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Abstract. In pharmacovigilance, linking the adverse reactions by pa-
tients to drugs they took is a key activity typically based on the analysis
of patient reports. Yet generating potentially interesting pairs (drug, re-
action) from a record database is a complex task, especially when many
drugs are involved. To limit the generation effort, we exploit the fre-
quently occurring patterns in the database and form association rules
on top of them. Moreover, only rules of minimal premise are consid-
ered as output by concept analysis tools, which are then filtered through
standard measures for statistical significance. We illustrate the process
on a small database of anti-HIV drugs involved in the HAART therapy
while larger-scope validation within the database of the French Medicines
Agency is also reported.

1 Introduction

Pharmacovigilance (PV) aims at, first, studying and, then, preventing the adverse
reactions to drugs (ADR) based on the data collected by spontaneous reporting
systems (SRs) and stored in case report databases (DB). SRS DB comprises a
collection of reports each capturing the patient characteristics including demo-
graphic data (age, race, gender, etc.), the suspected drugs and a description of
the observed ADR. Table 1 depicts a set of case reports on AIDS patients and
antiretroviral drugs, i.e., treating infection by retroviruses such as HIV.

In pv, drug-reaction combinations, known as safety signals, help devising
a drug therapy, hence the importance of their detection. For instance, in HIV
treatment, the caregivers are interested in the response of various classes of
patients to the HAART therapy in order to adapt the overall anti-HIV therapy.
Their prime target is an appropriate combination of antiretroviral drugs that,
while effective, limits the ADR: e.g., older patients with HIV infection have robust
responses to HAART with no increased risk of metabolic disorders or other ADR.
Beside safety signals, i.e., (drug, ADR) pairs, further meaningful combinations
from the SRS DB involve several drugs for a single ADR. These are potential drug
interactions (higher-order signals).

Signal detection has been approached with a variety of analysis tools [7]
including statistical methods for disproportionality assessment, deviation detec-
tion, etc. However, none of these proposes a way, both automated and feasible, for



generating all potential signals from the SRS DB. Moreover, even with an expert-
provided potential signal, the underlying approaches would consider all drug-
reaction combinations that can be derived from the signal, including many spu-
rious ones. For instance, consider the anti-HIV drugs Lopinavir and Tenofovir in
Table 1 and the ADR HairLoss and Oedema. A proportionate approach would sug-
gest the study of signals (Lopinavir, Oedema), (Lopinavir, HairLoss), (Tenofovir,
Oedema), and (Tenofovir, HairLoss). Yet the only sensible combination to study
is ({Lopinavir, Tenofovir}, {HairLoss, Oedema}) as, given the dataset, the four
combine to a mazimal pattern. In summary, because of the large size of most
SRS DB, the computation of all combinations is strongly combinatorial, hence
their test may prove infeasible. Instead, a more careful approach would track
the frequently occurring patterns in the records and use these as prototypes.

Patient|Age|Gender|Prescribed drugs Observed adverse drug reactions

Daffy | 24 |Female |Lopinavir, Nausea, Hives , Vomiting
Efavirenz

Farley | 63 |Male |Lopinavir, Oedema, Hives, Headache, Nausea,
Tenofovir Heart failure, Hair loss

Lane 27 |Female |Maraviroc, Fatigue, Oedema, Hives, Hair loss,
Efavirenz Bleeding

Shana | 15 |Female |Tenofovir, Fatigue, Oedema, Hair loss
Lopinavir

Trudy | 41 |Male |Raltegravir Fatigue, Breath disorder, Nausea,

Heart failure, Bleeding, Vomiting

Table 1. A fragment'of SRS DB.

Patterns comprised of two sets, a premise and a conclusion, called associa-
tions, have been successfully applied to a variety of practical problems involving
co-occurrencies of phenomena and seem to fit well the Pv context. Yet a no-
torious problem of association miners is the huge number of potentially useful
associations that may be extracted from even a small DB. Formal concept anal-
ysis (FCA) [6] provides the theoretical foundation for association rule bases that
only withhold a tiny proportion of all valid associations while keeping the total
of the information. Hence we propose an FCA-based method for signal detection
which, by examining a minimal set of association rules extracted from the SRS
DB helps minimize the number of (drug, ADR) pairs to be statistically analyzed.

Here, we examine the detection of safety signals and drug-drug interactions
by means of FCA and a set of disproportionality measures to discard statistically
non significant associations. Our approach is illustrated on a set of case reports
on AIDS patients and antiretroviral drugs. A validation thereof involving the SRS
DB of the French Medicines Agency is also reported.

! Source : MEDEFFECT, Canada vigilance online database.



The paper starts by a short presentation of concept lattices and association
rules (Sect. 2). Follows the description of the proposed method (Sect. 3). Sect. 4
presents the results of the preliminary experiments. Related work is summarised
in Sect. 5 while further research directions are given in Sect. 6.

2 Background on concept lattices and association rules

2.1 Concept lattices

Formal concept analysis (FCA)[6] is a method for designing concepts and con-
ceptual hierarchies from collections of individuals (formal objects) described by
properties (formal attributes). To apply FCA to PV data as presented in Table 1,
the latter must first be encoded in standard format. The format, a binary con-
text KK = (O, A, I), (see Table 2) involves a set of objects O, a set of attributes A
and an incidence relation I C A x O (ola stand for “object o has the attribute
a”). For instance, in Table 2, objects are patients and attributes demographic
informations, drugs or reactions.

Demographic data Adverse reactions Drugs
—
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Table 2. Binary context encoding AIDS patients with their drugs and ADR.

Two derivation operators, both denoted ’ link objects and attributes [6]. Let
XCO,YCA X' ={a€ AVo € X,ola}, Y = {o € O|Va € Y,ola}. For
example, following Table 2, {Daffy, Trudy}’ = {Adult, Nausea, Vomiting}. The
compound operators " are closure operators over 2° and 24, respectively. A set
Y C Ais closed if Y = Y” which means the objects sharing Y, i.e., Y’  share
no other attribute (i.e., from A/Y"). A pair of sets corresponding to one-another
through ’ is called a (formal) concept: ¢ = (X,Y) € p(0) x p(A) is a concept of
Kiff X’ =Y and Y’ = X (here X and Y are called the extent and the intent
of ¢, respectively). For instance, ({Farley, Shana}, {HairLoss, Dedema, Lopinavir,
Tenofovir}) is a concept (cg in Fig. 1).



Furthermore, the set Cx of all concepts of the context K is partially ordered by
extent inclusion (intent containment). The structure £ = (Cx, <x) is a complete
lattice, called the concept lattice. Fig. 1 shows the lattice of the context in Table 2,
whereby a simplified labeling scheme is used where each object/attribute appears
only once in the diagram. The extent of a concept is made of all objects whose
labels can be reached from the concept on a downward-heading path while intent
is recovered in a dual way. For example, the extent of the concept with the
attribute label Bleeding is {Lane, Trudy} while its intent is {Bleeding, Fatigue}.

« |={Fatigue} o |={Nausea}  |={Hives} —7 . I={Adult} — I={Female} / . I=(Lopinavir}7 « |={HairLoss, Oedema}
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1
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Fig. 1. Concept lattice of case reports given in Table 1.

Within the lattice £ = (Cic, <x), concepts have a unique greatest lower bound
termed meet (/\) that is defined as follows: /\i.c:l(XZ—, Y:) = (ﬂf:1 X, (Uf:1 Y:)")
For instance, in Fig. 1, the meet of cg19 = ({Daffy, Trudy}, {Adult,Vomiting,
Nausea}) and concept 6#202({Daffy, Lane}7 {Adul‘c,Female,Hives7 Efavirenz}) is
6#222({Daffy}, {Adult, Female, Efavirenz,Vomiting, Hives, Nausea, Vomiting, Lopinavir}).
In addition, the function p : A — Cx maps an attribute a into the mazimal con-
cept in the lattice having that attribute (u(a) = (a’,a”)). For instance, in Fig. 1,
u(HeartFailure)Zc#u.

The lattice in Fig. 1 provides the analyst with a variety of insights into the
data such as the profile of the AIDS patients under study, the different anti-HIV
treatments and the respective most common ADR. For instance, the concept
c420 = ({Daffy, Lane}, {Female, Adult, Hives}) represents adult female patients
under anti-HIV drug regimen containing NNRTIs?, including Efavirenz, and ex-
periencing Hives. In summary, the lattice of case reports provides an overview

2 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) intervene in the early
stages of the HIV replication cycle.



of drug-reaction combinations to be explored for pharmacological associations
detection. In many cases, too specific concepts are not relevant. To only keep
those having extents of certain size, the support of a concept is defined as its

relative extent size, o(c) = %. The corresponding sub-order of the lattice,

i.e., its upper part induced by threshold « in ]0,1], is L% = (C*, <x) where
C*={c|ceC,o(c) > a}. L~ is called the iceberg lattice [10].

2.2 FCA-based association rule design

FCA framework is widely-used in mining patterns from DB, including association
rules that express the co-ocurrences among attribute sets (called itemsets). An
association rule is a pair of sets 'antecedent — consequent’ with no claim of
causality. A rule B — D (B,D C A) has a support (B — D) = ¢(B U D)
and a confidence that is the ratio of the rule support to the support of the

antecedent (y(B — D) = %).
Support
Tenofovir—HairLoss, Oedema 0.4
Maraviroc—Bleeding, Fatigue, HairLoss, Hives, Oedema 0.2
Efavirenz—Hives 0.4
Raltegravir—Bleeding, BreathDisorder, Fatigue, HeartFailure, Nausea,Vomiting 0.2
Lopinavir,Efavirenz—Hives, Nausea, Vomiting 0.2

Table 3. Drug-reaction associations derived from the SRS data depicted in Table 1
with the corresponding support.

In FCA, mining association rules from a DB consists in: (i) extracting all fre-
quent closed itemsets, i.e., concept intents from the DB, with support above «,
(ii) generating all valid association rules, i.e., rules whose confidence exceeds a
user-defined minimum threshold. The first step presents a greater challenge as
the set of frequent itemsets may grow exponentially with the size of A while
the second step is relatively straightforward. Moreover, several FCA-based algo-
rithms [1] generate non-redundant bases of association rules. These bases are
minimal with respect to the number of rules whereas the contained rules are
informative, i.e., with minimal antecedents and maximal consequents. To ex-
tract a tractable number of association rules from Pv data, we have used the
Informative Generic Basis (IGB) [1] as it has been shown that this type of as-
sociation rules conveys the maximum of useful knowledge, without information
loss. Moreover, our IGB contains exact (versus approximative) associations rules,
i.e., rules whose confidence is equal to 1 (as opposed to confidence < 1). Table 3
illustrates some of the drug-reaction associations from the 1GB extracted out of
data in Table 1.



3 Detecting safety signals using FCA

The outline of our mining method is as follows: First, SRS data is encoded into
a binary context, where formal objects represent case reports while formal at-
tributes are either taken drugs or the observed reactions (see Table 2). Then,
FCA is used to derive both the lattice and the corresponding 1GB. For instance,
in the case of anti-HIV drugs Lopinavir and Tenofovir and the two ADR HairLoss
and Oedema, the method will consider only the pair ({Lopinavir, Tenofovir},
{HairLoss, Oedema}) since it represents the only combination where the four ele-
ments appear (concept cg in Fig. 1).

Rules of the basis are split into three groups. Pure association have both
antecedent and consequent made exclusively of drugs and reactions respectively.
Semi-pure associations, in contrast, admit only non-reaction items in their con-
sequent that are further removed for analysis purposes. Finaly, biaised associa-
tions admit non-drug items in their antecedents as well. Their components are
filtered to fit the drugs — reactions rule scheme. Later, statistical filters are
applied to detect statistically significant candidates for each of the two types of
pharmacological associations, i.e., signals and drug-drug interactions.

In order to discard statistically non significant concepts, we use some of the
measures of disproportionality [13] that are currently applied in various reporting
centers, e.g., the British Medicines and Healthcare products Regulatory Agency
(MHRA). Such measures for a suspected ADR of a drug of interest are calculated
from the following variables: (a) reports including the drug of interest and the
suspected reaction, (b) reports with the drug of interest and no reference to the
suspected reaction, (c) reports where the suspected reaction appears without the
drug of interest, (d) reports where neither the drug of interest nor the suspected
reaction appear. The adopted measures are the proportional ADR reporting ratio
(PRR), reporting odds ratio (ROR), and x? test.

For instance, the PRR is the proportion of the suspected ADR versus all ADR
reported for the drug of interest devided by the corresponding proportion for
other drugs. It can be expressed as PRR = Z: é;izg . Fig. 2 shows how the various
cells of the drug-ADR contingency table are calculated using a drug-reaction
concept lattice. Hence, every meet concept A, , in the lattice Lp, for a given
pair of a medicine m and a reaction r is the source of a drug-reaction contingency
table.

For instance, the calculation of PRR for the anti-HIV drug Lopinavir and
the suspected ADR HairLoss using the concept lattice of Fig. 1 is as follows:
a = \E:z:t((/\LopinavaairLoss)| = |Ext(cys)] = 2, b = |Ext(u(Lopinavir))|-
|Ext( )= |Ext(cgir)|-|Ext(cys)| = 1, c=|Ext(p(HairLoss))|-
|E‘rt(/\Lopinavir,HairLoss)|:|Eajt(c#4)| —|E$t(0#6)‘:17 d=|O|—(|E.%‘t(,u(Lopinavir))
U Ext(p(Hairloss))|) = 5[ Ext(cyi7) U Ext(cya)|=1, PRR = LG The ob-
tained value of PRR is 1.33 < 2. Hence, the assumption stating that Lopinavir
causes HairLoss is statistically non significant.

The detection of higher-order drug-reaction associations, such as drug inter-
actions, has been carried out so far by logistic regression modelling [7] where

/\Lopinavir,HairLoss
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Fig. 2. Left: Drug-concept and ADR-concept in the drug-reaction concept lattice Lp.
Right: The two-by-two contingency table for target drug m and a suspected ADR r.

concomitant drugs (resp. reactions) are considered as covariates and the sus-
pected reaction (resp. drug) as dependent variable. For instance, in our running
PV data, the logistic model predicting whether Nausea reaction is a result of
possible interaction between Lopinavir and Efavirenz would look like:

N:/80+ﬁ1XL+ﬂ2XE+53XL*E

The variables L and F are exposure variables (or predictors) representing risk
factors associated with concomitant drugs Lopinavir and Efavirenz, respectively,
while L*FE is the interaction term. The intercept 3y represents the value of the
dependent variable Nausea (N) in a patient with no risk factors, while logistic
(or logit) coefficients (1, (B2, and fs basically quantify the expected variation
in N associated with a unit change in the binary predictor variables Lopinavir,
Efavirenz, and the interaction term, respectively.

Maximum likelihood estimation (MLE) can be used to calculate logistic co-
efficients. In the case of Nausea, Lopinavir and Efavirenz, calculating logit coeffi-
cients using the hypothetical contingency table depicted in left-hand side of Fig. 3
and R package yields N = —1.609 — 0.993 x L +0.226 x £+ 2.337 x L x E with
the p-values depicted in right-hand side of Fig. 3. The interpretation would be
that the interaction is statistically significant as the p-value for the interaction
term is 0.0381, a value that is less than the usually accepted threshold of 0.05.

L|E|L*E|| N| =N Logit coefficient | p-value
111 1 |9] 9 Bo = —1.609 0.0033
0[1| 0 [|6]23 B1 = —0.993 0.2776
110| 0 [|2]27 B2 = 0.226 0.7099
00| O [|4|20 B3 = 2.337 0.0381

Fig. 3. Left : 2 x 2 x 2 contingency table of reports for the regression of Nausea (N)
on two exposure level Lopinavir (L), Efavirenz (E) and their interaction term L*E.
Right : The corresponding logit coefficients provided by the R package.



4 Tools and experiments

SIGNALMINER?, is an open source tool dedicated to mining significant drug-
reaction associations. The tool is coupled with, on the one hand, GALICIA
open-source platform* for handling FCA data including the input contexts, con-
cept/iceberg lattices and rule basis, and on the other hand, the open-source
statistical computing and graphics environment R® for data pre-processing and
multivariate statistics including logistic regression analysis. In addition, S1G-
NALMINER performs a wide range of standard calculations, e.g., PRR, ROR, X2
(with Yates correction), etc.

The SRS DB of the French Medicines Agency (Afssaps) was used for the vali-
dating experiments. We have tested the proposed method on several moderate-
size subsets of the dataset. For instance, for a pool of 3249 case reports containing
527 drugs and 639 ADR. The obtained lattice comprises 13178 concepts while the
corresponding rule basis contains 28117 rules among them only 1165 represent
candidates for pharmacological associations. These candidates are further dis-
tilled by SIGNALMINER to identify pure, semi-pure or biaised associations as
illustrated in Table 4. Thus, the 1165 suggested association candidates (Table 4)
are further filtered, on the one hand, by focusing potential safety signals sat-
isfying the above MHRA ’interestingness’ criteria, and on the other hand, by
focusing drug interactions that have been revealed significant using regression
analysis. The minimum criteria for raising hypotheses regarding safety signals
are as follows: number of reports (patients) > 3, PRR > 2, and x? > 4 (with
Yates correction).

Among 834 candidates representing safety signals (Table 4), we have found
that 63 candidates are statisticaly significant safety signals including 36 known
signals (57%), e.g., {Abciximab, Thrombopenia}, 16 new signals warranting fur-
ther investigations, e.g., {Lamivudine, Arthralgia}, while the remaining poten-
tial signals are either association where the drug appears as an innocent by-
stander, e.g., {Ritonavir, Hypophosphatemia}, or non-interpretable association,
e.g., {Bupivacaine, decrease of the therapeutic effect}. In addition, among
331 associations representing candidates for drug interactions (Table 4), 10
candidates are revealed to be statistically interesting. In a previous work [3,
4], disproportinality measures extracted 523 and 360 statistically significant
{drug, ADR} couples, respectively. Our approach returns a smaller set of drug-
reaction associations to be further investigated.

5 Related work

Several studies from the literature address the use of DMA to identify drug-
reaction associations. In [4], the use of FCA in signal detection is briefely ad-
dressed. To assess the strength of the association between a target drug and

3 http://safetyseer.cvs.sourceforge.net/signalminer/
4 http://www.iro.umontreal.ca/~galicia
® http://www.r-project.org/
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Table 4. Left: Candidates for pharmacological associations obtained from 3249 case
reports containing 527 drugs and 639 ADR. Right: Statistically significant candidates.

suspected ADR, disproportionality approach introduces several parameters such
as, the PRR [5], x? that is often coupled with the PRR, and the ROR [13],
whereas Bayesian approach consists of the Multi-item Gamma Poisson Shrinker
(MGPS) algorithm [11] and the Bayesian Confidence Propagation Neural Net-
work (BCPNN) [2].

In [9], an interpretation of mathematical structures from FCA into epidemiol-
ogy is described. A comprehensive survey of state-of-the-art in statistical mod-
elling used by a various DMA of PV data is proposed in [7]. However, to the best
of our knowledge, none of them supports automatic detection of pharmacological
associations involving several drugs and/or reactions.

6 Discussion

FCA has been applied in combination with statistical metrics to the detection of
several types of statistically significant pharmacological associations, e.g., safety
signals and drug interactions. Compared to the classical bMA-based detection,
the proposed FCA method improves the quantity and quality of extracted phar-
macological associations, including those involving several drugs and/or reac-
tions. Indeed, the amount of extracted associations is reduced by targeting basis
of association rules using FCA framework, yet relevant associations with respect
to the referred population of case reports, thereby saving investments in time
and money that would be spent in further clinial trials.

In the future, we intent to reformulate drug-reaction analysis so that de-
tecting pharmacological association is mapped to a relational data mining prob-
lem [8]. Moreover, because drug-reaction analysis deals with a dynamic DB that
comprises high volume of data, the reconstruction —from scratch— of a new con-
cept lattice for every change in the SRS DB is so computationally expensive that
it is prohibitive. We shall address the on-line analysis of pharmacovigilance data
using the incremental maintenance of concept lattice [12] and the respective
association basis.
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