Asymptotic expansions for interior solutions of semilinear elliptic problems

J. Frederic Bonnans 1 Francisco Silva 1, 2
2 Commands - Control, Optimization, Models, Methods and Applications for Nonlinear Dynamical Systems
CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique, Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, Polytechnique - X, CNRS - Centre National de la Recherche Scientifique : UMR7641
Abstract : In this work we consider the optimal control problem of a semilinear elliptic PDE with a Dirichlet boundary condition, where the control variable is distributed over the domain and is constrained to be nonnegative. The approach is to consider an associated parametrized family of penalized problems, whose solutions define a central path converging to the solution of the original problem. Our aim is to obtain an asymptotic expansion for the solutions of the penalized problems around the solution of the original problem. This approach allows us to obtain some specific error bounds in various norms and for a general class of barrier functions. In this manner, we generalize the results of the previous work which were obtained in the ODE framework.
Type de document :
Article dans une revue
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2011, 49 (6), pp.2494-2517
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00436768
Contributeur : Francisco Silva <>
Soumis le : vendredi 27 novembre 2009 - 17:05:33
Dernière modification le : jeudi 11 janvier 2018 - 06:22:14
Document(s) archivé(s) le : jeudi 17 juin 2010 - 22:34:39

Fichier

RR-7126.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00436768, version 1

Citation

J. Frederic Bonnans, Francisco Silva. Asymptotic expansions for interior solutions of semilinear elliptic problems. SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2011, 49 (6), pp.2494-2517. 〈inria-00436768〉

Partager

Métriques

Consultations de la notice

563

Téléchargements de fichiers

216