. Agrawal, Fast Discovery of Association Rules, Advances in Knowledge Discovery and Data Mining, pp.307-328, 1996.

&. Anick, . Pustejovsky, P. Anick, and J. Pustejovsky, An application of lexical semantics to knowledge acquisition from corpora, Proceedings of the 13th conference on Computational linguistics -, pp.7-12, 1990.
DOI : 10.3115/997939.997941

. Bastide, Mining frequent patterns with counting inference, ACM SIGKDD Explorations Newsletter, vol.2, issue.2, pp.66-75, 2000.
DOI : 10.1145/380995.381017

URL : https://hal.archives-ouvertes.fr/hal-00467750

. Basu, Evaluating the novelty of text-mined rules using lexical knowledge, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '01, pp.233-238, 2001.
DOI : 10.1145/502512.502544

. Cherfi, Towards a text mining methodology using frequent itemsets and association rules. Soft Computing Journal -A Fusion of Foundations, Methodologies and Applications, pp.431-441, 2006.

&. Collins, . Loftus, A. Collins, and E. Loftus, A spreading-activation theory of semantic processing., Psychological Review, vol.82, issue.6, pp.407-428, 1975.
DOI : 10.1037/0033-295X.82.6.407

. Faure, Iterative Bayesian Network Implementation by using Annotated Association Rules. 15 th Int'l Conf. on Knowledge Engineering and Knowledge Management ? Managing Knowledge in a World of Networks, Lecture Notes in Artificial Intelligence ? LNAI, vol.4248, pp.326-333, 2006.

. Fayyad, Advances in Knowledge Discovery and Data Mining, 1996.

C. Jacquemin, FASTR: A unification-based front-end to automatic indexing. Information multimedia, information retrieval systems and management, pp.34-47, 1994.

&. Jaroszewicz, . Scheffer, S. Jaroszewicz, and T. Scheffer, Fast discovery of unexpected patterns in data, relative to a Bayesian network, Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining , KDD '05, pp.118-127, 2005.
DOI : 10.1145/1081870.1081887

&. Jaroszewicz, . Simovici, S. Jaroszewicz, and D. A. Simovici, Interestingness of frequent itemsets using Bayesian networks as background knowledge, Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '04, pp.178-186, 2004.
DOI : 10.1145/1014052.1014074

. Kuntz, A User-Driven Process for Mining Association Rules, 4th Eur. Conf. on Principles of Data Mining and Knowledge Discovery (PKDD'00) of Lecture Notes in Computer Science ? LNCS, pp.483-489, 1910.
DOI : 10.1007/3-540-45372-5_55

. Lavrac, Rule Evaluation Measures: A Unifying View, 9th Int'l Workshop on Inductive Logic Programming (ILP'99). Co-located with ICML'9, pp.174-185, 1999.
DOI : 10.1007/3-540-48751-4_17

. Liu, Scoring and Ranking the Data Using Association Rules, Applied Intelligence, vol.18, issue.2, pp.119-135, 2003.
DOI : 10.1007/978-3-7908-1791-1_9

. Pasquier, Pruning closed itemset lattices for association rules, International Journal of Information Systems, vol.24, issue.1, pp.25-46, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00467745

P. Paroubek, Evaluating Part-Of-Speech Tagging and Parsing ? On the Evaluation of Automatic Parsing of Natural Language, 2007.

. Minker, Chapter 4 of Evaluation of Text and Speech Systems, pp.99-124

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 1988.

S. Sahar, Interestingness via what is not interesting, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '99, 1999.
DOI : 10.1145/312129.312272