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Abstract

In distributed real-time systems it is crucial to ensure the temporal validity of the data ex-
changed among the nodes. Classically, the frame Worst Case Response Time (WCRT) analy-
ses, and the software tools which implement them, do not take into account the aperiodic traf�c.
One of the main reasons for this is that the aperiodic traf�c is generally very dif�cult to character-
ize (i.e., the arrival patterns of the aperiodic frames). The consequence of this is that one tends
to underestimate the WCRT, which may have an impact on the overall safety of the system.

In this paper, we propose a probabilistic approach to model the aperiodic traf�c and integrate
it into response time analysis. The approach allows the system designer to choose the safety
level of the analysis based on the system’s dependability requirements. Compared to existing
deterministic approaches the approach leads to more realistic WCRT evaluation and thus to a
better dimensioning of the hardware platform.

1 Introduction

Context of the study. In the �eld of real-time systems, methods to assess the real-time perfor-
mances of periodic activities (tasks, messages) have been extensively studied. Response times,
worst-case or average, and jitters can be evaluated by simulation or analysis for a wide range of
scheduling policies provided that the activation patterns of the tasks and messages are well identi-
�ed. The problem is more intricate for aperiodic activities since, in many practical cases, it is dif�cult
to have a precise knowledge of their activation pattern and because deterministic WCRT analyses
have not been conceived to handle aperiodic activities. For example, the arrival pattern of aperiodic
frames in the body network of a vehicle is hard to predict, as it is dependent on the user interactions.
However aperiodic frames of higher priority exchanged among the Electronic Control Units (ECUs)
in the body network of a vehicle can delay periodic traf�c. Indeed, most often the Controller Area
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Network (CAN) priority bus is used and the aperiodic frames do not necessarily get the lowest priority
levels1assigned to them.

Problem de�nition. In this paper, we address the problem of evaluating response times when
both periodic and aperiodic activities are taken into account. Activities are termed frames in rest of
the paper, because the approach will be developed and illustrated on the CAN bus, but our approach
equally holds for tasks. The increase in the WCRT of the periodic frames which may be caused by
the higher priority aperiodic frames could be critical for hard real-time systems as it could lead to the
violation of the deadlines. Besides, large response times of aperiodic frames may jeopardize the
execution of a function or may even raise safety concerns in some cases (e.g. headlights �ashes in
a vehicle). In addition, low responsiveness is negatively perceived by the user. It is worth mentioning
that activities that are periodic by essence are sometimes implemented in an aperiodic manner in
order to save resources.

Whatever the exact approach, one of the main step is to derive a model of the arrival patterns for
aperiodic activities, what will be called in the following the aperiodic Work Arrival Function (WAF).
Then, this aperiodic WAF has to be integrated into the response time analysis. There are however
dif�culties:

� obtaining aperiodic data (i.e., by measurements or simulation),

� modelling aperiodic data,

� integrating the model into schedulability analysis.

What we are discussing in this paper is not how to obtain data but how to model it and integrate it
into schedulability analysis.

Ways to handle aperiodic traf�c and their limitations. There are two classical approaches to
handle the aperiodic traf�c:

� A worst-case deterministic approach : aperiodic frames are considered as periodic frames with
their periods equal to the minimum inter-arrival times, this is the well known sporadic model [8].
However, in many cases, the minimum inter-arrival time is so small that the resulting workload
is unrealistic, and often greater than 100% [10].

� An average-case probabilistic approach : the aperiodic traf�c is modelled according to a proba-
bilistic inter-arrivals process, the next step is then to estimate the �probable� number of arrivals
in a given interval of time. This approach is clearly not suited to real-time systems because it
largely underestimates the arrivals of aperiodic traf�c which can occur in small time intervals2.

A basic probabilistic framework was set for inclusion of aperiodic frames in a controlled manner
using a threshold value in [4]. This paper builds upon this framework and discusses precisely the
mechanism of deriving the aperiodic WAF, as well as it removes some assumptions placed in [4].
In particular, we show that in our speci�c context it is not necessary that the different streams of
aperiodic frames are modelled individually.

1Because of the incremental design process, in-house usages or constraints of the cooperation process between
carmakers and suppliers, priorities on the CAN bus do not necessarily re�ect the criticality of the frames (i.e., importance
from a functional point of view, deadline constraint).

2According to the principle of large deviations: the smaller the interval, the larger (in proportion) the deviation to the
mean [7].
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Overview of our approach. We do not assume any prior knowledge of the aperiodic frame acti-
vation pattern, however we assume that it is possible to monitor the system, or a simulation model
of it, and gather data about the arrival times of aperiodic frames. Then, from the measurements,
we build a probabilistic model of the aperiodic inter-arrival times under the form of an empirical fre-
quency histogram or a distribution obeying a closed-form equation whenever possible. The next step
is to derive a deterministic WAFs from the probability distribution of the aperiodic frame inter-arrival
times. A general mechanism is provided enabling to derive the deterministic WAF from the under-
lying probabilistic distributions of the aperiodic traf�c even given in form of empirical histograms,
which is worthy in practice since aperiodic arrivals do not necessarily obey a closed-form equation.
Another advantage is that the technique is independent of the scheduling and can be used whatever
the policy (preemptive, non-preemptive, �xed priority, dynamic-priority, etc) and whatever the task
model. All in all, we believe that our proposal offers a better solution for taking into account ape-
riodic traf�c in systems with dependability constraints, compared to worst-case and average case
probabilistic approaches.

Organization of the paper. The rest of this paper is organized as follows: the modeling of the
aperiodic traf�c is described in Section 2. The aperiodic work arrival function is discussed in Section
3. Section 4 describes the schedulability analysis and a small case study. Finally, the conclusion is
given in Section 5.

2 Modeling aperiodic traf�c

The data used in this study comes from measurements3 taken on-board of a PSA vehicle but be-
cause of con�dentiality reasons we have obscured the characteristics which could re�ect about the
design at PSA Peugeot Citroºn. In order to model the interarrival times of the aperiodic traf�c, we
�rst analyse some important structural properties of the data (e.g., linear and non-linear correlation)
then �nd out the probability distribution that best �ts our data.

2.1 Exploratory data analysis

The presence of linear and non-linear dependencies in the data would impact its modelling because
it would imply a departure from the i.i.d. property (independent and identically distribution). To test
these two kind of dependencies, as classically done in exploratory data analysis, we make use of
some visual con�rmatory tests, the �run sequence plot� and �lag plot� here, as well as the auto-
correlation and BDS test (Brock, Dechert, Scheinkman, see[2]).

2.1.1 Run sequence plot

The run sequence plot displays an observed univariate data in a time sequence. It helps to detect
outliers and shifts in the process. Figure 1(upper) is a run sequence plot of our data trace where the
data points are indexed by their order of occurrence. The plot indicates that data does not have any
long term shifts in heights over time.

3What was measured are the times at which the frames started to be transmitted and not the times at which the
transmission requests were issued. Especially when the network is loaded, the two can be signi�cantly different because
of frames transmissions being delayed by higher priority frames. This could be taken into account by studying the busy
periods on the bus and constructing a worst-case activation process. This is however outside the scope of the paper and
will be addressed in future work. We would like to thank Reinder J. Bril for pointing this out.
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2.1.2 Lag plot

A lag plot helps to gain some insight into whether a data set or time series is random or not. Random
data should not exhibit any visually identi�able structure in the lag plot. Figure 1(lower) is a lag plot
of our data trace (here the lag is chosen equal to 1: x = Xk+1 and y = Xk, where Xk is the kth
observation). Since the lag plot appears to be structureless, the randomness assumption cannot be
rejected.

Figure 1: Visual analysis of captured data trace. The upper graphic is a run sequence plot where the
x-axis is the index of the data points and the y-axis is the time till the next aperiodic arrival expressed
in seconds. In the lower graphics, a lag plot, both axes indicates the time till the next aperiodic arrival
in seconds.

2.1.3 Autocorrelation analysis

The autocorrelation analysis detects the existence of serial correlations in a data trace. Precisely the
correlation of order k indicates the linear relationship that may exist between data values separated
by k positions. The �rst 100 correlation coef�cients of the data trace are shown in �gure 2 associated
with the thresholds beyond which the values are statistically signi�cant (1% signi�cance level here).
The graphic visualization of the correlation coef�cients makes it possible to evaluate the importance
and the duration of the temporal dependencies. Here, serial correlations in the aperiodic traf�c are
relatively limited:

� limited in frequency: on the entire aperiodic traf�c, there are only 19 signi�cant auto-correlations
coef�cients until a lag of 100,
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� limited in intensity: the few signi�cant auto-correlations are below 0.2 which is insuf�cient to
be used at ends of predictions.

Figure 2: Auto-correlation of captured data trace.

These autocorrelations can probably be explained by the fact that the activation of certain functions
of the vehicle requires the transmission of several consecutive frames, but, the instants of activations
of the functions have small correlations. Also, the spike that can be observed around the lag 50 is
likely due to a periodic frame that has not been properly �ltered out in the data trace.

2.1.4 BDS analysis

Auto-correlation has the limitation that it can only test the linear dependency in the data. In order
to test for non-linear dependencies a more general statistical test than the auto-correlation must
be used. One such test is the BDS test [2] which employs the concept of spatial correlation from
chaos theory to test the hypothesis that the values of a sequence, in this paper inter-arrival times,
are independent and identically distributed (i.i.d.). Deviation from the i.i.d. case will be caused by
the non-stationarity of the process (e.g., existence of trends), or the fact that there are linear or
non-linear dependencies in the data.

We carried out the BDS test for various combinations of its parameters m and d (for example for
m = 2 and d = 3) as recommended by the authors of the test. For certain combinations we could
not reject the hypothesis that the data points are i.i.d. at the 1% con�dence level. The results of
auto-correlation analysis and BDS test enable us to conclude that it is possible in our speci�c context
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to model the aperiodic inter-arrival traf�c by a random variable obeying a memory-less probabilistic
distribution without diverging from reality.

2.2 Distribution �tting

We now need to �nd the probability distribution and its parameters which models the experimental
data the most accurately. After having drawn aside certain possibilities for obvious reasons (for
example, the normal law because its density function of density is not monotonously decreasing),
we tested distributions identi�ed by adjusting their parameters according to the principle of the max-
imum of likelihood (MLE). Speci�cally, we have successively considered the exponential law, the
log-normal law and the Weibull law. The exponential law was plausible a priori taking into account
the decrease of the density which one can observe in the data trace, the two other laws have been
chosen for their well-known �exibility.

2.2.1 Probability plots for visual selection

The distribution of the observed data is plotted against a theoretical distribution in such a way that
the points should form approximately a straight line. Departures from this straight line indicate
departures from the speci�ed distribution. If the probability plot is approximately linear, the underlying
distribution is close to the theoretical distribution. What can be observed in �gure 3 is that the
Weibull law is the distribution that best �ts the data. This visual conclusion is con�rmed by statistical
acceptance tests discussed in the next paragraph.

Figure 3: Probability plots for 3 candidate distributions, from top to bottom, the exponential law, the
log-normal law and the Weibull Law.

2.2.2 Acceptance test

In previous section evaluation of the quality of results was done visually. In this section we use the
statistical tests to verify the assumption that data trace follow a particular distribution. Speci�cally,
we are using the q† and Kolmogorov-Smirnov "goodness-off-�t� tests" [6, 3]. The best results were
obtained using the Weibull law, followed at some distance by the log-normal law. The conclusion of
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the two tests is that one cannot reject the assumption that the data follows a Weibull distribution at
a signi�cance level of 1%. For a broad data sample collected on a real system, and not arti�cially
generated data, it is a conclusive result.

Figure 4 presents the real data trace and an "arti�cial" trace generated by a Weibull law with
MLE-�tted parameters. It is observed that some "patterns" present in the real trace disappear and
that the simulated trace is more homogeneous in time, but overall adequacy of the modeling seems
good. From the analysis, carried out in this section, we can conclude that in our speci�c context the
Weibull distribution provides a satisfactory model for the aperiodic traf�c interarrival times, followed
by log-normal and exponential distributions at some distance.

Figure 4: Comparison between the captured data trace and a random trace generated by a Weibull
model with MLE-�tted parameters.

2.2.3 Parameter estimation without data trace

Because of cost and design time constraints, it is not always possible to derive the interarrival model
from a real data trace, or traces of simulation. This is often the case in automobile projects. In
such a situation, as an approximation, a solution is to set the parameters of the distribution based
on already known parameters corresponding to another electronic architectures. In the following, we
show how to adapt a Weibull4 model to a new intensity of the aperiodic traf�c.

The expected value of a random variable obeying a Weibull law is:
4The case of single parameter distribution such as the exponential law is trivial, a similar approach can be used for the

log-normal law.
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E(X) = ��(1 +
1
k

) (1)

where l is the scale parameter, k is the shape parameter of the Weibull law and the Gamma function
is an extension of the factorial function to the real and complex numbers. There exist many, more or
less precise, approximations to calculate the gamma function. One good approximation is given by
the following formula:

�(z) �

r
2�
z

(
1
e

(z +
1

12z � 1
10z

))2 (2)

To adjust the expected value of the Weibull law for a new vehicle project, one simply has to
change the scale parameter l to the targeted intensity of the aperiodic traf�c. In �rst approximation,
we assume here that the shape of the distribution should not change very importantly from project
to project and so set the parameter k. This assumption should be veri�ed in the light of the analysis
of additional data traces but this is left as a future work. The network load of the aperiodic traf�c,
denoted �, obeys the relation:

� = (
1

E(X)
): �A (3)

where �A is the average transmission time of an aperiodic frame. From equations 1, 2 and 3, one
obtains:

� = (
1

�(1 + 1
k ):�

): �A (4)

By replacing the values of network load, �, and average transmission time, �A, by the values which
correspond to the automotive network that one wants to model, one obtains the new value of �.

3 The aperiodic work arrival function S(t)

S(t) is the aperiodic work arrival function which gives us the number of aperiodic frames in a time
interval t and that will be used in the response time analysis. S(t) is an increasing "staircase"
function such that the "jumps" in the function correspond to the arrival of an aperiodic frame. To
construct this function, we propose to discretize the time and calculate the value taken by S(t)
for each value of t between 1 and n where n, expressed in milliseconds, is the largest value that
we may reasonably require during the computation of a response time. For example, one can set
n = 1000ms if the largest period of activity on the bus (i.e.,the largest busy period) does not exceed
a second.

3.1 Safety threshold � for S(t)

We denote by X(t) the stochastic process which counts the number of aperiodic frames in time
interval t. For example, in the data trace which we studied in the preceding sections, inter-arrivals
would be controlled by a Weibull law. The idea is to �nd the �smallest� Ŝ(t) such that the probability
of X(t) being larger than or equal to Ŝ(t) is lower than a threshold value � �xed by the designer.
Formally, we are looking for:

Ŝ(t) = minf S(t) j Pr[X(t) � S(t)] � �g (5)
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For example, if one sets � = 0:01 it means that in no more than 1% of its trajectories the stochastic
process X(t) induces more aperiodic traf�c than Ŝ(t). If X(t) models the real aperiodic traf�c
accurately, the number of aperiodic frames integrated in the calculation of the response time of a
periodic frame will have more than 99 percent chances to be higher than what each instance of the
frame will undergo. Of course, the choice of � depends on the dependability objectives of (SIL,
System Integrity Level, for example) but � = 10�4 seems a reasonnable value in the context of a
body network that will be considered in the experiments hereafter.

3.2 Computation of S(t)

We need a way to evaluate P r[X(t) � S(t)] at each time instant t. Two cases arise. The �rst case
corresponds to the situation where one can calculate explicitely:

Pr[X(t) = n] = P r[X(t) � n] � Pr[X(t) � n + 1] (6)

as it is possible for the exponential law. However, this is not analytically feasible when there is
no closed-form solution. We should then either resort to numerical integration or to monte-carlo
simulation. In the following, we choose to develop the later possibility because it is simple and
completely independent of the underlying distribution.

3.2.1 Graphical illustration

Figure 5 illustrates the computation of S(t) for a speci�c value of t, here t = 5:

Ŝ(5) = minf S(5) j Pr[X(5) � S(5)] � �g (7)

The value of Ŝ(�) at time 5 is found by computing P r[X(5) � n] for n = 1; 2; 3; : : : until this quantity
is lower than or equal to �.

Figure 5: Graphical representation of algorithm for computation of S(5). It consists in �nding the
smallest value of k using the CDF of the interarrival distribution according to equations 5 and 6.
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3.2.2 The case of discrete distributions

In case the distribution followed by the aperiodic frame interarrival is discrete, the equation 6 can be
easily evaluated by summation of probabilities. Algorithm 1 describes the process of �nding S(t) for
discrete distributions where � is the targeted safety level, � is the discrete time step, � is the set of
parameters of the distribution modeling the aperiodic frame arrivals (for example, chosen according
to the Maximum Likelihood Estimate principle, MLE) and T is the maximum time one may reasonably
require for the computation of a response time (e.g., 1 second for an automotive network).

Input: T , �, �, �
Output: S(t): The work arrival function
foreach each IDX 2 0:�:T do

k = 0;
while 1- CDF(�,IDX,k) > � do

k = k+1;
end
S(IDX)=k;

end
Algorithm 1: Algorithm for computing S(t) in the discrete case.

3.2.3 Monte-Carlo simulation

We do not always have a discrete distribution modelling the data nor a continuous distribution such
that equation 5 can be evaluated analytically. We need an alternate method to evaluate equation 6 in
such cases. This can be done with numerical integration techniques or using Monte Carlo simulation
method. The latter approach is described in algorithm 2 where � is the safety level, � is the discrete
time step, � is the set of parameters of the aperiodic frame arrival distribution, T is the time horizon,
N is the number of random samples5 to be drawn for the Monte-Carlo simulation. Basically, S(t)
is computed for each time unit by drawing N values from the probabilistic distribution modelling the
aperiodic frame arrival process and checking if the accumulated probability value smaller than the
probability value for which we are evaluating S(t).

5Central Limit Theorem tells us that the convergence rate is of order N 1=2 where N is the number of random draws,
which means that adding one signi�cant digit requires increasing N by a factor 100. The value of N should be set
depending on the threshold � and accuracy objectives.
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Input: T , �, �, �, N
Output: S(t): The work arrival function
index = 0;
Data=random( �, N );
foreach each IDX 2 0:�:T do

foreach i=1:N do
AccT ime = 0;
k = 0;
while AccT ime< IDX do

AccT ime = AccT ime+Data[index ];
index=index+1;
k = k+1;

end
end
S(IDX)=k;

end
Algorithm 2: Deriving S(t) by Monte Carlo Simulation.

As an illustration of the approach, we derived S(t) in the cases where the aperiodic interarrival dis-
tribution obeys 1) an exponential law 2) a Weibull law 3) a log-normal law. The number of random
draws of the Monte-Carlo simulations (parameter N in algorithm 2) is set to 5 million for each distri-
bution. For all three distributions, the parameters are �tted using MLE against the data traces and
the three distributions lead to the same average intensity. What can be observed is that the distribu-
tion, and not only the average intensity of the aperiodic traf�c, plays a major role in the shape and
height of the aperiodic WAF.

Figure 6: Aperiodic work arrival function up to time t = 125ms for various interarrival distributions.

4 Experimentation

4.1 Basic schedulability analysis

Classically, schedulability analyses for real-time communication networks assume periodic or spo-
radic streams of frames [9, 5]. In this paper, for the sake of simplicity, we make use of a suf�cient
but not necessary schedulability test6 presented in [5] as the framework to include aperiodic WAF

6This test is applicable when deadlines do not exceed their periods.
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into the schedulability analysis. However, the approach would remain similar with the suf�cient and
necessary test proposed in the aforementioned paper.

In the following, we re-use the concepts and notations from [5]. The worst-case response time
of frame m is made up of several elements:

1. An upper bound on the queuing jitter Jm,

2. The longest transmission time Cm,

3. The waiting delay wm at the sending end, that is the longest time that the frame can wait
before it starts being successfully transmitted (i.e., before it wins the arbitration on the CAN
bus). This delay is given by equation 9,

The waiting delay wm includes the interference due to the aperiodic frames of higher priority than
m, which is given by the function N�;M

m (t) de�ned as follow:

N�;M
m (t) = S�

M(t): max
j2HpAf(m)

Cj (8)

where M is the aperiodic interarrival model, � the chosen safety threshold, S�
M(t) the corresponding

aperiodic WAF and HpAf(m) is the set of aperiodic frames having higher priority than frame m.
It has to be pointed out that the de�nition of N�;M

m (t) makes the conservative assumptions that all
aperiodic frames are of higher priority than m. How this can be improved is left for future work (see
the discussion in the conclusion).

As classically done, the waiting delay wm can be determined with the following recurrence rela-
tion:

wn+1
m = N�;M

m (wn
m) + max(Bm; Cm)

+
X

8k2hp(m)

d
wn

m + Jk + �bit

Tk
eCk (9)

where hp(m)is the set of frames with priority higher than m, and max(Bm; Cm) corresponds to the
longest possible time for which an invocation of frame m can be blocked either by lower priority
messages or due to the previous invocation of the same frame. The recurrence relation goes on
until Jm + wn+1

m + Cm > Dm or wn+1
m = wn

m . In the former case, the frame is not schedulable while
in the latter case the worst-case response time of the frame is given by:

Rm = Jm + wm + Cm (10)

4.2 Case study

In this section, we illustrate the analysis on an typical 125Kbit/s automotive body network. To
overcome the con�dentiality issue that prevent us from giving the details of real sets of messages,
we used Netcarbench[1], a GPL-licensed software that generates sets of messages according to
parameters de�ned by the user (network load, number of ECUs, distribution of the periods of the
frames, etc.). The Netcarbench input �le used in this experiment is available upon request. The
generated periodic message sets under study consists of 120 CAN frames with deadlines equal to
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Figure 7: Aperiodic WAFs for inclusion in WCRT computations up to time 250ms. The y-axis starts
from value 1.

periods and data payload ranging from 1 to 8 bytes. The total periodic load is equal to 41.4% while
the aperiodic network load is set to 3% with aperiodic frames containing at most 7 bytes of data.
The aperiodic WAFs corresponding to this experimental setup for two interarrival distributions and a
safety threshold � equal to 10�4 are shown in �gure 7.

Figure 8 shows the worst-case response times of the highest priority periodic frames for the
two aperiodic WAFs considered here and a safety threshold � equal to 10�4. The WCRT of the
frames are computed with the software NETCAR-Analyzer from RealTime-at-Work whose purpose
is to analyse the performances of CAN-based communication systems and optimize their design
and con�guration (e.g., choices for the message priorities and offsets, waiting queue policy and
length, etc). Even in this context where the periodic load is moderate (41.4%) and the aperiodic
traf�c is limited (3%), one observes that aperiodic traf�c rather signi�cantly impacts the worst-case
response times of the periodic frames. For instance, the WCRT for the frame with id 96 raises from
96.1ms without aperiodic traf�c to 116.3ms with 3% aperiodic traf�c obeying the Weibull law (+21%).
Besides, we see from �gure 8 that the exact model of the aperiodic traf�c plays some role and thus
cannot be overlooked.

5 Conclusion

In this paper, we develop a new approach for integrating the aperiodic traf�c in response time analy-
ses. The main interest of the proposal is that the overestimation of the aperiodic traf�c is kept to the
minimum that still enables the system to meet some chosen dependability requirements.

However, the resulting response time estimation can be pessimistic especially for high priority
frames when there is a large volume of aperiodic traf�c, as we have assumed that all aperiodic
frames are of higher priority. It is possible to be less pessimistic by modelling each aperiodic stream
individually (or consider several distinct groups of aperiodic streams) and integrate only the higher
priority aperiodic WAFs into the schedulability analysis. However, we believe that this more �ne-
grained approach will not be always practical since it requires signi�cant modelling efforts and large
quantity of data traces. We are working on a more global scheme that would still respect the safety
threshold while being as accurate as possible (i.e., discard as much as possible of the lower priority
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Figure 8: Worst-case response times (WCRT) after inclusion of 3% of aperiodic traf�c with different
aperiodic frame interarrival models. The frames (x-axis) are sorted by decreasing priorities. The
steep increase of the WCRT at time 50 and 100ms can be explained because, in that particular
message set, there are several messages with periods equal to 50 and 100ms (resp. 4 and 13),
and, at these points, new instances of these frames are causing additional delays.

aperiodic traf�c).
Some of the results shown here hold under the assumption that the aperiodic interarrivals are

independent and identically distributed (i.i.d.). In practice, this assumption can be easily tested
using statistical tests such as the BDS test statistics but it is clear that it may not hold for all kinds of
systems and workloads. It would be interesting to study, for instance by simulation, how departure
from the i.i.d. property impacts the accuracy of the results. How non-i.i.d. streams can be handled
is another follow-up to this study.

Acknowledgements The authors would like to thank the anonymous reviewers and Reinder J. Bril
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References

[1] C. Braun, L. Havet, and N. Navet. NETCARBENCH: A benchmark for techniques and tools used
in the design of automotive communication systems. In 7th IFAC International Conference on
Fieldbuses and Networks in Industrial and Embedded Systems, pages 321�328, 2007.

[2] W.A. Broock, J.A. Scheinkman, W.D. Dechert, and B. LeBaron. A test for independence based
on the correlation dimension. Econometric Reviews, 15(3):197�235, 1996.

[3] B. Brumback and M. Srinath. A Chi-Square test for fault-detection in Kalman �lters. Automatic
Control, IEEE Transactions on, 32(6):552�554, Jun 1987.

14



[4] A. Burns, G. Bernat, and I. Broster. A probabilistic framework for schedulability analysis. In
Proceedings of the Third International Conference on Embedded Software (EMSOFT 2003),
pages 1�15, 2003.

[5] R.I. Davis, A. Burn, R.J. Bril, and J.J. Lukkien. Controller Area Network (CAN) schedulability
analysis: Refuted, revisited and revised. Real-Time Systems, 35:239�272, 2007.

[6] J. Millard and L. Kurz. The Kolmogorov-Smirnov tests in signal detection (corresp.). IEEE
Transactions on Information Theory, 13(2):341�342, Apr 1967.

[7] N. Navet, L. Cucu, and R. Schott. Probabilistic estimation of response times through large
deviations. In WiP of 28th IEEE Real-Time Systems Symposium (RTSS’2007 WiP). IEEE,
2007.

[8] M. Spuri and G. Buttazzo. Scheduling aperiodic tasks in dynamic priority systems. Real-Time
Systems, 10:179�210, 1996.

[9] K. Tindell, A. Burns, and A.J. Wellings. Calculating Controller Area Network (CAN) message
response times. Control Engineering Practice, 3(8):1163 � 1169, 1995.

[10] Y. Zhang, D.K. Krecker, C. Gill, C. Lu, and G.H. Thaker. Practical schedulability analysis for
generalized sporadic tasks in distributed real-time systems. Real-Time Systems, 0:223�232,
July 2008.

15


