H. L. Beus and S. S. Tiu, An improved corner detection algorithm based on chain-coded plane curves, Pattern Recognition, vol.20, issue.3, pp.291-296, 1987.
DOI : 10.1016/0031-3203(87)90004-5

L. Buzer, An Elementary Algorithm for Digital Line Recognition in the General Case, Proc. of Int. Conf. DGCI, pp.299-310, 2005.
DOI : 10.1007/978-3-540-31965-8_28

X. Chang, L. Gao, and Y. Li, Corner Detection Based on Morphological Disk Element, 2007 American Control Conference, pp.1994-1999, 2007.
DOI : 10.1109/ACC.2007.4282506

D. Chetverikov, A Simple and Efficient Algorithm for Detection of High Curvature Points in Planar Curves, CAIP'03, pp.746-753, 2003.
DOI : 10.1007/978-3-540-45179-2_91

D. Coeurjolly, S. Miguet, and L. Tougne, Discrete Curvature Based on Osculating Circle Estimation, Proc. Int. workshop Visual Form, pp.303-302, 2001.
DOI : 10.1007/3-540-45129-3_27

I. Debled-rennesson, F. Feschet, and J. Rouyer-degli, Optimal blurred segments decomposition of noisy shapes in linear times. Computers and Graphics, 2006.

F. Feschet and L. Tougne, Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature, Proc. of the Int Conf DGCI, pp.31-40, 1999.
DOI : 10.1007/3-540-49126-0_3

H. Freeman and L. S. Davis, A Corner-Finding Algorithm for Chain-Coded Curves, IEEE Transactions on Computers, vol.26, issue.3, pp.297-303, 1977.
DOI : 10.1109/TC.1977.1674825

S. Hermann and R. Klette, A Comparative Study on 2D Curvature Estimators, 2007 International Conference on Computing: Theory and Applications (ICCTA'07), 2007.
DOI : 10.1109/ICCTA.2007.2

T. Kanungo, Document Degradation Models and a Methodology for Degradation Model Validation, 1996.

B. Kerautret, J. Lachaud, and B. Naegel, Comparison of Discrete Curvature Estimators and Application to Corner Detection, Proc. 4th International Symposium on Visual Computing (ISVC 08), pp.710-719, 2008.
DOI : 10.1007/978-3-540-89639-5_68

URL : https://hal.archives-ouvertes.fr/inria-00345781

B. Kerautret and J. O. Lachaud, Robust Estimation of Curvature along Digital Contours with Global Optimization, Proc. of Int Conf DGCI, pp.334-345, 2008.
DOI : 10.1007/978-3-540-79126-3_30

URL : https://hal.archives-ouvertes.fr/inria-00345779

H. Liu, L. J. Latecki, and W. Liu, A Unified Curvature Definition for Regular, Polygonal, and Digital Planar Curves, International Journal of Computer Vision, vol.45, issue.12, pp.104-124, 2008.
DOI : 10.1007/s11263-008-0131-y

R. Malgouyres, F. Brunet, and S. Fourey, Binomial Convolutions and Derivatives Estimation from Noisy Discretizations, Proceedings of the Int Conf on DGCI, pp.370-379, 2008.
DOI : 10.1007/978-3-540-79126-3_33

URL : https://hal.archives-ouvertes.fr/hal-00333776

T. P. Nguyen and I. Debled-rennesson, Curvature Estimation in Noisy Curves, CAIP, pp.474-481, 2007.
DOI : 10.1007/978-3-540-74272-2_59

URL : https://hal.archives-ouvertes.fr/hal-00184127

A. Rosenfeld and E. Johnston, Angle Detection on Digital Curves, IEEE Transactions on Computers, vol.22, issue.9, pp.22940-941, 1973.
DOI : 10.1109/TC.1973.5009188

A. Rosenfeld and J. S. Weszka, An improved method of angle detection on digital curves. Computers, IEEE Transactions, issue.9, pp.24940-941, 1975.

S. Utcke, Error-Bounds on Curvature Estimation, Proc. of Scale Space Methods in Computer Vision (SSMC'2003), pp.1080-1089, 2003.
DOI : 10.1007/3-540-44935-3_46

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=