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A combination of particle filtering and deterministic appro aches for
multiple kernel tracking

Céline Teuliére, Eric Marchand, Laurent Eck

Abstract— Color-based tracking methods have proved to be of likelihood criteria is used in [5] and [6], but embedded
efficient for their robustness qualities. The drawback of seh in a particle filter. The posterior density of probability of
global representation of an object is the lack of informatio on object location is discretized in a set of weighted parsicle
its spatial configuration, making difficult the tracking of more - T . . .
complex motions. This issue can be overcome by using several mean Sh'ft optimization _be'ng reP'aced _'n this context by
kernels weighting pixels locations. the particles set evolution and its weighted mean. The

In this paper a multiple kernels configuration is proposed ad ~ use of a probabilistic framework provides better robustnes
developed in both probabilistic and deterministic framewaks. w.r.t. occlusions or presence of similar objects. Howeirer,
The advantages of both approaches are combined to design a yg4|.time applications a balance has to be found between

robust tracker allowing to track location, size and orientation . . . .
of the object. computational time and accuracy since the former is diyectl

A target tracking scheme using visual servoing considering linked with thg number of particles used.. .
measurements provided by the presented approach validates In the studies above, the use of density-based descriptors

the proposed method. such as color histograms allows to achieve robust local-
| INTRODUCTION ization. Thg re_sulting drawback of choosipg this form.of
representation is the loss of spatial information on thectj
Real-time object tracking is a key task required in variougaking difficult to track more complex motions.
vision-based applications, such as visual servoing, #trve Kernel-based methods, e.g. in [4], add some spatial in-
lance, augmented reality, etc. The principle of objectdi®g  formation by giving a higher weight to pixels close to the
through image frames is usually to determine what part of th@nter of the object, but these symmetric kernels are not
image best corresponds to a reference model of the objec§gnsitive to, for example, rotational motions. The issue of
appearance. using kernel-based descriptors to track complex motions
Different kinds of descriptors can be used to represed addressed in [8]. Linking kernel-based methods with
the object of interest, depending on the task to be achieveghtimization techniques, the authors show how to adapt them
When the object to track is well-known and the variations ofp multiple kernels. This allows to design trackers more
its appearance during motion are small, one can use spaighsitive to specific motions. Examples of kernels are given
descriptors such as image templates [1] [2] [3]. Describingithough no generic configuration is proposed to address a
how the object looks like pixel-wise, image templates cafarge range of motions. [9] formulates the problem in terms
recover a large range of motions. Since they are very sepf inverse composition.
sitive to modifications in the object appearance (occlusion \ithin the probabilistic framework, a likelihood functipn
lighting variations, etc.) they would fail in sequences vehe sensitive to such complex motion, has to be designed.
large appearance changes or partial occlusions can ocCpke idea of dividing the object in several parts has been
On the contrary, density-based descriptors such as coligfroduced in [5] to improve tracking accuracy.
histograms have proved to be more robust and versatile andin this paper we propose a multiple kernel configuration
are thus an attractive choice to deal with complex trackingnd give evidences of its improved sensitivity over single
tasks. kernel approaches. The two approaches above are developed
Color-based tracking algorithms have been mainly consigrsing this configuration and their advantages and compara-
ered in two different approaches. The mean shift techniquyfe results are presented. A combination of both appraache
[4] consists in minimizing a distance between weighted colgs discussed. The experiments presented are restricted to
histograms in a gradient-based descent minimizationingad tracking the position (coordinates of the center of grgvity
to good accuracy in tracking. However, the search beingrientation and size of an object, but the approach is génera
deterministic, the algorithm can fail in case of total oecluenough to be adapted to homographic motions. The multiple
sion, presence of another object of similar color, or largrRernel algorithm proposed is used within a visual servoing
displacements. Within another framework, the same kinghsk.
C. Teuliere and L. Eck are with CEA, LIST, Service de Robagiqu ,. The remainder of this paper is qrganized as follows. S.ec_
Interactive, 18 route du Panorama, BP6,‘Fonte‘nay aux RG5e82265 tion 2 formulates color-based tracking problem and dessrib
Francef i r st name. name@ea. fr, E. Marchand is with INRIA the proposed multiple kernels representation. This cordigu

Rennes-Bretagne Atlantique, IRISA, Lagadic Project, RennFrance tjon js presented in a deterministic approach in sectiom@, a
firstnanme. nane@ri sa. f r. This work was realized in the con-

text of the French ANR national project SCUAV (ANR Psirob ag4032 1N the propabl_hstlc framework of particle f'!ter'ng In sem
SCUAV project ref ANR-06-ROBO-0007-02) 4. A combination of these two approaches is then proposed in



section 5. Section 6 shows how the tracking information can r’ r’
M I

be used in a visual servoing application. Finally, expentak / y
results are presented. h \
[I. COLOR-BASED TRACKING w

State x, State x

A. State space

The goal of any visual tracking algorithm is to estimateFig.- 1. Representation of the state to track and associatéafrdation

the state of an object or a region of interest through framelo™ statexo (left) to statex (right).
This state represents the location, but can also contagr oth
pargmeters Of, the target defqrmation. ) a correlation criterion in the histogram space is given by

_Sln_ce d_ensny-bgsed descrlptqrs such as C°|°r_h'Stogra@ﬁattacharyya coefficient:
give little information on the object’s spatial configurati .
they are mostly used to track only location and scale. L e _ T
This paper deals with adapting this measure to track more pO) = (@7, A0)) = z_:l @it (X) 3)
complex motions. The experiments presented here, consider ] ) ¢ ) ) )
translations, scale and rotation modifications, allowing t9=(Xr) P€ing computed as in (2) with the pixels locations
use the resulting tracking in a visual servoing applicatiofi®'résponding to the target in. i.e. { fx.(Ii)}i—o -
with four degrees of freedom. Nevertheless, the developed” candidate statg; for the object in frame is then com-
methods can be used for a larger range of motions, like affi@red to the reference object using Bhattacharyya distance
or homograph_ic displacements. _ _ d(xg) = d(q*,q(xx)) = /1 — p(Xx) (4)

In the remainder of this paper, without loss of generality, ) ] ] ] ]
the considered region of interest is a rectangle of fixed Although this representation by a single histogram is
ratio r — % which state is then defined by its position_su_ﬁ'c'em fortracklng the Iocat|_on and/or_scale of th(_e chje
(z,y), orientationd and aread = hw (see Figure 1). it is very little sensitive to rotation (see Figure 3), esptyg

The statex;, of the object in framek is then given by When the ratior is close tol. .
L )T, The next section presents a way to adapt this representa-

Xk = (ks Yr, Ok, . . y : .
k
In the following, {I;},_, . represent the initial pixels tion model so as to make it sensitive to different motions.

locations of the object, that is assumed to be selected @ Multi-kernel configuration
automatically detected in fram@ If fx denotes the affine

def ion b he initial f the obi d th As pointed out in [8], the use of several kernels (and thus
eformation etwc_aen the |_n|t|a state of the object and thg,, o5 histograms) enlarges the measurement space,gnakin
statex, for each pixel location;:

the tracking more sensitive to different complex motions. A

Fe(1) = fx(©) + sRg(l; — ©) (1) ppssible way tp design a tracker. §ensitive to the motions con
sidered here, is to design specific kernels for each motions.
whereRy is the 2 x 2 rotation matrix of angled — 6,, s=  Indeed, examples of kernels sensitive to rotations arengive
\/AZ andc = (z,y)7 is the center of the rectangle. [8]. However, since several h|st_ogram_s ne_ed to be_ computed
0 on the whole object, computational time is then increased,
B. Measurement space which makes actually such approach difficult to use in a

_ ) } particle filtering framework. The configuration proposed in
In color-based tracking, the reference object is usualliis paper consists in using several identical kernelsezedt
chgractenzed by its c_olor_ hlstqgram = {qz}u:_l...r_n’_ ™ as illustrated in Figure 2. Weighting pixels locations with
being the number of bins in which color space is divided. Igose kernels gives them a different importance according t
the experiments RGB color space withx 8 x 8 bins has e position in the object. In this case, the number of késn
been used. HSV color space is another classical choice usgdl not lead to an increase in computational time since the

for example in [11]. For each bin: histograms can be computed in the sub-parts of the object.
n Moreover, this kind of configuration can be used to detect a
q, = Z K(l; — )0, (b(1,)) (2) large range of motions.
i=1 Formally, a statex; is associated to nine histograms

{a;(Xx)}j=1..0 computed with the kernel&;(l — c;). The
distancesi; (x;) = d(d;,d;(xx)) are defined as in (4).
Figure 3.b shows the shape of the distance function:

whereb(l;) is the bin corresponding to the color of piXe|
0 designates Kronecker's function, akds a kernel function
centered inc, weighting image locations. Unless explicitly
mentionedK is supposed normalized so that)" , ¢;: = 1. 1

Whatever the tracking framework used (particle filtering, i (Xk) = 9 Z dj(Xk) ()
or kernel-based optimization), in each frarhgthe aim is 7=t
to find the candidate state, which histogramq(xy) is the computed on the image of Figure 7-b. Multiple kernel rep-
“closest” to the reference histogragi. To achieve this, resentation being more discriminatory, the resultingadise



function varies faster than the one using single kernelereprwherec; is the center of kernef;.
sentation. Therefore, the sensitivity of the tracker toiorat The gradient of the kernel vector
like rotations is improved. More kernels can obviously be&;(x) = (K;(l1,¢;,X), ...,K;(l.,¢j,x)) " is given by:
added in order to increase the tracking accuracy.
9 Y C[OK, 0K, 9K, 0K,

The next two sections presents two different ways to ;= 22 ov 00 s
consider the problem of finding in each frarkethe state t Y S
X that best corresponds to the reference model, using coldhe matrix U defined byU = {w;;}i—i.n,j=1.m With
histograms as measurements. u;; = 0;(b(l;)), links the n points with the color bin of

the corresponding pixel in the considered frame (see [8]).
Then, minimizing (6) using Newton’s method leads to
This section shows how the formalism of [8] applies to

IIl. DETERMINISTIC FRAMEWORK

our configuration, nine kernels being centered as illustrat Ax = —23je ©)
in Figure 2. Uk,
Here, one histogram is computed with each kerdgl wheree = /q(x) — /@, Ju = d(q(x))"2 ,
using then pixel locations of the object as in (2). U Jko
Following the general formalism described in [8], his-JG is the pseudo inverse afy, and d(q(x)) denotes the
tograms are now considered in their vectorial form, matrix with g on its diagonal.

q = (Q1(1)1"7Q’m(1)a"'aql(g)a“aqm(g))—r’ Wherequ(j) de_
signs the value of bin, in the histogram computed with |n our work, Epanechnikov kernels have been used.

Kj- For each pixel locatiom:
To make optimization techniques possible, the distance in

the histograms space for a candidate stais considered (¢ _ c (1 - %) if (|52 <1 (10)
here under the form: / ! otherwise

O(x) = vVa* = Vax)|[* =2 — 2p(x) (6) h represents the span of the kernel.

where the square root is applied to each component ostmg (7), the kernel's dependency w.r.t. state parameters

the vectors. Note that the minima of (6) correspond to thaPPears by writing that for each pixel location
/(1) — Cj)IQ)

minima of (4). o
The definition of each kernel functiok; is extended in Ki(l,¢j,x) =C <1 12
the following to include the deformatiofy from statex, to where f(1) is defined in (L).

statex by defining for each pixel: The optimization procedure allows good accuracy, but the

Ki(l,c;,x) = CK(f«(I) — ¢;) (7) tracking fails in case of occlusion or presence of several
peaks in the cost function. In particular, for fast motions i

C = 1 (8) which blurring (see Figure 4) makes the appearance of the
> KOA(i) — ) object look uniform, the optimization is more likely to find

a wrong minimum by shrinking down to a smaller portion
of the object as shown in Figure 5.

The results obtained with this method are shown in the
second row of Figure 7 for a moving object of fixed size.

Fig. 2.

Fig. 4. Blurring due to object fast motion.

The next section presents particle filtering approach and
how it can be adapted to our configuration.
IV. PARTICLE FILTERING FRAMEWORK
A. Particle filtering principle

(a) (b) The use of Bayesian framework, and more particularly

Fig. 3. Distance function w.r.t. rotation andlocation, using simple (a) Pavrticle filtering [10] in vision applications, has been ely
and multiple kernels (b) object representation. described in the literature . The main ideas are recalled. her




The question of estimating a statg given some obser- itself gives a sampling of the probability density functitmn
vationsz;.; can be considered in an equivalent way as e®stimate. Therefore, no gradient needs to be computed as it
timating the probability density functiop(xy, | z1.x), where is the case in optimization based methods such as [4] and
z;.;, denotes(zy, ..., ;). Assuming that the observations are[8]. In this section,K is set to a constant ensuring that the
independent and the system follows Markov rule leads to:histograms are normalized. The spatial information is mive
p(Xp |Z1.8) o< p(Z | Xk )p(Xk: | Z1:5—1) by computing nine histograms in the nine parts defined in

Figure 2 (and thus using one ninth of thetarget's pixels)
N P(Zk|Xk)/p(Xk [Xe—1)p(X—11218-1)dXk-1. a5'in [5].
Formally, a statex; is associated to the histograms

From this, the recursive steps of the non-linear optimadrfilt {0, (%)} ;1.0 The likelihood of a stata is then defined

can be derived. . by,
Pk1 | Zrk—1) " p(x | Zno1) "2 p(xe | Zuik) 4 p(zi | Xe) o< exp(—Adom? (Xg)) (13)
(11)

In a Gaussian linear case, the above recursive filter adntihered,, is given in (5) and\ is a constant parameter tuned
an explicit expression given by the well-known Kalmarempirically (a typical value is\ = 20).
filtering. However, the analytical solution remains unkmow Figure 5 presents comparative results between single ker-
in the general case, and approximation methods have to bel particle filter (1st row), multiple kernel determingsti
used. One possible approximation consists in lineariZimg t approach (2nd row) and multiple kernel particle filter (last
system to derive the extended Kalman filter. Although itow) on a fast moving object sequence. As expected, the
has been shown sufficient in various applications, it is nanultiple kernel approach is more accurate than the single
constructed to handle the visual tracking tasks consider&grnel one. In this sequence, the lack of information due to
here, which may be non linear or with multiple modes.  the blurring makes the optimization method fall into a wrong

The idea of particle filtering (also known as CONDENSA-minimum (Figure 5 (2-c)), while the multiple kernel parécl
TION [10]) is to approxmat@(xk | z1.1) by representing it filtering allows good localization.
by a finite set{sk ¥, of N samples, or particles, associated

with WelghtS{wk)} V. COMBINING BOTH APPROACHES

Up to this point, it is interesting to observe the com-

PO | 1) = p™ (x| 214 Zwk Oy (xe)  (12) plementarity aspects of the two considered approaches. In
kernel-based optimization, a few iterations lead to theimin
wherew R > 0 and Zl 1wk) = 1. Each particle thus mum of the cost function with good accuracy. However, the
represents a possible state of the object. deterministic nature of the method makes it fail in case of
The recursive steps of the filter (11) above then lead tcomplete occlusion. Furthermore, the algorithm can fakin
the following: local minimum. In particle filtering, the density of probkyi
Knowing the set ofN particles{(s,(j iy ]{[)} at step is estimated without any assumption on its shape, allowing
=1L.N to keep several modes. Nevertheless, the accuracy depends
. Evolut|on of the particles according to a motion model linearly on the number of particles. A balance has to be
giving a new set { (s k(l), ]{[) found between increasing tracking accuracy and reducing

h computational time.

o Update: Using the observat|om;C tﬁ’e weight of eac i . .
To keep the benefits of both algorithms, a way of combin-

predicted particle is computeab o p(zg | Xk =

(i) (i) ) ing them has to be considered. In [7], a mean shift embedded
s ) It gives the new Set{(sk ; )}Z: » Wi particle filtering is proposed, where mean shift optimizati
Zf\’lwfj) =1. is applied to each particle to generate particles in local
« Random weighted draw of N particles from maxima of the probability density function. It allows to use
(5;6(1) w;(f))} , thus giving the new set: fewer particles with good accuracy. However, in the mudtipl
i= kernel tracking case, computing the optimization procedur
{(S;f), 1{1)} N on each particle would be time consuming. Therefore, we

For initialization the particles are sampled on a Gaussig#100se to apply the optimization directly to the estimate of
distribution around the initial known position. In the ex-the particle filter. The decrease in the number of particles
periments a constant velocity model has been used for tHéroduces a loss of accuracy that is compensated by the
evolution (Or prediction) Step. The partide ﬁ|tering out-optimization methods which finds the mode of the distance

put considered is the estimator of probability expectatiorfunction. Of course the particle filter estimate has to beelo
EXe] = + ZN L8 ) . The likelihood function is described €nough to this mode, but experiments show that it can be
n=

in the following sectlon achieved with a small number of particles.
o ) To avoid a failure due to temporary occlusions, a threshold
B. Likelihood function on the distance function allows to detect them and switch to

In particle filtering framework, the likelihood function the particle filter estimate. &,7%, andx,”*%P denotes
needs to be evaluated for each particle and the set of martictespectively the estimate given by the particle filter and



(1-¢)

(2-¢)

3-a) (3-b) (3-0)

Fig. 5. Comparative results of the different approache# winslations, rotations and scale. First row: particlerfilvith 1 kernel, using 500 particles.
2nd row: Multiple kernels deterministic approach [8]. 3aivr particle filter with 9 constant kernels, using 500 pdetc

the combined algorithm in framg, the procedure can be K — o0 o —
formulated as follows: I ey(dg‘”;/ L i -
if dn, (Xe7F) > € then AN AN
~ PFSSD v PF | \ai it B e
computexy, from X;,,” " using optimization 0 0
else \’\\J \
v PFSSD , < PF 300 -300
Xk — Xk 10 20 30 40 50 [ 10 20 30 40 50 @
end if 600 ;ES:Q —_— 600 ;ES:Q —
. .. 6 (deg) 7 6 (deg)
€ bemg a threshlolql to be tuned empirically. N 00 \ 7/,, 00 \ /
While the optimization method alone can fail in case of ST~ ST~
large motions, combining it with particle filtering makes 0\ 0\
it take advantage of the estimate as a prediction close tosw 300
the object state. Furthermore, thanks to the prediction, it e ) o0 S (g)
reduces the number of iterations required in the Newton *° dy —
minimization. a00 [ D
AN
VI. TRACKING FOR SERVOING APPLICATION 0 \
The tracking algorithms described in the previous sections s
provide us with the center of gravity, size and orientatiébn o 20 30 4 80 (5
the object in the image. Fig. 6. Position and orientation of the object in the seqeeofk Figure
7 as obtained using: (1) single kernel particle filteringhws00 particles,
A. Tracking (2) multiple kernels deterministic approach [8], (3) muiki kernel particle

. . filtering with 500 particles, (4) multiple kernel particldtdiring with 75
The comparative results of different approaches on garticles, (5) combined algorithm with 75 particles. Alssai indicates the

sequence with total occlusion and fast motion with fixed siz#ame number.
are given in Figure 6 and 7. A particle filter using a single

kernel is tested, giving poor results in estimating oriéate sing much fewer particles, leading to a far more efficient
of the object (see Figure 6 (1) and first row of Figure 7). Ayhr0ach for a computational time point of view since it is
expected, the optimization method is accurate but failstwhey ot 3 times faster.

confronted to the occlusion (Figure 7 (2-c), corresponding

to rupture in framet6 of Figure 6 (2)). The particle filter B. Image-based visual servoing

with 75 particles ((4) in Figures 7 and 6) is robust to the This section describes how these elements can be used to
occlusion but is less precise than usit@0 particles (3). design a control scheme to servo a robot to a moving object.
The experimental results show that the combined algorithm The aim of the image-based visual servoing is to minimize
(5) reaches the same accuracy as the particle filter alone (8)e errore between the current value of a set lofvisual



(1-d)

(2-d)

(3-d)

(4-d)

(5-a) (5-b) (5-c) (5-d)

Fig. 7. Comparative results of the different approacheé winslations and rotations. First row: single kerneliplrffiltering, using 500 particles. 2nd
row: multiple kernels deterministic approach [8]. 3rd rawultiple kernel particle filtering, using 500 particlesh4bw: multiple kernel particle filtering,
using 75 particles. 5th row: combined algorithm, using 7Biglas.

featuress and its desired valus*: where a,, = LA’I" = apx,yn = any and @ is the
e—s_g (14) orientation defined in section 2. The interaction matrices o

Let v = (v,w) denote the camera instantaneous velocitys,hese features have been derived in [12] using moments.

with v being the linear velocity of the origin of the camerap  Estimating self-motion of the object
andw the angular velocity of the camera frame. In the case

of a moving object, the time variation of this error is given To ensure an exponential decreasegihat isé = —Ae),

by the following control law is obtained from (15):
y: NP oe 15 —~ —~ e
e=8=Lv+t o (15) v=-Ale-LIZ (17)

S ot
To avoid tracking errors, a good estimation 9? is thus
needed. From (15) a first approximationg is:

whereL s € RK*6 s the interaction matrix related ® The
term g_te represents the time variation efdue to the object

self-motion. 5
e ~ —~
. . . — =é—Lg 18
C. Visual features and interaction matrix ot sV (18)
From the center of gravity coordinatés y), size and ori- whereé can be approximated in discretization by:
entation given by the trackers presented, we can easilyaleri ~ e, — €1
four visual features. To get a well-conditioned interagtio € = AL (19)

matrix, the following features are used in the experiments: For the experiments, Kalman filtering o?% has been
S= (Tn,Yn, an, 0) " (16) implemented for the experiments, with a constant velocity



(b)

Fig. 8. Tracking a moving object.

Measured values Filtered values
06 dyJat —— 06 dyJdt ——
o~ 0.4 o~ 0.4
2 o2 2 o2
z 2z
g o g o
oo 2 oo (@
04 —04 : . S
%4 10 2 3 4 0 04 10 20 30 40 s0 60 Fig. 11. Internal view. Red rectangle represents the dégiosition, the
time (s) time (s) green one is the current position as given by the trackingrilgn. (a) and

(b) shows examples of view with small rotation and transteierrors. (c)
Fig. 9. Measured and estimated velocity of the visual feature due to corresponds to the direction change, which induces a trgogiror. (d) is
the object self-motion. the final position. Although the target seems to be vertietlus recall that
the camera is controlled in order to maintain this positiorthe image.

of the object is then necessary to make the tracking seasitiv
to a large range of motions. By combining multiple kernel
optimization and particle filtering approaches, we propose
T e a robust tracking algorithm which allows to estimate the

time (5) position, orientation and size of a moving object. The pro-

Fig. 10. Error of thex,, andy,, features. Desired value is zero. posed approach has proved to be able to handle fast motions

) ) using roughly 75% fewer particles. Without any particular

state model, using (18) and (19) for the measure (as in [13}imization, we used the proposed approach within a visual
It allows reducing tracking error (see Figure 10) due to obje servoing experiment at a slow rate (5 fps). Optimizing

self-motion. computational time as well as the use of a more precise
evolution model will allow to reduce even more the tracking
errors.
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