamicity. While some links at each level may be missing,
ble link types are created. In the first link type, links skip a Of some peers may fail or some transient routing failures
number of peers as discussed earlier. These links are conbetween peers may exist, the spreading still reaches all non
structed if the counter of a given entry is seftd: thenthe failed peersin the given range. The spreading algorithm ex-
associated value is added to the relevant (either left bt-rig ~ Ploits the multiple balanced trees structure of GosSkij bot
ward) neighbor list (lines 11-17) and the entry is no longer to speed up the multicast process and to provide resilience
gossiped. For example, if the level of the message is anto failures. The first peer satisfying the query (joined by
even number, the leftward neighbor list is updated(for routing to any point in the range) is responsible for initiat

a message at level 0, a neighbor at level 1 is added to left-ing the multicast process to all tieatching area

ward list if the counter has reachéell). If the counter is Each encountered peer follows Algorithm 3. The key
less thark-1, the counter of the entity is incremented (line ideais, at each peer, to divide the spanning space using high
18) and it is added to the out-going buffer (out-buffeor- level links up to a level, and to delegate each neighbor on
responding to the levél(line 19). this level a sub-space of the matching area. When a peer

The second link type connects immediate neighbors in forwards a query to one of its neighbors at levet 1, it
a given level. For example, peer 1 and 3 are immediate@ssigns it the task of spreading it, in the same direction, to
neighbors at level 1. Whenever the counter of a given entry€very peer between itself and its next immediate neighbor
e is set to 0,e corresponds to an immediate neighbor at atlevell. Each query for spanning a region contairiewel
level I. Then, depending on whethéis odd or even, the upper boundand anoffset The level indicates how many
Corresponding neighbor list is updated as shown in line 4- levels the peer as to deal Wlth, and the offset is used to avoid
10 (level 0 links are managed when nodes join and leave). Overlapping when repairing failed links. gpread message
Message emission. Algorithm 2 shows the message for- Consists in spreading a query @“"*'** — 1) — offset im-
warding algorithm. For all the neighbors at each level mes- Mediate neighbors in a given direction. Figure 2 depicts
sages are forwarded periodically in the relevant direction a@n example. Let peers 0 to 8 be a subset of the matching
The period of forwarding depends on the level: lower level area and peer 0 be the first reached target of the routing.
messages are gossiped more frequently than higher levePeer O spreads the query on its right: it sends simultane-
ones. As a result, lower level links are maintained with ously spreading messages to his neighbors (peers 1,2,4 and
more accuracy (in terms of link length) in the presence of 8)- Peer 1is in charge of itself only, peer 2 is in charge of
join/leave of peers than higher-level links. itself and peer 3, etc. Thus, the maximum load for a query

The out-buffef data structure contains the entries re- Propagation on a peer (log V) (maximum! messages)
ceived during the last period: a message is constructed conand a peer receives the query one time only. This algorithm
taining all the entries of this buffer (line 4). An entry cor- builds efficiently a spanning tree using alive GosSkip links
responding to peeris also added to the message (line 5-6) fqr all peers in the matching area with a high resilience to
with the associated counter set to 0 (line 5). The level of failures.
the message is set accordingly (line 7). Each message has
direction according to its level (line 8-12): for exampls, a /
in Figure 1, level 0 messages are sent rightward. =
3.2 Routing and Spreading 5 @

Routing to a peer according to its value (or routing to |/=0:
the peer that has the nearest value, if it does not exist), is :
similar to querying a value in a balanced tree. The process |[/=3:
begins at the higher level linked list, and goes down to lower
levels when, at a peer, the current level link skips too many
peers. This require®(log N) routing steps. If the query
has to be further spread over several peers, for arange quer$-3 ~ Failure Recovery
or if many peers share the same data element description, Nodes in the overlay can fail or leave without notifica-
we use the spreading protocol that we describe in the nexttion: we refer to them simply as failures (we do not ad-
paragraph.

r%pread(MAXLEVEL) L

Figure 2. Spreading algorithm principles

Algorithm 3 GosSkip Spreading — Upon receptionlgpread-msgat
levell with offset on peem

Require: level > —1,0ffset > 0
Ensure: Spreads the query to every matchif@f¢v¢!+1 — 1) — offset

N

30:

N R®

. if n = null then

left neighbors

1l level
: while I > 0 A 28 < offset do {compute the highest destination level

according to the offset correctign
offset «— offset — 2!
l—1—-1

. end while

Imatching < highest-level matching neighbdr(,:ching < 1)

. if level = Maxlevel — 1 then

send ISpread-mslg{vel,0) to immediate leftward-neighbor at level

lmatching

. else

if Lnatching = level then {the target level is reachable
send ISpread-msgel — 1,offset) to immediate leftward-
neighbor at level,,, 4tching

else
send ISpread-msigpel,offset + 2!) to immediate leftward-
neighbor at level,, 4tching

end if

endif
: lla,st — lmatching

for I — lpatching — 110 0 step—1do

n < immediate leftward-neighbor at leviel
if n existsthen
if ljqs¢ =1+ 1then {the following neighbor is valifl
send ISpread-mdgg(1,0) ton

else {some following neighbors are broken
send ISpread-msig(,; — 1,2!) ton
end if
llast —1
end if
. end for

{uses the last valid neighbor to spread to the first
broken neighborg
send rSpread-mdg(s; —
levell;, st
end if

1,0) to immediate leftward-neighbor at

dress malicious peers in this paper). Failures are handleqS
along two directions: (1) establishing new links between .
new neighbors instead of failed ones, (2) use of alternative
links instead of failed links to forward messages befork ful

recovery.

Establishing New LinksEstablishing long links consist

to resolve issues that can arise when one physical computer
executesk or more number of peers that are contiguous in
the overlay. The maintenance Bfneighbors is done using
the level 0 messages itself: these messages arddiagt
beatmessages between these nodes. If peer fails, the
peer n will replace n.,; with n,. 5 to form a level 0 link.

As a result, if R consecutive peers do not fail simultane-
ously, the overlay functions properly. To tolerate morentha
R simultaneous failures around a given point in the over-
lay, we use the long higher level links. For example, if the
node n experiences failures among its neighbors, it can use
higher level links to multicast recovery messages to other
neighbors in the close vicinity. Once the alive nodes in
the vicinity responds, peer,.ridentifies the closest level

0 neighbor and establishes a new connection. Recovery
using the multicast approach is more time consuming and
comparatively complex to implement than the first solution
based on knowingd set of neighbors.

4 Evaluation

In this section, we describe experimental evaluation of
GosSkip. We present our experimental settings and perfor-
mance evaluations both in static and dynamic scenarios. We
also give results on the behavior of GosSkip in presence of
nodes failures. For evaluating the performance of GosSkip
we implemented the algorithm and carried out a set of ex-
periments on a distributed platform, using computers that
are distributed within EPFL campus and Grid’5000 [1]. We
used 256 processors, each executing several instances of
GosSkip peers to increase the participating peers up to 1000
in the overlay. The parametgiis set to2 and the gossip pe-
riod is set to 20 seconds.

Real workloads. We used a real p2p trace to construct a
ample set of data elements and queries. This trace was col-
ected from a modified FastTrack ultra-peer, implemented
in the MLDonkey multi-network file-sharing p2p client [9].
FastTrack is a hybrid p2p network where peers can act as
ultra-peers, an ultra-peer being responsible for a setgpf re
ular peers. Regular peers send their shared files lists and
requests to their ultra-peer. Ultra-peers forward queries

in repairing level O links. Once these links are established among themselves and answers queries they receive with
between new neighbors, the higher level links will be even- the address of the corresponding regular peer. The trace we
tually constructed as a result of the gossip process. Nate th ysed was collected during four days (Oct 14 to 18 2004)
even if the higher level links are faulty just after a failure and contains more than 6 GB of raw data (all applications
the forwarding of queries can take place as we will describe messages that passed over the ultra-peer). Collected mes-
shortly. In the presence of multiple simultaneous node fail sages include (i) search queries issued by peers, defining

ures, two complementary approaches can be taken for fail-constraints on pre-defined attributes and (ii) cache conten
ure recovery.

A node keeps information abou® distinct neighbor

advertising by peers to the ultra-peer.
We used the trace to generate the workload as follows.

nodes (i.e., nodes having different IP addresses) in the im-Every data element has a multidimensional representation
mediate vicinity. TheR set of neighbors is similar to the
leaf setstructure in Pastry [16]. The use of distinct IPs helps earization. While FastTrack client applications may specif

that we map to a single dimension using lexicographic lin-

“NDWAOON® OO

700

600

180
500 160
2140
400 $120
] g 300 B100
£ a0

] 5 £
1 200 e
] H 100 H)

il lallen ol m o 2 II
““““““““““““““) il
1.2 3 a4 5 7 8
Numb P

e o 012345678 3101121314 O U X0 R0 N N0 LR D Y
Number of Hops Number of hops

nts

Percentage of nodes
Number of ever

o

NNNNNNNNN
load: ratio of all received events over lumber of hops
matching events

o (a) Route lengths (b) Massive failure impact
(a) DIStI’.IbutIOFI ofload, - (b) Route lengths. Figure 4. Performance of GosSk|p in a dy_
Figure 3. Static scenario results namic setting and with failures

several attributes for files they publish in the networkyonl

a very few of them are broadly used, others being used Onlyconfirming the expecte@(log,, N) routing property, while
by a very few client’s search requests. Early analysis of not overloading any peer in t]F\e overlay '
the trace has shown that search requests are specifying key- Next we show a complementar se'; of performance re-
words 09.9% of requests), genre (among predefined genres o P Ay P
sults. More specifically, we examine the performance of the

in id3 tags of mp3 audio files) and language (again in the .) . . .
predefined list of id3 tags). Lexicographic ordering of the GosSkip in a dynamic setting and in presence of failures.

three attributes we used is as follows: language then genre Routing performance in a dynamic scenario This ex-
and finally keywords set. Not surprisigly for a real work- Periment shows how GosSkip deals with dynamic scenarios
load, both genres and languages follow a zipf distribution. ©oncering routing efficiency. We evaluate how the queries
Lexicographic ordering is an application-based assump-WOUld be routed to a recent}y joined peer. To this end, we
tion, but one can use any linearization technique [4, 13] to first construct an overlay with 300 peers (less thf_:ln 1/3_of
map multidimensional data to the GosSkip model, provided €ventual total of peers). Once the network stabilizes with
that elements can be ordered without ambiguity. this initial set of peers, we did the_ f.olllowmg steps: 1) _at
The following experiments, if not specified explicitly, each cycle, add a new peer and let it joins the overlay 2) just

are based on a 1000 peers overlay and 1000 queries, botRfter this peer establishes level-0 links a query that nesich

based upon the real trace. We first examine performancedh® néw peer's data element s injected into the overlaye(not
of GosSkip with static settings and then in a dynamic sce- that by this time the new peer has no other links to and from

nario in presence of peer failures. it other than level-Oi.e,, no .Iong Iinks). 3) We then count
Overlay construction and maintenance We first mea- the number of hops to deliver this query to the new peer.
sure the amount of messages used to construct and maintaifiPove 3 steps are carried out till the total number of peers
the links in the overlay. Each peer gossips with its neigh- IN the network is equal to 1000.
bors to create and maintain its neighborhood and long links. In this experiment we use a total of 700 queries that
We observe that distribution of number of gossip messagesmatch newly joined peers. Figure 4(a) depicts the number
among peers is between 2 to 5 messages per minute. of hops taken to deliver queries. The upper bound for hops
Load at each peerWe define the load at a pee(load,) for the initial set of peers.g., 300 peers) is 8.22: the upper
as the ratio between the number of queries it sees for routingoound for hops for the eventual total of pedrs.{1000) is
purposes and the number of queries that match its data ele9.96. As seen in Figure 4(a) some queries take more step
ment. The distribution ofoad, shows if the load of prop- than this: but in general GosSkip performs well in this kind
agating queries is balanced among peers. Figure 3(a) deof dynamic scenario.
picts this distribution in the static scenario. GosSkiei Query spreading. We first evaluated the resilience to
from a single skip list as it distribute load of propagatidn o failures of the spreading algorithm. Our results match
queries among peers: there is a low imbalance in the distri-the expectedO(logm) (m is the size of the matching
bution of this load, as no peer is loaded with more than two area)complexity. We evaluate the failure resilience of the
times of the mean loaddad, = 13, 5). algorithm by measuring the proportion of peers reached by
Routing performance. We also count the number of a query when each peer may fail at each round with a proba-
hopsto deliver queries to a matching peer or to a peer that bility p. We compare our algorithm to a basiearest neigh-
has sufficient local knowledge to know that the message hashor algorithm which spreads queries using levelinks
to be discarded. Figure 3(b) presents the hop-count distri-only and anext neighbomlgorithm which forwards queries
bution for 1000 queries. Most queries reach correspondingto the lowest level alive neighbor. These algorithms spread
peers in our 1000 peers overlay in less than 6 hops, a veryqueries in linear time. The two latter methods are obvi-
few of them using up to 9 hops to deliver the query. This ously better since they consider different level links afi.we
shows the ability of GosSkip to efficiently route messages, However, we observe that the GosSkip spreading algorithm

1ZOGOSSlIﬂp S}I)readI NodleFalllReSITtancle (lUIUO noldes) T ™ Togical Roufing ~
Next Neighbour —— Physical Routing ------
100 fme=emmee Nearest Neighbour ----- - 15 E
— “~.__.__GosSkip Spread ------ e
£ s ‘# os ip Spreas | S :
. @ ! .
£ oo \ 1 =T
= \ = s
g 4o\ T 51 |
20 - :
0 | I S— —— — R S 0 1 ! ! !
0 01 02 03 04 05 06 07 08 09 0 2 4 6 8 10 12 14 16 18 20
Crashed Node Proportion (p) Hops

Figure 5. Spreading robustness Figure 6. Physical routing impact

outperforms the nearest neighbor algorithm as the propor-
tion of failed nodes increases, thus confirming its ability t
deal with more dynamic scenarii. So far, we assumed a one-to-one mapping between a
Massive nodes failures.We performed an experiment peer and a physical node. However, several peers might
to check the performance of our system in presence of masbe hosted on the same physical node. In this section, we
sive failures. To that end, we consider the following faglur propose to leverage this property in order to improve rout-
scenario: after a number of nodes join, form the overlay ing efficiency. We assume that the routing information on
and stabilize, we lef{% of nodes crash simultaneously: one physical node is accessible to all logical peers hosted
we consider three different cases whéfe= 25%, 35%, on that node.
and 45%. Right after the failure we start injecting queries Physical routing Communications between peers hosted
into the overlay and we measure the performance. This ison a same physical node are instantaneous since they do
an adverse failure scenario such as non independent &ilurenot require network communication latency. We use this
(e.g, failure of number of nodes due to a power failure in a property to improve routing. To this end, we modify the
given geographic region). proximity measure on the overlay. When choosing the next
After such a failure, the overlay will reconstruct links peer for a query propagation, we do not only consider that
replacing the faulty links and neighbors: this would take peer’'s neighbor, but also other peers present on the physi-
a certain amount of time. Our goal is to measure the per-cal nodes as natural candidates. The distance between two
formance of the overlay before the recovery of the overlay peers(p;, p2) that lie on two different physical nodes is es-
takes place. In other terms, we measure the performance ofimated orp; asd(pi,p2) = %(2151@ —2linr), wherel,,, is
the query forwarding before any recovery action takes placethe maximum level at which the associate neighbags,ab
after the failure. beforep, in the ordering (respectively the minimum level of
The performance is measured in terms of (1) number of @ neighbor that ifter p, for l;,,;). The distance between
hops taken by an message before being delivered or termiany two peers that are on the same physical nodessce
nated (2) number of messages that are not delivered to nodegouting between these two nodes incurs no communication.

that exist in the overlay and match the query. Note that be-Efficiency To evaluate the impact of physical routing on
cause of failures the number of hops can be larger than in theouting efficiency, we distributed o physical nodes uni-
case when there are no failures and that there can be querie®rmly at random10® peers. Figure 6 shows that using
which cannot be forwarded because of any anomalies thaphysical routing permits a shift to a lower value of the mean
can exist in the overlay just after the simultaneous crash ofroute length, while keeping the load balanced: most queries

nodes. To forward queries after the failures peers use alter are sent within 4 hops, while 6 hops were needed for the
native links instead of faulty ones. Figure 4(b) shows the regular routing mechanism.

number of hops taken to deliver/terminate queries after the
failure. As seen, the number of hops are larger than the
O.(k?g.N). (\.Nh'Ch 1S equz_il 10 9.96 hops) upper .bound: but candidates among its neighbor to forward the query, it can
still it is limited to a relgtlvely small values in spite ofrlge uses the neighborhood of the other peers on the same phys-
percentage of peer failures. In the case of 25%, 35%, and1ca| node. Experiments show the impact on routing if, at

45% peer failures the number of queries that could not be ; : "
. S the same time, all physical nodes have a probabili
delivered to the existing interested peers are 6, 18, and 53 pny P bilif

tvelv. That i | Il fracti ¢ . ““crashing. Each physical node amohgs given some logi-
respect I\ée|Y' ;tlséhon ya vetrﬁ/ fm"’T tractrzon 0 qlueneATI cal peers uniformly drawn from0® logicals peers in the
are not defivered to the peers that exist In the overiay. network. A large number of queries for peers that were
other queries are delivered using alternative links inespit

. . ._originally in the overlay are performed: some will fail due
faulgre_s. This shows the very robust nature of the GOSSI('pto the absence of the corresponding peer, some other may
which is a result of the redundancy of links.

5 Leveraging Physical Locality

Robustness Physical routing also helps to make GosSkip
more resilient to failures, as if a logical peer has no alive

fail due to non existent direct routing path. Figure 5 shows [4] S.Berchtold, C. Bohm, and H.-P. Kriegel. The pyramidtech-

that using physical routing raises the hit ratio by 10 to 15 nique: Towards breaking the curse of dimensionality. In
percent by diminishing the number of these non existent Proc. of SIGMOD 1998.

routing paths, due to the greater number of alive neighbor [3] A. Bharambe, M. Agrawal, and S. Seshan. Mer-
choices at each step cury:supporting scalable multi-attribute range queries. In

ACM SIGCOMM’04 Portland, Oregon, USA, Aug 2004.
; [6] K. Birman, M. Hayden, O.Ozkasap, Z. Xiao, M. Budiu, and
6 ConC|Ud|ng Remarks Y. Minsky. Bimodal multicastACM TOCS$17, 1999.
[71 F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D.

Traditional approaches for designing peer-to-peer over-
pp gning p P Nguyen. Planetp: Using gossiping to build content ad-

lays link physical nodes in a distributed data structure pro d . i : i

e Lo . . ressable peer-to-peer information sharing communities. In
viding a d!strlbL_Jted hash t.ablt.a interface. W.hlle su.c.h sys- HPDC, pages 236-249, 2003.
tems provide nice properties in term of routing efficiency, [8] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
their ability to handle complex queries is low, due to the S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epi-
hashing used to map objects to node. On the other hand, demic algorithms for replicated database maintenance. In
some work has been done to propose distributed data struc- Proc. of ACM POD(C1987.
tures based upon the Skip List principle that do not present [9] F.L.Fessant. Midonkey, a multi-network file-sharing client.
this drawback. However, these approaches were mostly in- _ http://www.midonkey.net/, 2002.
terested in the data structure itself, and did not provige an [10] R- Guerraoui, S. B. Handurukande, and A.-M. Kermar-
implementation details or solutions to deal with dynamic- rec. .G.OSSk'p' a gossnp-ba_lseql structurec_i overlay network
ity. The explicit construction mechanism may be an issues for efficient content-based filtering. Technical Report LPD-

. . . . REPORT-2004-005 200495, EPFL, Switzerland, 2004.
be if the churn is high. In this paper, we follow an ap- 11} N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, , and

proach that is quite similar to the latter, and we connect A. Wolman. Skipnet: A scalable overlay network with prac-
application objects in an efficient and load balanced data tical locality properties. IfProc. of USITS2003.

structure that eventually resemble a set of perfect SkifgLis [12] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van

We step away from traditional explicit construction mech- Steen. The Peer Sampling Service: Experimental Evaluation
anism by using gossip-based construction algorithms. This of Unstructured Gossip-Based ImplementationsMiddle-
permits the overlay to be highly resilient to nodes failures ware, pages 79-98, Toronto, Canada, 2004.

13] B. C. Ooi, K.-L. Tan, C. Yu, and S. Bressan. Index-

nd arrivals (churn). Moreover reading algorithm that [
and arrivals (chum). Moreover, a spreading algorit that ing the edges a simple and yet efficient approach to high-

degl with nod_e permanen'F or transient failures is p_roposed. dimensional indexing. IProc. of PODS2000.

_Usmg a real |mplementat|on and a trace from a file shar- [14] W. Pugh. Skip lists: A probabilistic alternative to balanced

ing system workload, experimentations conveyed the good trees.CACM June 1990.

behavior of GosSkip, both in a static and dynamic sce- [15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
nario. Finally, extensions of the routing protocol to lever S. Shenker. A scalable content-addressable network. In
age the presence of multiple logical peers on a physical Proc. of ACM SIGCOMN2001.

node are proposed. Experiments demonstrate the positivd16] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
impact on the routing performance. We are currently work- ?bjeCt Ilo;ation ?Ir\]/lqdrc?lu“ng fg:)'é"‘lrge‘sca'e peer-to-peer sys-
i H H H ems. InFroc. o | ewar .

ng O.n the extension of GosSkip to deal with more Comple).([17] 1. Stoica, R. Morris, D. Kargeer, F. Kaashoek, and H. Balakr-

application patterns, and to adapt the approach to multi-

di . Id ioti f licati biect ishnan. Chord: A scalable peer-to-peer lookup service for
imensional description ot application objects. internet applications. IRroc. of SIGCOMM2001.

Acknowledgment. We are very grateful to B. Koldehofe [18] S. Voulgaris, E. Rivkre, A.-M. Kermarrec, and M. van

and A. Kupsys for their support. Steen. Sub-2-sub: Self-organizing content-based publish
and subscribe for dynamic and large scale collaborative net-
References works. InIPTPS’06: the fifth International Workshop on

Peer-to-Peer SystemSanta Barbara, USA, FEB 2006.
[19] S. Voulgaris and M. van Steen. An epidemic protocol for

[1] The grid’5000 projectHTTP://WwWWw.GRIDSO00ORG. managing routing tables in very large peer-to-peer networks.

[2] L. Arge, D. Eppstein, and M. T. Goodrich. Skip-webs: ef- In Proc. IFIP/IEEE DSOM 2003.
ficient distributed data structures for multi-dimensional data [20] S. Voulgaris and M. van Steen. Epidemic-style Management
sets. InPODC '05: Proceedings of the twenty-fourth an- of Semantic Overlays for Content-Based Searchingeun
nual ACM SIGACT-SIGOPS symposium on Principles of roPar, Lisboa, Portugal, Sept. 2005.
distributed computingpages 69—-76, New York, NY, USA, [21] B.Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
2005. ACM Press. and J. Kubiatowicz. Tapestry: A resilient global-scale over-
[3] J. Aspnes and G. Shah. Skip graphs.Fourteenth Annual lay for service deploymentEEE JSAC 22, 2004.

ACM-SIAM Symposium on Discrete Algorithrpages 384—
393, Jan. 2003.

