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Développement asymptotique de la solution
d’un probleme de commande optimale semi
linéaire elliptique pénalisé

Résumé : Dans ce travail nous considérons le probleme de commande optimale
d’une équation semi linéaire elliptique avec conditions de Dirichlet homogene au
bord, la commande étant distribuée sur le domaine et positive. L’approche est de
considérer une famille de problemes pénalisés par € > 0, dont la solution définit
une trajectoire centrale qui converge vers la solution du probléme original. Notre
but est d’obtenir un développement asymptotique de la solution du probleme
pénalisé au voisinege de la solution du probleme original. Notre approche nous
permet d’obtenir des estimations d’erreur dans différentes normes et pour une
classe générale de fonctions barriere. Ceci étend les résultats de [2], obtenus
dans un cadre de commande optimale d’équations différentielles.

Mots-clés : Commande optimale des EDP, algorithmes de points intérieurs,
contraintes sur la commande, d’eveloppement des solutions.
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1 Introduction

Optimal control of control constrained PDEs is a very rich subject from the
theoretical and applied point of view. For an overview of the theory we refer the
reader to the classic book [21] and the more recent monographs [15, 20, 19, 25].
Sensitivity analysis as well as second order conditions have been established in
[7, 12, 28].

Numerical methods for these types of problems have been an very active
subject of research and we can distinguish two main approaches that are usu-
ally referred as direct and indirect methods. Direct methods are those based on
the discretize and then optimize approach, which means that the infinite dimen-
sional problem is transformed into a finite dimensional one with a very large
dimension. Then standard methods of nonlinear programming optimization are
used to solve the discretized problem, see for example [3, 4, 11, 13, 23, 22]. In
contrast, indirect methods are based on the optimize and then discretize ap-
proach where optimality conditions are obtained for the infinite dimensional
problem and the resulting variational inequalities are discretized, see for exam-
ple [18, 30, 31].

Interior point methods are among the most popular methods in the indirect
approach. They have been investigated, even in the state constraint case [26],
extensively in [5, 6, 27, 32, 33]. Specifically, in [27], for box constraints over
the control, the optimal solution wug, with associated state yg, can be expressed
pointwisely as a projection of a linear function of the adjoint state pg. This
enables to avoid the explicit discretization of the control and leads to a very
efficient implementation of the method. From the theoretical point of view, the
method consists in introducing a family of penalized problems parametrized by
€ > 0 whose solution u. are strictly feasible and studying the convergence of
the central path defined by (y.,p:), the state and adjoint state associated with
ue, towards (yo, po)-

Motivated by these works, we consider the optimal control of a semilinear
PDE where the control is distributed over the domain 2 and is constrained to
be nonnegative. Associated with any isolated solution ug we consider a family
of localized penalized problems parametrized by ¢ > 0. We study in detail
the relationship between the solution u. of the penalized problem and ug. Our
approach is the same that in [2], which was studied in the ODE framework, and
consists in obtaining an asymptotic expansion for state y. and the adjoint state
pe, which are associated to u., around the state yo and adjoint state pg, which
are associated to ug. In this sense, our approach is complementary to that in
[27] where the slope of the central path, defined by (y., p.), is integrated in order
to obtain error bounds. Under very general hypothesis we can show that (y., pe)
can be expressed as (Yo, po) plus a principal term which is characterized as being
the state and adjoint state associated to the solution of a tangent optimization
problem. This fact enable us to obtain, as a corollary, precise error bounds
for the central path in various Sobolev norms and for a rather general class of
penalty functions.

The paper is organized as follows: In Section 2, after introducing the neces-
sary notations, we state the problem as well as its penalized versions. Regularity
results are specified and convergence of the central path is obtained, which al-
lows us to write the solution of the penalized problem in term of its associated
adjoint state. This fact will be crucial for Section 3, since the optimality system

RR n° 7126



4 J. F. Bonnans, F. J. Silva

for the penalized problem can be written in terms of (y., pe) only. Then we show,
by means of a Restoration theorem as in [2] and under very general conditions,
that is possible to obtain the desired asymptotic expansion of the central path
around (yo,po). We finalize Section 3 by obtaining that error bounds for the
infinite dimensional problem, in various norms, can be obtained from its finite
dimensional counterparts, generalizing the result of [2]. In particular, for the
logarithmic penalty, we recover in Section 4 an error for the control of O(y/€) in
the L* norm and under more restrictive hypothesis we improve this bound in
the L? norm to O(g%/4). Similar results are obtained for the error of the central
path (y.,p.) in the H? norm.

2 Problem statement and preliminary results

Consider the following semilinear elliptic equation

—Ay(x) +o(y(z)) = g(x) for we, (1)
ylz) = 0 for x € 09,

where Q is a bounded open set of R” with C? boundary, g € L?(2) and ¢ is a
nondecreasing real valued function over R, Lipschitz with associated constant L
and continuously differentiable. Given s € [2, 00|, denote by || - ||s the standard
norm in L*(§2). For m € N set

wms(Q) :={y € L*(Q) ; D%y € L*(Q) for a such that |a| < m},

where « = (ay, ..., ) € N |a| :== a1 + ... + @, and
8041+--.+Otn

DY = ———
Ozt ... 0zp"

represents a derivative operator in the distribution sense. As usual, for s = 2
we will write H™ () := W™2(Q). It is well know that W™ *(Q) endowed with

the norm
1llm.s = > 1Dyl

0<|ar|<m
is a Banach space and H™(Q)) endowed with the norm
1/2

Wllmz = | > 11D

0<lal<m

is a Hilbert space. We also denote W3™"*(Q), which will be written as H{"(£2)
when s = 2, the space defined as the closure of D(2) in W™*(Q2), where D()
denotes the set of C*° functions with compact support in 2. For the reader
convenience we recall the following Sobolev embeddings (cf. [1], [14], [16])

Lo (Q) with L=1-m jfscn
Wwms(Q) C < Li(Q) with ¢ € [1,+00) if s =1
om-lEl=1ans) () if s> 2
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where 7y(n, s) is defined as

v(n,s) = {

and C™~[51=17(m9)(Q)) denotes the Holder space with exponents m—[2]—1 and
~v(n, s) (for the definition see [14] p. 240). In this work we will use repeatedly
the fact that W22(Q) C C(Q) when s > n/2 (s = 2 if n < 3). This is equivalent

to the existence of a constant ¢, such that

(2]+1-2, if ¢ 7 3)
any positive number <1 if 2 € Z

ylloo < csllyll2,s- (4)
An space that will play an important role is Y* := W25(€2) N W, **(Q) which
endowed with the norm || - ||2,s is a Banach space.

In the following s € [2,00) will be fixed and we will assume, without loss of
generality, that ¢(0) = 0. We collect in the next proposition some properties of
the PDE (1) (see for example [7, 9]).

Proposition 1. If g € L*(Q) the following holds:
(i) The semilinear equation (1) has a unique solution y, € Y* and there exists
a constant ¢; > 0 such that

lygll2.s < &sllglls- ()

(i) The mapping g — yq is continuous from L*(Q) into Y*, both spaces endowed
with the weak topology.

Proof. (i) Equation (1) can be interpreted as the optimality system, in the weak
sense, of the variational problem

Min /Q {1IVy(@)2 + B(y()) - gla)y(e)} de  subject toy € HA(Q),  (6)

where ® : [0,+00) — R is defined by ®(¢) := fot ¢(t). Since |®(t)| < 1Lyt?,
the convex mapping y € Hg(Q) — [, ®(y(x))dz € R is bounded over the
bounded sets and whence is continuous. In addition, the cost function is strongly
convex and continuous and thus problem (6) has a unique solution y, € H} ().
Multiplying equation (1) by y, and using Green’s formula yields

/ {95 (@) 2 + 6y (2))yg () } dz = / gy ().
Q Q

Since ¢(y4)yy > 0, by the Cauchy-Schwarz and Poincaré inequalities we obtain
that

ygllr2 < lgll2- (7)
On the other hand, since ¢(0) = 0, it holds that ||¢(yg)||lr < Lg||ygl|r for all
r € [1,400). Hence, in view of (7), an standard boostraping argument yields the
existence of a, > 0 such that ||y,||s < as||g||s. Thus ||Ay,|ls < (Lgas +1)|9]ls,
from which (5) follows.
(ii) Let (gx)ren converge weakly to g. Then the sequence g is bounded in
L*(Q) and consequently, by (7), the associated states yx := y,, are bounded
in Y*. Thus, extracting a subsequence if necessary, y; converges weakly in )*°
to some 7 and hence strongly in L*(€2). This implies, since ¢ is Lipschitz, that
d(yr) — o(7) strongly in L*(Q2). Passing to the weak limit in L*(2) in equation
(1) yields that § = y, from which the conclusion follows. O
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Denote respectively by Ry and R the subsets of nonnegative and positive
real numbers. Also, set U7 := L°(;R,).

Suppose that g = f + u, where f € L*(Q2) and u € L?(Q2). By proposition 1
we have that u € L%(Q) — ys4, € V? is well defined. In the following f will be
a fixed function and, in order to simplify the notation, we will write y, for the
unique solution in Y? of

{—Ay(l‘)+¢(y(ﬂf)) = f(@)+u(x) for e, (8)
ylz) = 0 for x € 0.

Let us define the cost function Jy: L*(Q) — Ry by

Jo(w) =} [ (gula) = p@)Pdz + 3N [ ulaa, ©)
Q Q
where N > 0 and § € L*(() is a reference state function. It holds that:

Corollary 2. The function Jo : L*(2) — R is w.l.s.c. (weakly lower semicon-
tinuous).

Proof. Since theu € L*(2) — ||ul[3 is w.ls.c. and Jo(*) = 3|[-|3+3 Ny —7l13,
the result follows by proposition 1(ii). O

Now, consider the following optimal control problem
Min Jo(u) subject to u € U5. (CPy)

By constrast to the case when (8) is linear in y (for example when ¢ = 0),
problem (CP3) is not necessarily convex. Thus, the classical argument to show
the existence and uniqueness of a solution of (CPS) does not apply. Instead, we
have the following existence result.

Proposition 3. Problem (CP3) has (at least) one solution.

Proof. Any minimizing sequence uy, for (CP3) is bounded in L?(Q). Therefore,
extracting a subsequence if necessary, we may suppose that it weakly converges
to some ug € L%(9). Since L{i is weakly closed, we have that ug € Ui and, in
view of corollary 2, it is a solution of (CP}). O

As usual in optimal control theory, it will be convenient to write the deriva-
tive of Jy in terms of an adjoint state. For every u € L?(Q) the adjoint equation
associated with wu is defined by

{—Ap(ff)+¢/(yu(x))p(x) = yu(z) —g(z) for ze, (10)
p(z) = 0 for € 00Q.

It holds that (see [8] lemma 6.18):

Lemma 4. Let u € L*(2). Then the adjoint equation has a unique solution
pu € HE(Q), called the adjoint state associated with w. In addition, the function
Jo is of class C' and

DJy(u) = py + Nu. (11)
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Remark. Note that equation (10) and the Sobolev embeddings (2) imply that
Py € Y1 where

_ % if n >4,
= any real number in [2,00) if n < 4.

Now, let ug be a solution of (CP3). In what follows we will write yo = Y,
and pg := py,. The first order condition for the optimality of ug is given by

DJo(up)(v —ug) >0, for all v € U7. (12)
Expressions (11) and (12) easily yield that
ug = PM?F(*NAPO), (13)

where P“i denotes the orthogonal projection in L?(£2) onto L{f_. This in turn
implies that the following punctual relation holds

up(z) = mo(—N"'po(x)) foraa. x€Q, (14)
where for a € R we denote my(a) := max{0,a}.

Expression (14) allows us, by a bootstrapping argument and using the Sobolev
embeddings, to specify the regularity of (yo,po). In fact, proposition 3 implies
the following corollary:

Corollary 5. Problem (CPy) has (at least) one solution and it holds that:

L9 (Q) with ¢ = =" ifs< 2,
yo € ¢ LI(Q) with q € [1,4+00) if s = 3,
CH-LE1(ms) () if s> 1. 5
Lo2(Q) with o = 5 ifs< %, (15)
po € { L1UQ) with q € [1,4+00) ifs= 7%,
Cr- [ ma) () if s> 2.

Proof. Let ug be a solution of (CP3). Replacing expression (14) into equations
(8) and (10) yields that yo and py satisfy

—Ay(z) + ¢(y(z)) = f(z)+m(—N"tpo(z)) for =z€Q.
—Ap(x) + ¢ (yu(2))p(x) = yulz) —y(2) for zeQ
y(@) =plx) = 0 for x € o0

(16)
An standard boostraping argument in equations (16) implies that pg € L92(Q)
where go = -"9-. Since g2 > s, expression (14) yields that uo € L*(Q2) and
therefore solves (CPg). Regularity results (15) follow by (2), since using that
f+uoe LS(Q) O

Next we consider a localized penalized version of (CPg). Since we could have
several solutions of (CPg), the idea is to localize the problem around an strict
solution (if there is any). Let £ be a convex function with domain either R or
R, which is C? on the interior of its domain, and satisfies:

0(t
(1) hmtlo f’(t) = —0Q; (11) limtlo é’((t)) = —0Q;
(iii) There exist o > 0 such that [¢/(¢)| < at Vit > 1.

(17)
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Remark. Standard examples of functions satisfying these properties are:

0t)y=—logt ; L@t)=¢tP, p>0 ; Lt)=—t*, pe(0,1) ; £L(t)=tlogt.

Let ug be a solution of (CPg). For b,e > 0 the localized penalized problem
is defined as

Min Je(u) := Jo(u) + 5/ {(u(z))dz subject to u € UL N By(ug,b) (CPL*),
Q

where By (uo, b) denotes the closed ball in L*() centered at ug of radius b. Note
that ¢, being a convex function, is bounded by below by some affine function
and thus J. takes values in RU {+oc0}.

Lemma 6. The function J. : L*(Q) — R is w.l.s.c. and problem (CP>*) has
(at least) one solution.

Proof. First note that since (L*(Q))* € L?(Q) we have that weak continuity
from L?(Q) to R implies weak continuity from L*(Q) to R. Thus, it is enough
to show the property for s = 2. By corollary 2, the function Jy is w.l.s.c.
hence, adapting the argument of proposition 1 in [2] (which is based in Fatou’s
lemma), we obtain that u € L*(Q) — [, ¢(u(z))dz is convex ls.c. and hence
convex w.l.s.c. which yields the first assertion. The second assertion follows
directly by taking a minimizing sequence and using that J; is w.l.s.c. O

We give here an elementary argument, for the semilinear case, to prove a
well known contraction principle which is a corollary of Stampacchia’s results
(see [29]).

Lemma 7. There exists a constant Cy > 0 such that for every uy,us € L*(Q)
we have
1Yur = Yusllt < Chlfur — g1 (18)

Proof. Set z = Yy, — Yu, and h = u; — ug. Clearly z satisfies

—Az(x) + Yyy wp(x)2(x) = hz) for ze€Q, (19)
z(z) = 0 for x € 09,
where
) f U2 U1 )
Yuy s () = (Yus — Yuy ) (2) 14 () 7 41, (7) (20)
& (Yuy) (1), otherwise.
Evidently 0 < )y, u,(x) < Ly for all x € Q. Now, let v, be the unique solution
of
—Av,(2) + Yyy uy (T)v:(x) = sgn(z(z)) for ze€Q (21
v(x) = 0 for x €00 )

Multiplying by v, the first equation in (19) and using Green’s formula yields
that

/Q |2(2)|de = /Q h(@)v. (z)dz. (22)
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On the other hand, by the maximum principle for elliptic equations (see for
example [10, proposition I1X.29]) it holds that —v; < v, < vy where v; > 0
solves

{ —Av () + Yy up (@)v1(z) = 1 for z€Q (23)

vi(z) = 0 for =z €.
Using that 1 > 0 and the maximum principle again, we see that v; < v where
vy solves

—Avg(z) = 1 for 2€Q (24)
va(x) = 0 for x €.
Since vs is bounded in L>°(f2) the result follows from (22). O

The following result yields that the solutions of the penalized problem are
bounded in L*>(€2) by a constant which is independent of €.

Proposition 8. Suppose that s > n/2 (s =2 if n < 3) and let u. be a solution
of (CPY*). If e is small enough, there exists a constant K; (independent of )
such that

us(x) < K;  for a.a. x € Q. (25)

Proof. For K > 2||ug]|so set
Qi 1= {r € D uelo) > K}
and

K/2 if Q
K(z) = / tre K yE(z) = yux(x) foraa. ze€Q. (26)
uc(x) otherwise c

Note that uX is feasible. For all u € L*(f2) we have (omitting the function
arguments in the integral)

Jo(u) = Jo(ue) = %/Q{(u +ue)(u —ue) + (Yu + 9o — 20) (yu — ye)} da. (27)

Taking v = uf in (27) we see that, since s > n/2 (s = 2 if n < 3) and
u. € By(ug,b), proposition 1(i) implies that yX + y. — 27 is uniformly bounded
by a constant independent of ¢ and K. In addition, by the very definition of
Qp and uX, it holds that

(ug—l—uf) (u€ —uf) > —K(u. —uf)lﬁk >0

N W

where 15  is the indicator function of Q. Therefore, in view of lemma 7, we
have the existence of K5 > 0 such that

Jo(uz) — Jo(ul) > (iK + K2> K meas(Q). (28)

Using the convexity of ¢, we obtain that
— 3
Jo(us) — Jo(uf) > K meas(Qx) (4[( + Ky + %gﬁ’(éK)) . (29)
On the other hand, hypothesis (17)(iii) implies, for € small enough, the existence

of K, (independent of ) such that 3K, + K» + 3e¢/(1K,) > 0. Therefore
meas(Qg,) = 0 from which the conclusion follows. O
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Let us give an elementary lemma that will be useful in the convergence
proof of the central path to the optimal solution (proposition 10). First, define
F:YsxYs— L5(Q) by

F(y,p) = —Ap+d'(yp—y+7 (30)

and for every y € J* denote by py] the unique solution of F(y,p) = 0. It holds
that:

Lemma 9. Suppose that ¢ is C? and that s >n/2 (s =2 ifn <3). Then
(i) The function F is C*.

(ii) The mapping y € Y* — ply] € Y* is C*.

(iii) The mapping u € L*(Q) — y, € Y* is C2.

Proof. In order to prove (i) it is enough to note that ¢'(y)p is C* since ¢ is C?
and s > n/2 (s = 2 if n < 3). Assertions (ii) and (iii) follow directly by the
implicit function theorem. O

For the solutions w. of the penalized problems we will write y. := y,,_ for
the state functions and p, := p,,. for the adjoint state functions. Now we can
state the convergence result.

Proposition 10. Assume that s > n/2 (s =2 if n < 3) and suppose that there
exists by > 0 such that ug is the unique minimum of (CP§) in Bs(ug,bo). Then
(i) The controls u., solutions of (CP2®), strongly converge to ug in L*(Q) as
el 0.

(ii) It holds that J.(uc) — Jo(ug) and that Jo(ue) | Jo(uo) -

(iii) The states y. converge to yo in Y* and the adjoint states p. converge to py
in Y.

Proof. Since u. is bounded in L?(f2), extracting a subsequence if necessary,
it converges weakly to some @. Similary, since Jy(u.) is bounded in R, we can
assume, extracting a subsequence again, that there exists .J > 0 such that Jo(u.)
converges to J.

In view of the optimality of u., for every n > 0 such that uy + 7 is feasible
for (CPY**), we have that

Ju(us) < Joluo + 1) + ¢ /Q Uuo(x) + n)da.

Letting first € | 0 and then 7 | 0 yields
ESLOJE(U‘E) < Jo(Uo). (31)

On the other hand, because of the convexity of ¢, there exist some ; and (s
such £(z) > prx + B2 for all x € Ry. Thus

To(ue) > Jolus) + ¢ /Q (Brue () + ) da. (32)

Using (31), (32) and the fact that Jp is w.l.s.c. yields that

JO(UO) > HE,LOJE(“E) > mgloja(ue) > J > JO(ﬂ) (33)
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Since ug is the unique minimum of (CP§) in B, (ug, by), it holds that @ = ug
and hence (ii) is established.

In order to prove (i) it suffices to note that thanks to proposition 1 (ii) the
states y. converge strongly in L?(Q) to yo. Therefore, since Jo(u:) — Jo(ug)
we have that ||uc||2 — ||ug||2. Together with the weak convergence in L?(Q) of
ue to ug, we obtain the strong convergence in L?(£2). The convergence in L*(£2)
follows directly from the convergence in L?(Q) and the fact that u. is uniformly
bounded in L*°(£2) by proposition 8. Finally (iii) is a direct consequence of
lemma 9. O

Remark. Note that, under the hypothesis of the theorem above, the con-
vergence in L*(Q2) of u. to ug implies that for ¢ small enough the constraint
ue € Bs(up, b) is inactive.

Now we obtain lower bounds for ..

Proposition 11. Under the hypothesis of proposition 10 there exists a constant
K; > 0 such that for e > 0 small enough

' (2u.(z)) > _Zﬁ for a.a. x € Q. (34)

Proof. By (17)(i) there exists ¢ > 0 such that ¢ is decreasing on (0, ¢]. Set
Q8 = {z € Q; u(x) <¢/2}
and

if 2 € Q°
ub(w) = ¢ . T yi(x) =yc(x) foraa. xeQ. (35)
uc(x) otherwise :

Note that, by remark 2, u¢ is feasible for ¢ small enough. In addition,

3
0 < (uf +ue) (uf —u.) < ig(ug —ue)lge.

Thus, taking u = u¢ in (27) and reasoning as in the proof of proposition 8, we
obtain the existence of K > 0 such that

) = Jo(u) < Kimeas(2) + [ (¢ (a) — tfuc(a)) d.

By the mean value theorem and the convexity of £, which implies that ¢ is
increasing, we find that

Uug () — Llue(x)) < 5£(0)C
for a.a. # € Q°. This in turn implies that
Je(ug) = Jo(ue) < (meas(Q°) (K7 + 5e¢'(Q)) - (36)

Therefore, by the optimality of u., if meas(Q°) > 0 we have that K] > —3¢/(¢).
By choosing ¢’ such that K{ < —2ef/(¢’) we obtain that for a.a. x € Q¢

' (2ue(x)) > €'(¢).
Relation (34) follows by letting ¢/(¢') T —2Ke. O
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Remark. For the examples given in remark 2 inequality (34) yields

(i) If £(t) = —logt then there exists C; > 0 such that u.(z) > Cie for a.a.
x € Q.

(ii) If £(t) = tlogt then there exists Cy, C5 > 0 such that u.(x) > Cyexp(—Cs/e)
for a.a. x € Q.

(iii) If £(¢t) = ¢~P with p > 0 then there exists Cy > 0 such that wu.(z) >
Cyet/ @+ for a.a. x € Q.

(iv) If £(t) = —t? with p € (0,1) then there exists C5 > 0 such that u.(xz) >
Cse'/(1=P) for a.a. x € Q.

Note that v € L*(Q) — [, ¢(u(z))dz is, in general, not continuous and
whence not differentiable. This implies that we cannot write directly the first
order condition for the optimality of u.. However, we can avoid this difficulty
by noting that, in view of propositions 8 and 11, u € L>() — [, £(u(z))dz is
differentiable at any solution of (CP+*).

Proposition 12. Under the hypothesis of proposition 10, fore > 0 small enough
it holds that
ue(z) = 7. (~N"p.(2)) for a.a. x €9, (37)

where for every z € R, m.(z) is the unique solution of

Min %(m —2)? 4 el(x), st xER,,. (P:.)

Proof. By proposition 8 it holds that u. € L (). Hence, it is a local solution
of
Min J.(u) subject to u € U5 N By(ug,bo) N L>®(£).

Proposition 11 implies that J; : L>°(Q) — R is differentiable. Therefore, writing
the first order condition for the above problem and noting remark 2, we have

DJo(uc)h +¢ [ 0 (ue(x)h(x)de = 0 forall h e L>(%),
which implies that
Nug(z) + pe(z) +el/(ue) = 0 foraa. ze. (38)
The conclusion follows noting that for x € 2, equation (38) is the first order

optimality condition of (P .) with z = —N~!p.(z). O

Remark. Note that for every z € R the function w.(z) corresponds to the
interior penalty approrimation of my(z).

We collect in the following lemma, some useful properties of the family

{m:}e>0 whose proof can be found in [2] Section 3 for a more general case.

Lemma 13. The family of functions {m.}c>0 satisfies
(i) There exist c,, independent of ‘€’, such that for all z1,2z9 € R,

[me(21) — me(22)| < ex|21 — 22]. (39)
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(ii) As e | 0 the sequence m. converges to wy uniformly on each compact set of
R.

(iii) The function (e,z) — D,m.(z) is continuous in (&,%) for every & > 0 and
zZ#0.

(iv) The continuous function . — g is increasing in (—o00,0) and decreasing in
(0,00). Henceforth,

Sup | (2) = mo(2)] = e (0) = Mo (0)] = |m=(0)]

(v) For each compact set K C R not containing 0, it holds that:

sup |7 (z) — mo(z)| = O(e).
zEK

Remark. Hypothesis (ii) in (17) is used to prove (iii) in the lemma above.

3 Main results

As before, we consider f € L*(2) and for the rest of the article we assume
that s > in (s = 2 if n < 3). Let up be a solution of (CP§) and yo, po
its associated state and costate, respectively. Analogously, for ¢ > 0, b > 0
let us be a solution of (CPIE)’S) and denote, as in the previous section, by y.
and p. its associated state and costate, respectively. Consider the mapping

F: Y x Y xRy — L*(Q) x L*(Q) defined by

_( Ay+TL(=N""p)+ f - ¢(y)
Fly.p.e):= ( Ap+y—y—¢'(y)p ) (40)

In view of (14), proposition 10 and (37) we see that if ug is a local strict solution
of (CP{) then for b and € > 0 small enough

F(yz,pe,e) = 0.

Motivated by this fact, our objective is to obtain an “asymptotic expansion”
for (ye,pe) around (yo,pp). As in the ODE case (see [2]), the mapping F is,
in general, not differentiable at (yo,po,0). In fact, it can be easily seen that
D.F(yo,po,0) does not always exists. Therefore, we cannot apply the standard
implicit function theorem in order to obtain such expansion. We will overcome
this difficulty in the same way as in [2], i.e. by using the following restoration
theorem, whose proof can be found in the Appendix of [2].

Theorem 14. (Restoration theorem) Let X and Y be Banach spaces, FE a
metric space and F : U C X X E —Y a continuous mapping on an open set U.
Let (&,e0) € U be such that F(&,e9) = 0. Assume that there exists a surjective
linear continuous mapping A : X — Y and a function ¢ : Ry — Ry with
c(B) | 0 when B | 0 such that, if x € B(%,3), ' € B(#,3) and € € B(g, 3),
then

|P(,e) = F(z,e) — A’ — )| < e(B)lla’ — a|. (41)

Then, denoting by B a bounded right inverse of A, for e close to gg, F(-,€) has,
in a neighborhood of &, a zero denoted by x. such that the following expansion
holds

te =& — BF(&,e) +r(e) with [|r(e)]| = o (|1F(2,e)]]) . (42)



14 J. F. Bonnans, F. J. Silva

Remark. Note that hypothesis (41) implies that if A is invertible and 0 is such
that c(B)||A7 |y —x < 1 (where || - ||y—x denotes the standard norm for the
space of bounded linear functionals from'Y to X ) then for all ¢ € B(eg,3) the
mapping F(-,€) is injective in B(Z,3). In particular, for e € B(sg,[3) there
ezists a unique x. € B(&, ) such that F(xe,e) = 0.

In order to verify that F, defined in (40), satisfies the hypothesis of theorem
14 we need the following lemmas.

Lemma 15. Let f: R — R be a Lipschitz function and denote by A(f) the set
of points were f is not differentiable. For s € [1,00) set f : L>®(Q}) — L*()

defined by -
flwl(x) := fw(z)). (43)
Then f is Fréchet differentiable at every w € L>(Q) satisfying that
meas{x € Q; w(x) € A(f)} =0 (44)
and (Df[w]h) (z) = f'(w(x))h(z) for all h € L>(1).
Proof. Let 0 : L*°(2) — R, defined by
1f (@ +h) = f(@) = f'(@( DAl
[IAll5%
We have to show that §(h) — 0 as h — 0. In fact we have
|f(w(z) + h(z)) — flw(z)) — f'(w(z))h)”
0<6(h / @) dz (46)

and the result follows by the dominated convergence theorem using the fact that
f is Lipschitz. O

o(h) = (45)

For w € Y?* set
Sing(w) == {z € Q; w(z) =0} (47)

and for every £ > 0 define I, : Y* — L*(Q) by (I.(w))(x) := 7 (w(x)) for a.a.
z € . Lemmas 13 and 15 allows us to prove the following result.

Lemma 16. Let w € Y° and suppose meas(Sing(w)) = 0. Then
(i) For every e > 0, w € Y*, the function Il. is differentiable at w and for
every h € Y*

(DIL (w)h) (z) = 7l(w(x))h(x), for a.a. x € Q.
(ii) The function Iy is differentiable at W and for every h € Y*
(DIly(w)h) (z) = wo(w(z))h(x), for a.a. x € Q.

(iii) There exist a nondecreasing function ¢ : Ry — Ry with limgjoc(8) = 0
such that for any w',w € Y* with || — @l|2s < B, ||lw— W]l2,s < B and
e € [0, 8] we have

[T (w') = e (w) — DIo(@) (w' — w)]s < e(B)|Jw’ — wl]z,s. (48)
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Proof. (i) Since, for € > 0, 7. is C! it holds that II., viewed as mapping from
L () into L>(1Q), is also C*. Therefore, noting that s > n/2 (s =2 if n < 3),
the result easily follows.

(ii) Consequence of lemma 15 using that Y° C L>(2).

(iii) Note that

[T (w') = e (w) — DIo(@) (w' — w)l|s =

H( {DII. (w + s(w’ —w))—DHO(&})}dS> (W' —w)

sup || DILe(z) — DIlo(w)]
zeBz ,s(W,8)
where Bs ¢(i0, 3) denotes the ball in W2#(Q) of center @ and radius 3 and
|[||3s— L+ () denotes the standard norm for the space of linear bounded functions
from Y* to L*(2). Let h € Y* with ||h||2,s < 1. Since s >n/2 (s =2if n <3),
we have

S

Vs Ls(Q) || — U’Hz,s .

DL (2)h — DIL(@)h][° < ¢ ( [ Intteten - wm(m)wdx)

with ¢s being defined in (4). Thus,
1T (w') = e (w) — DIo(@) (w' — w)l[s < e(B) [Jw' = wll,

where ¢(0) is the nondecreasing function defined by

1

s

@)= [ s sw jr) - @@
Q e€[0,8] ze B(w(x),B)

Since meas(Sing(w)) = 0, lemma 13 (i) and (iii) yields that ¢(8) | 0 as 8 | 0

by the dominated convergence theorem. O

In order to establish our main result we will have to impose a second order
sufficient condition at any solution of (CPj). First let us study the following
abstract setting:

Consider a nonempty closed and convex set K C L?(Q2) and define K, :=
K N L5(Q). We will establish some second order sufficient conditions for the
problem

Min Jp(u) subject to u € Ky . (AP)

Let w € K. The radial, tangent, normal cones to K at @ and the critical cone

in L?(Q) at 4 are defined respectively by
Ri(u) = {helL?Q); 3o>0; u+ohecK},
Ti(w) = {heIXQ); Julo) =ua+oh+oo) € K, 020, ||22]| — o},
Nk(u) = {h*€L*Q); (h*u—u><0 Vue K},
C(a) = {h€Tk(u)and DJy(a)h < 0}.
(49)

If u € K, we define analogously the radial, tangent and normal cones to K at
@ and the critical cone in L*(f2) at @ by replacing L?(Q2) by L*(Q2) and K by
K in (49). We denote them by Ry, Tk, (@), Nk, (4) and Cy(@) respectively.
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We say that Jy satisfies the local quadratic growth condition at w if there
exists @ > 0 and a neighborhood V; of @ in L*(f2) such that

Jo(u) > Jo(a) + alu — al|3 + of||u — @||3) for all u € K, N V. (50)

The following notion of polyhedricity will be required (see [17, 24]). The set
K is said to be polyhedric in L*(2) at u € K if for all u* € Ng_(u) (sets of
normal of K, at u), the set Ry, (u) N (u*)* is dense in Tk, (u) N (u*)* with
respect to the L?(€2) norm. If K is polyhedric in L*(Q2) at each u € K we say
that K is s-polyhedric.

For various types of optimization problems (see [8]), positivity of the second
derivative of the cost function over the critical cone at a point u can be related
to the quadratic growth condition at w. This is usually referred as a no gap
second order sufficient condition which under some hypothesis will be satisfied
in our problem.

If ¢ is C? then, since s > n/2 (s = 2 if n < 3), the function Jy : L*(Q2) — R
is C? (see [8, lemma 6.27]) and for all u,v € L*(Q2) we have

D?Jo(u)(v,v) = / {Nv(2)? + (1 = pu(@)¢” (yu())) 20 (2)* } da, (51)
Q
where z, is the unique solution of the linearized state equation

—Az(x) + ¢ (yu(2))2(x) = wv(x) for =x€Q,
{ ! z(x) = 0 for 2« € 09Q. (52)

In addition, it is proved that the quadratic form D?Jy(u) has a unique
continuous extension over L2(2) x L?(2) and this extension is a Legendre form,
which means that it is sequentially w.l.s.c. and that if hjy converges weakly to
hin L?(Q) and D%Jo(u)(hk, hi.) — D*Jo(u)(h, h) then hy, converges strongly to
hin L%(9).

The theorem below, which concerns to second order sufficient conditions for
(AP), is proved in [8, theorem 6.31].

Theorem 17. Consider problem (AP) and let u € K. If Ky is s-polyhedric
and Cs(@) is dense in C(4), then the quadratic growth condition (50), the second
order condition

3 a > 0, such that D*Jo(w)(h, h) > al|hl|5  for all h € C(a) (53)
and the punctual relation
D?Jo(a)(h,h) >0 for all h € C(u) \ {0} (54)

are equivalent.

When K = Z/I?r and u € K it is easy to verify that

Ti(u) = {veL*Q); v(z) >0 ifu(x) =0 for a.a. z € Q}
Ng(u) = {ve (L*(Q)*; v(z) <0 and v(x) =0 if u(x) > 0 for a.a. z € Q}.
(55)
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If u € K the correspondig expressions for Tk (u) and Nk, (u) are obtained
by replacing L%(Q2) by L*(Q) in (55). If ug is a local solution of (CP{) and
po(x) # 0 for almost all « € Q, expression (11) yields that

Cs(ug) = {vels(Q); v(x) =0 if ug(x) =0 for a.a. x € Q}. (56)

Analogously, if ug is a solution of (CP%)7 the corresponding expression for C'(ug)
is obtained by replacing L*(Q2) by L%(Q) in (56).

Now we give a simple proof of the following well known result (see for example
[8, proposition 6.33]) which shows that theorem 17 can be applied in our case

(K, =U2).

Lemma 18. Suppose that K, = U7, then
(i) The set K is s-polyhedric.
(ii) If wg is a local solution of (CPF), then Cy(ug) is dense in C(ug).

Proof. (i) Let u € U3 and u* € Nys (u). For h € Ty (u) N (u*)* and k € N let
hi € L>=(£2) be defined as

0 if 0 <u(x) <1/k

hi () ::{ max{—k, min{h(z),k}} otherwise. &7

It is easy to check that hi € Ryss N(u*)t and hy, — hin L*(Q) by the dominated
convergence theorem.

(ii) Given h € C(ug) the sequence hy defined in (57) belongs to Cs(up) and
converges in L?(2) to h by the dominated convergence theorem. O

To obtain our main result we will assume two hypothesis. The first one
allows to ensure that hypothesis (41) holds at (yo,po,0) for the mapping F
defined in (40). The second one will imply that the set of solutions of (CPy)
is isolated and that D, ) F(yo, po,0) is an isomorphism (see lemma 19). We
consider the following hypothesis:

(H1) For the adjoint state pg, associated to any local solution ug of (CPF),
it holds that
meas(Sing(po)) = 0.

(H2) At any local solution ug of (CPg), condition (53) holds.
Remark. Suppose that (H1) does not hold. Then, the W2 regularity of po

implies that —Apg = 0 in Sing(po) (see [10] page 195). Therefore, by equations
(8) and (10),

—Ay(x) + o(y(x)) = flx) for € Sing(po)

which yields a compatibility condition between the data § and f.

Lemma 19. Let ug be a solution of (CP;), suppose that ¢ is C? and that (H1),
(H2) hold. Then F (defined in (40)) is differentiable with respect to (y,p) at
(¥0,10,0) and the linear mapping Dy ) F (yo,po,0) is an isomorphism.

In addition, for every (§1,02) € L°(Q) x L*(Q), we have that

Dy F (Yo, po, 0) ™" (61, 62)
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is the unique solution of the reduced optimality system of

Min {/ [5NV? + 5 (1= pod” (y0)) o5, + G220, ] da ;v € C(Uo)}
0

(Q,P(Shtsz)
where z, is defined in (52).

Proof. In view of assumption (H1) and lemma 16, the mapping F is differen-
tiable with respect to (y,p) at (yo,po,0) and

Az —TH(=N"1po)N~tq — ¢’ (yo)z )
Agq+ 2z —¢"(yo)poz — ¢'(yo)q '

Let 01,00 € L*(Q2), to find (z,q) € Y* such that D, ,) F(yo,p0,0)(z,q) =
(61, 92) is equivalent to solve in Y* x Y* the following system of PDE’s

I (=N""po())q(=)

Dy F (30, 70, 0)(2,0) = (

—Az(x) + ¢'(yo(x))z(z) = () N
—Aq(z) + ¢ (yo(x))po(x)2(x) + ¢ (yo(x))q(x) = 02(x) + 2(x)

for all x € . But these equations are exactly the reduced optimality system
for problem (QPs, 5,) which can be written, denoting by (-,-)z2 the standard
duality product in L?(Q2), as

Min §D?Jo(uo)(v,v) + (V5,.5,-v)r2 + B35, subject to v € C(ug)

for some v; 5 € L*(Q) and

Bl 5, = / (L (1= pod”(y0)) 22, + 6a25,] do.
Q

In fact, since z,45, = 2y + 2s,, the cost function of (QPs, s5,) is given by

3D Jo(uo) (v, v) +/ (1 = pod” (y0)) 2v2s, + 0220 dx + 55, 5,-
Q

Since the above integral is a linear form, as a function of v, the existence of
73, s, follows by the Riesz’s theorem.

By (H2) this cost function is strongly convex over the closed subspace C(uq)
and therefore has a unique minimum. The W?* regularity for its associated

state and adjoint state follows readily by a boostrapping argument. O
For every € > 0 let us define ¢. := —p./N. Now we can state our main
result.

Theorem 20. Let ug be a solution of (CPY), suppose that ¢ is C* and that
(H1), (H2) hold. Denote respectevely by yo and po the state and adjoint state
associated to ug. Then there are b > 0 and & > 0 such that for ¢ € [0,¢]
problem (CPS’S) has a unique solution u.. In addition, denoting by y. and p.
the associated state and adjoint state for u., the following expansion around
(Y0, p0) holds

(%)= () + Do Pl .0 Flrnm2) 416 69
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where r(€) = o(||F(yo,po,€)||s). Moreover, D(y’p)F(yo,po,0)_1F(y0,p0,€) 18
characterized as being the unique solution of (QPsm(e),0) where

6II(e) == He(go) — Mo(go)-

Proof. Lemma 16 (ii) implies that hypothesis (41) of theorem 14 is satisfied
with A = D, ) F(yo,p0,0). Lemma 19 yields that A is invertible, whence the
first assertion follows from the convergence of (y-,p:) to (yo,po) in YV° x Y*,
established in proposition 10, and remark 3.

Noting that F(yo, po,€) = F(yo, o, <) — F (Yo, po,0) = (6II(¢), 0), the second
assertion follows by theorem 14 and lemma 19 with §; = 6II(e) and d; = 0. O

Theorem 20 yields, in particular, the following error bounds.

Corollary 21 (Error bounds). Under the assumptions of theorem 20 we have
(i) The error estimates for uc,y. and pe are given by

2,5 = O ([[011(e)]]s) - (59)

|[ue — wolls + [|ye — yoll2,s + [[pe — pol
(ii) The error bound for the control in the infinity norm is given by
[lue = uolloo = O ([[611(€)][[o) = O(m=(0)). (60)
(iii) The error estimate for the cost is given by
|[Jo(ue) — Jo(uo)| = O (|[6II(g)][s) - (61)
Proof. (i) Theorem 14 yields that
lye = yoll2,s + [Ipe — poll2,s = O([F (3o, po. €)lls) = O(||611(e)[[s).  (62)
Therefore, using proposition 13 (i) we obtain that
|lue — uolls = [H=(g:) — Ho(go)lls = O(llg= — aolls) + O([I6IL(e)[[s),  (63)

which combined with (62) yields (59).
(ii) Clearly, as in (i)

[lue = uollos = O(llg: = qollo) + O([I611(e)]] ), (64)
and thus, using that s > n/2 (s =2 if n < 3),

[lue = uolloo = O([lge — qoll2.5) + O([|611(€)]|0)-
Hence, using the estimation given in (i),

|lue — uolloe = O([|6TL(e)[|s) + O(|[0T1(¢)]|oc) = O([|0T1(e)] |0 ),
and the result follows from lemma 13(iv).
(ili) We have
Jo(ue) —Jo(uo) = %/ {(ue +uo)(ue — uo) + (Y + Yo — 29) (Y- — yo)} dz. (65)
Q

Since s > n/2 (s = 2 if n < 3), proposition 11 and lemma 1 (i) imply that
ue + up and ye + yo — 27 are uniformly bounded in L*°(€2). Henceforth lemma
7 implies that

Jo(ue) = Jo(uo) = O(||us = uollr) = O(|[uc = uolls)
and the result follows by (i). O
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4 Examples

In this section the results of section 3 are applied to the examples given in
remark 2. In subsection 4.1 we obtain precise error bounds for the central path.
We pay particular attention to the logarithmic barrier in view of its well known
properties as a penalty function. In section 4.2 we study the error for the cost
function. in what follows we will assume that ¢ is C?.

4.1 Error estimates for the central path

First, note that combining (i) and (ii) of corollary 21 yields

|[ue = uolloo + |1ye — voll2,s + [IPe = Poll2,s = O (m=(0)).. (66)
First order condition for (P, ) implies that 7.(0) is the unique solution of
t+el'(t) =0. (67)

Thus, particularizing ¢ and using (67) will give precise error bounds for the
central path.

4.1.1 Negative power penalty

If £(t) = ¢1(t) := ¢t~P with p > 0, then (67) yields that 7.(0) = O (51/(2+p)) and
thus
e = tolloe + 113 = gollas + lIp = pollzs = O (/7). (68)

Expression (68) implies that for every p > 0 the error is worst than O(y/€).

4.1.2 Power penalty
When £(t) = 5(t) := —tP with p € (0,1), equation (67) yields that m.(0) =
O(e'/(2=P)) and thus

e = wolloe + 1y = pollz,s + lIpe = polla,s = O (). (69)

where r(p) := 1/(2 — p) < 1. Note that r(p) T 1 asp 1 1.

4.1.3 Entropy penalty

The case ¢(t) = ¢3(t) := tlogt will be the one with the smallest error bound. In
fact, equation (67) implies that 7-(0) is the unique solution of

t+e(logt+1)=0. (70)

Even if we do not have an explicit solution for this equation, the monotony of
left hand side of (70) can be used in order to obtain a precise estimate for 7.(0).
Indeed, it can be easily seen that for every k > 1, denoting by

log"(-) :=log ... log(")
(there are k logarithms), we have that 7.(0) = O(¢(g)) where
elog® |loge| < ih(e) < e|loge| for ¢ small enough.

Thus
||u5 - u0||oo + ||y8 - y0||2,s + ||pe - p0||2,s =0 ('(/}(6)) . (71)
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4.1.4 Logarithmic penalty

It is well known that the case £(t) = ¢4(t) := —logt is particularly important.
Fortunately, m.(z) can be computed explicitly for all z € R. Indeed, first order
condition for (P, ) implies that m.(z) is the unique solution of

t—z—¢/z2=0. (72)
Henceforth, 7.(z) is given by
Te(z) = 3 (ac + Va2 + 48) . (73)

If n < 3 (hence s = 2) expression (73) will allow us, using corollary 21(i), to
compute the error for the control in the L? norm (see (77)).

Theorem 22. Suppose that the assumptions of theorem 20 hold. Let b>0 be

such that (CPIE”S) has a unique solution u. for € > 0 small enough. Then:
(i) We have

2s = O(E). (74)

(ii) If in addition n < 3 (hence s = 2), there exist m € N, positive real numbers
a>0,0<d <1 and a finite collection of closed C? curves (Ci)1<i<m such
that:

Hue - u0||oo + ||pe _p0||278 + ||y5 — Yo

e The singular set Sing(po) can be expressed as

m

Sing(po) = U C;. (75)

i=1

e Forall i € {1,....,m}, defining C° := {z € Q; dist(x,C;) < &}, it holds
that: )
Ipo(x)| > adist(x,C;)  for all z € C. (76)

Then

3
[lue = woll2 +[lpe = poll22 + (1Y = yoll2,2 = O(e7). (77)

Proof. (i) Follows directly from (66) since (73) implies that 7.(0) = 0.

(ii) In view of corollary 21(i), with s = 2, we will estimate the right hand side
of (59). For simplicity we assume that Sing(py) = 9Q and that py < 0 in Q.
We will use an argument based on local mappings. Set

Q = {m = (x/’mn) € Rn_l X Rv |$C/| < 17 |xﬂ| < 1}'

Since 99 is C? there exists I € N and {(w;, ®;)}o<i<s such that for every
i € {1,...,I} we have that w; is an open set and ¢; : w; — Q is a C? mapping
with a C? inverse satisfying that g C Q, Q C Ufzowi, 00 C Ul w; and

di(winQ) = Qn{z=(2",2,) eER" I xRz, >0} = Q"
di(w; NON) = QNi{xr=(2',2,) ER" I xRz, =0} = Q°.

Clearly || (g0) — Io(q0)||3 < Z{:O I; where for every i € {1,...,I}

I; :== /m . 17 (qo(2)) — mo(qo(z))|*dz.
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Since @y € , lemma 13 (iv) yields that Iy = O(¢?). Let us now fix i € {1,...,I}
and set 7 = qg o ¢; ! By a change of variable we obtain the existence of K;
such that

1
I < KZ-/ / e (7(2', 2)) — mo (7 (2, 2))|” dznda’,
Bn_1J0

where B,,_1 denotes the unit ball in R"~!. Hypothesis (76) implies the existence
of @ > 0 such that

(2, xn) > @z, for all , € [0,4]. (78)

Therefore, using the uniformity with respect to 2’ € B,,_1 in (78), we have that

I 1
Y IL=0 (/ e () — mo(ay)|? dxn> .
i=1 0
Expression (73) yields that

fol (m2 + 26 — 2Va? + 4e) dw
2+ 2 — 2(1+4e)%2 + 3 (4e)3/?

Ji Ime(azn) — mo(aw,)|? dey,

and noting that (1 + 4¢)3/2 = 1 + 6¢ + O(e?), we obtain the desired result. [J

4.2 FError estimate for the cost function

Note that by corollary 21(iii) we have directly that
Jo(ue) = Jo(uo) = O([[ue — uolloc) (79)

which is bigger than O(e) for the four examples studied in subsection 4.1. Now
we improve estimate (79) for £ = f5,¢3 and ¢4 by generalizing an argument
suggested by Anton Schiela, in a personal communication, for the convex case
(for example, when ¢ = 0) and for the logarithmic barrier.

Theorem 23. Let £ = l,{3,{4 (defined in subsection 4.1) and suppose that the

assumptions of theorem 20 hold. Let b > 0 be such that (CP"*) has a unique
solution for € > 0 small enough. Then

Jo(’u,g) — Jo(uO) = O(E) (80)

Proof. Since Jy is of class C? we have that

Jo(uo) = Jo(ue)+DJo(ue)(ue—ug)—O ( sup |[D*Jo(2)| £ (y=,e)llue — u0||§c>

zE€[ue up)]
(51)
where £(Y*,Y?) denotes the space of continuous bilinear forms over Y* x Y*.
Expression (51) yields that sup,e(,,_ ) [1D?Jo(2)||2(ys,p+ is uniformly bounded
in €. Therefore by (69), (71) and (74),

ue — ug|% = O(|Jue — uol|%,) = O(e). (82)

sup |[D*Jo(2)||c(y= e

z€[ue ug
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On the other hand, optimality conditions for (CPE’S) yield that
DJo(ue) = *EE/(us)v (83)

hence, using (81) and (82), we have that
Jo(ue) — Jo(ug) < —a/Qé'(ug(m))(ug(x) —up(z))dz + O(e). (84)

Since for ¢5(t) and £4(t) it holds that ¢4, ¢, < 0, we obtain that

Jo(ue) — Jo(ug) < —5/(28’(u6(x))u5(x)dx + O(e). (85)

For {5 inequality (85) yields

Jo(ue) — Jo(uo) < €p/QuE(x)pdx +0(e) = 0(e),

by (25). For ¢, inequality (85)
Jo(ue) — Jo(up) < —emeas() + O(e) = O(e).

Finally, for ¢35 inequality (84) implies that Jo(ue) — Jo(ug) < I1 + Iz + O(e),
where

L = —¢ f{ug(w)ge_l} (ue(x))(ue(x) —ug(z))dz  and
I, = —¢ f{ug(x)Ze—l} U (ue(2))(ue (z) — up(z))da.

Since u. log u. is bounded uniformly in €, we have that

I < —5/ (14 logue(z)) ue(z)dz = O(e)
{ue(z)<e=1}

and
L= _5/ (1 + log ue () (u. (z) — uo(x)) dz = O(e)
{ue(z)>e—1}
by (25). O
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