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Abstract

Gossip protocols are simple, robust and scalable and have been consistently applied to many (mostly wired)

distributed systems. Nevertheless, most validation in this area has been empirical so far and there is a lack of a

theoretical counterpart to characterize what can and cannot be computed with gossip protocols.

Population protocols, on the other hand, benefit from a sound theoretical framework but little empirical eval-

uation. In this paper, we establish a correlation between population and gossip-based protocols. We propose a

classification of gossip-based protocols, based on the nature of the underlying peer sampling service. First, we

show that the class of gossip protocols, where each node relies on an arbitrary sample, is equivalent to population

protocols. Second, we show that gossip-based protocols, relying on a more powerful peer sampling service provid-

ing peers using a clearly identified set of other peers, are equivalent to community protocols, a modern variant of

population protocols.

Leveraging the resemblances between population and gossip protocols enables to provide a theoretical frame-

work for distributed systems where global behaviors emerge from a set of local interactions, both in wired and

wireless settings. The practical validations of gossip-protocols provide empirical evidence of quick convergence

times of such algorithms and demonstrate their practical relevance. While existing results in each area can be im-

mediately applied, this also leaves the space to transfer any new results, practical or theoretical, from one domain to

the other.

1 Introduction

In analogy with rumour spreading among human beings, gossip protocols provide a scalable, robust and

reliable substrate for many peer to peer applications [11, 13, 17, 21, 22]. They have recently received an

increased attention due to their scalability and quick convergence in large-scale dynamic settings. In a gossip

protocol, each node in the system periodically exchanges information with another peer sampled from the

network. The robustness of gossip protocols stems from their random flavour in the sampling. However,

while there are some ad-hoc analyses available for specific protocols [11, 14, 21], most validation in the area

has been so far achieved through extensive simulations and experimentations.

In [20], a generic practical gossip substrate has been defined. In this model, a protocol is defined by

three functions: (i) the peer selection, identifying the gossip target, provided by a peer sampling service;

(ii) the data exchanged, specifying the information exchanged between the peers during a gossip interaction

and (iii) the data processing following an interaction. While this framework was initially defined to unify

gossip membership systems, it has been shown to be generic enough to be applied for the whole spectrum

of gossip protocols including reliable dissemination, distributed computation, and overlay construction [23].

Yet, there is a lack of clear theoretical framework enabling reasoning about the power and limitations of this

model.

On the other hand, population protocols [1] provide theoretical foundations for distributed systems in

which global behavior emerges from a set of simple interactions between their agents. Originally developed

in the context of mobile tiny devices, typically sensors, in this model, agents are considered anonymous,

and therefore, undistinguishable. Many variants of population protocols exist [2, 4, 5, 6, 10]. Among them,

community protocols [16] augment the original model by assigning agents a unique identifier and letting

nodes remember a limited number of other identifiers. Not only this significantly increases the computation



power of the system but also provides a way to tolerate a bounded number of byzantine failures. In the

sequel, the class of population protocols and variants will be refered as population protocols, and the original

model as basic population protocol.

More specifically, the population protocol model consists in a finite space of agent’s states, a finite set of

inputs, a finite set of outputs and a transition function. The set of possible node’s interactions is represented

by a graph. When two agents are sufficiently close for a sufficiently long time, they interact by exchanging

their local information, and update their state according to the transition function. For instance, if agents

are small devices embedded on animals, an interaction takes place each time two animals are in the same

radio range. The interaction patterns, orchestrated by a scheduler, are considered as unpredictable. Yet, the

scheduler is assumed to be fair i.e., it ensures that any reachable global system state can be reached infinitely

often. In the absence of global knowledge, agents cannot usually verify that the protocol has terminated,

therefore the model considers convergence (of the distributed output) rather than termination.

Contributions: Correlating population and gossip protocols Our contributions in this paper stem from

the observation that population and gossip protocols bear many resemblances. They both rely on a scheduler

orchestrating the interactions between nodes. The scheduler, fair by assumption in population protocols,

specifies the node interactions in a mobile environment while the scheduler is a peer sampling service in

gossip protocols providing nodes with gossip targets. Both aim at achieving an emerging global behavior

from a set of local interactions in a fully decentralized manner. The main contribution of this paper is to

acknowledge these similarities and leverage them in both contexts.

On one hand, the gossip structure presented in [20] provides a practical generic framework in the context

of wired systems. Yet, this does not provide a fine-grained classification. Works in this area have shown that

the gossip protocols scale well in practice and convergence quickly. On the other hand, population protocols

provide a theoretical framework for wireless systems. They clearly define the power and limitation of such

protocols. Population protocols show that such systems composed of anonymous agents ensure the conver-

gence of a clearly defined set of functions. Community protocols extend this model, by adding a bounded

set of identifiers. However, until now, these models have not significant practical implication. In this paper,

we present the following contributions:

– We establish a correlation between population and gossip protocols and introduce a first classification

of gossip protocols depending on the nature of the underlying peer sampling service. More precisely, we

identify two classes of gossip protocols: anonymous (AGP) and non anonymous (NGP).

– We show that anonymous gossip protocols are equivalent to basic population protocols;

– We show that non anonymous gossip protocols are equivalent to community protocols;

– By doing so, we leverage the theoretical framework of population protocols for understanding the

power and limitations of gossip protocols. Likewise, we exploit the results obtained in the area of gossip

protocols to draw conclusions on the practicality of population protocols. This enables us to provide both

theoretical and practical considerations for such large-scale systems: the parallel between population and

gossip protocols can be exploited for both existing and new results, as we propose in [9]. For instance,

applying gossip experiments to population protocols enables to show the convergence behavior of these pro-

tocols. Likewise, applying some results from population protocols to the gossip-based protocols enable to

show their computability or extract some interesting bounds as the one proposed in [9], where we provide

a new result in the context of population protocol namely the optimality of uniform distribution of interac-

tions [8] with respect to speed of convergence. Then, we use the equivalence property to extend it to gossip

protocols. This enables us to conclude that the random peer sampling service [20] is optimal for the speed

of convergence of gossip protocols. This is a clear illustration of how the correlation can be exploited. For

space reasons, this last point is not developed in the paper. Details are available in [8].



2 Population vs gossip protocols

2.1 Background on population protocols

In this section, we briefly present the basic population protocol model and the community protocol variant,

which relaxes the assumption on the anonymity of agents.

Basic population protocol The basic population protocol model, initially introduced in [1], is composed

of a collection of agents, interacting pairwise in an order determined by a fair scheduler. Each agent has

an input value and is represented by a finite state machine. This agent can only update its state through

an interaction. Updates are defined by a transition function that describes the function f computed by

the system. At each interaction, the agents compute an output value from their current state and converge

eventually to the correct output value, depending to the inputs initially spread to the agents.

More formally, a population protocol is composed of:

– a complete interaction graph Λ linking a set of n ≥ 2 agents;

– a finite input alphabet Σ;

– a finite output alphabet Y ;

– a finite set of possible agent’s states Q;

– an input function ι : Σ → Q mapping inputs to states;

– an output function ω : Q → Y mapping states to outputs;

– a transition relation δ : Q × Q → Q × Q on pairs of states.

In the following, we call (p, q) 7→ (p′, q′) or (p, q, p′, q′) a transition if (p, q, p′, q′) ∈ δ. A transition can

occur between two agents’ states only if these two agents have an interaction. The protocol is deterministic

if δ is a function (i.e. at most one possible transition for each pair in Q2).

A configuration of the system corresponds to an unordered multiset containing states of all agents. We

denote C → C ′ the fact that a configuration C ′ can be obtained from C in one step (i.e. with only one

transition for one existing interaction). An execution of the protocol is a finite or infinite sequence of

population configurations C0, C1, C2, . . . such that ∀i, Ci → Ci+1.

As introduced above, the order of the interactions is unpredictable, and decided by the scheduler. The

scheduler is assumed to be fair, i.e a feasible configuration cannot be endlessly ignored. In other words, if

a configuration C appears an infinite number of times during an execution, and there exists a step C → C ′,

then C ′ must also appear an infinite number of times in the execution. This ensures that any attainable

configuration is eventually reached.

Community protocols Many variants of the last model exist. In this paper, we focus on the community

protocol [16] extension, which significantly increases the computational power. This model augments the

basic population protocol model by assigning unique identifiers to agents. All possible identifiers and a

special symbol ⊥ are grouped in an infinite set U . The difference between basic population protocols and

community protocols is the definition of the set of states: Q = B × Ud where B is the initial definition of

the population protocol’s set of states collapsed to a memory of d identifiers. As in population protocols, al-

gorithms cannot use any bound on the number of agents and moreover, U is infinite. In order to maintain the

population protocol spirit in this extended model, some constraints are added: only existing agent identifiers

can be stored in the d slots intended for identifiers of an agent’s state and no other structural information

about identifiers can be used by algorithms. We consider, for q ∈ Q and id ∈ U , that id ∈ q means that q

stores id in one of its d indentifier slots. Thus, community protocols have to verify the two following formal

constraints:

– ∀(q1, q2) 7→ (q′1, q
′

2) ∈ δ, id ∈ q′1 ∨ id ∈ q′2 ⇒ id ∈ q1 ∨ id ∈ q2

– For q = 〈b, u1, u2, . . . , ud〉 ∈ Q, let π̂(q) = 〈b, π(u1), π(u2), . . . , π(ud)〉 where π a permutation of

U with π(⊥) = ⊥. We assume that: ∀(q1, q2) 7→ (q′1, q
′

2) ∈ δ : (π̂(q1), π̂(q2)) 7→ (π̂(q′1), π̂(q′2)) ∈ δ.

In short, the first assumption ensures that no transition introduce new identifiers and the second one



Algorithm 1: Generic Gossip Protocol

Active thread

Do once for each T time units at a random time

begin
p = SelectPeer()

Send DataExchange(state) to p

Receive infop from p

state = DataProcessing(infop)

end

Passive thread

Do forever

begin
Receive infoq from q

Send DataExchange(state) to q

state = DataProcessing(infoq)

end

that identifiers can only be stored or compared for equality, but not manipulated in any other way. Any

population protocol can be viewed as a community protocol with d = 0.

Finally, a population or community protocol stably computes a function f : Σ+ → Y if ∀n ∈ N,∀σ ∈
Σn, every fair execution with n agents initialized with the elements of σ, eventually stabilizes to output

f(σ). That means that the output value of every agent eventually stabilizes to f(σ).

2.2 Gossip protocols: A practical framework

Originally introduced for information dissemination, gossip protocols are simple, robust and scalable. Ini-

tially, epidemic-based algorithms have been proposed for database maintenance in [11]. Since then, they

have been applied in many settings in wired and wireless systems as in [7, 13, 14, 15, 17, 25, 26, 27].

A generic framework has been proposed in [20] to provide a generic substrate for gossip peer sampling

protocols, providing a common ground for membership systems. In this paper, the authors explore the

resulting topologies and show that the parameters of the generic gossip protocols can be set to achieve

random-like graph topologies i.e. providing each node with a random sample of the network. This has been

achieved through extensive experimentations and has been recognized as a way to achieve random peer

sampling in large-scale dynamic networks.

In this framework, each peer maintains a local view of size c of the system, representing its restricted

knowledge of the systems. The peer sampling service provides a sample from that view. This framework

relies on three basic functions:

SelectPeer() returns a peer from the local view. This function is used to select the gossip target;

DataExchange() returns the data to be exchanged over a gossip communication;

DataProcessing() returns the resulting state and specifies the way the data exchanged are processed.

Each peer runs an active and a passive threads (see Algorithm 1). The active thread is run periodically

and launches a gossip interaction. A gossip target is selected from its local view using (SelectPeer()), data

is exchanged (DataExchange()) and processed between the two interacting peers (DataProcessing()).

Initially proposed in the context of protocols achieving unstructured topologies, it turns out that this

very substrate is generic enough to be used for many other purposes [23]. For example, message dissem-

ination [22, 13] can be achieved by parameterizing the protocol as follows. (i) SelectPeer() should return

a random peer; (ii) DataExchange() should contain the message to disseminate; and (iii) DataProcessing()

should do nothing. Likewise, distributed computations (average, sum or quantile) [19, 21], gossip size es-

timation [12, 24] or overlay construction [17, 27] can be achieved using the same protocol. This substrate

provides a general framework for practical implementations of gossip protocols. Yet, to the best of our

knowledge, there is no theoretical counterpart (in the sense of a framework).



3 A classification of gossip protocols

3.1 On the power of the peer sampling service

In this section, we propose a novel classification of gossip protocols stemming from the observation that,

although studied independently by two different communities, population and gossip protocols have a lot in

common. Both class of protocols rely on the following properties:

– a fully decentralized model;

– a set of agents, having a finite storage capacity, periodically interacting in a pairwise manner. The

agents are mobile and communicate in a wireless manner in population protocols; they are static and com-

municate through a dynamic network on a fixed infrastructure in gossip protocols;

– an unpredictable order of interactions orchestrated by a fair scheduler in population protocols mod-

elling the agents’ mobility patterns and by a peer sampling service serving the selectPeer() function in gossip

protocols;

– a function specifying the way data is processed over an interaction: this is the transition function δ in

population protocols and the DataProcessing function in gossip protocols;

– a state exchange over an interaction: this is the state value in Q in population protocols and the

DataExchanged function in gossip protocols.

Considering the gossip protocols in this light, we were able to make a parallel between (i) the difference

between the basic population and community protocols and (ii) the requirements for peer identifiers in gossip

protocols.

More specifically, gossip protocols differ from their requirement with respect to peer anonymity. This

is instantiated by the nature of the underlying peer sampling protocol. The peer sampling service, i.e. the

“black box” providing a peer with a given sample of the network, may either return any sample for the

implementation of the gossip protocol. Therefore, we introduce the following classification. Two main

classes of gossip protocols can then be defined depending on the power of the underlying peer sampling

service with respect to anonymity requirements.

AGP: Anonymous Gossip protocols do not require being aware of the identities of any peer for any of

the three functions of the generic protocol. This is typically the case of protocols achieving some simple

distributed computations such as average computation [19, 21] or system size estimations [18, 24]. Gossip

dissemination protocols where each peer gossips to k nodes picked uniformly at random also fall into this

category. Such protocols only rely on a peer sampling service providing them with a sample of the network,

be it random or biased [7, 22].

NGP: Non-anonymous Gossip Protocols are not oblivious to the identities of peers they are communi-

cating with or any other. Typically, gossip overlay construction protocols fall into this class. The identities

of peers are required in the three functions of the substrate aforementioned. Non-anonymous gossip proto-

cols have been used to implement overlays ranging from unstructured networks, providing random-graph

like topologies [20] to structured networks [17, 22].

3.2 Between synchronous and asynchronous

To refine the classification, we take into account the two main models of communication channels. In a

synchronous model, message delay, clock drift and time required to execute an algorithm step are bounded

and these bounds are known. On the contrary, in an asynchronous model, there is no bound. Gossip protocols

have a periodic behavior, in which at each step, every agent launches an exchange with another agent. In a

synchronous system, the gossip keeps its periodic behavior, and so every agent is in the same communication

round. In an asynchronous system, the clock drift and the fact that a time required by a gossip exchange

cannot be bound infers that the periodic behavior is lost.
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Figure 1: Relationship between gossip-based and population protocols

3.3 On the computational power of gossip protocols

Enriching our model with the communication synchronism property, we obtain a refined classification as

the one presented earlier. We now classify gossip protocols in four classes:

syncAGP Synchronous Communication and Anonymous Nodes;

asyncAGP Asynchronous Communication and Anonymous Nodes;

syncNGP Synchronous Communication and Non-anonymous Nodes;

asyncNGP Asynchronous Communication and Non-anonymous Nodes.

Obviously, the power of non-anonymous gossip protocols is greater than anonymous ones as the use of

node identifier enables to achieve distributed computations which are impossible in the anonymous context

(eg. exponential computation, logical overlay construction, etc.). Thus, we have:

asyncAGP ≺ asyncNGP and syncAGP ≺ syncNGP

As far as anonymous gossip protocols are concerned, it is possible to leverage the periodicity of exchange

in order to increase their computational power. For instance, it is possible in syncAGP to establish a global

time clock, thanks to the cycle structure, but not in asyncAGP (due to the unbounded message delay). Then,

it is obvious to conclude that:

asyncAGP ≺ syncAGP

Finally, in the NGP context, we show in the proof of Lemma 6 that the identification of nodes enables to

emulate synchronous communications, such that:

asyncNGP ∼= syncNGP

This classification and the relation between all the considered models are summarized in Figure 1. This

provides a refined classification of gossip protocols based on the synchronism and anonymity properties.

Yet, there is no formal framework to define what can and cannot be achieved with the susmentioned pro-

tocols. Establishing the parallel between population and gossip protocols provides a first answer to that

question.

4 Bridging the gap between population and gossip protocols

In a nutshell, in AGP, a peer sampling service provides each peer with another peer to communicate with,

regardless of its identifier. If the peer sampling service ensures that any pairwise interaction can endlessly



take place, then a protocol of AGP resembles a basic population protocol. Inversely, a protocol from NGP

requires a peer sampling service to provide each node with a set of clearly identified peers, potentially along

with more information about each peer, where the identifier (whether it is an identifier or an IP address) is

crucial. This means that the SelectPeer or the DataProcessing use the identifier or information attached to

specific peer to achieve a given functionality. This clearly matches the community protocol model described

above. We claim that these resemblances are actually equivalences and provide the proofs in this section as

illustrated on Figure 1.

4.1 Equivalence between basic population and anonymous asynchronous gossip protocols

In this section, we prove that the basic population and anonymous asynchronous gossip protocols (asyncAGP)

are equivalent.

Theorem 1 A predicate is computable by a basic population protocol if and only if it can be computed by

an anonymous gossip protocol via an asynchronous communication model (asyncAGP).

Proof. In order to prove the equivalence, we consider the functions computable by basic population protocols and

asyncAGP. Then, we prove in Lemmas 2 and 3 that they belong to the same equivalence class. In fact, we prove below

that the class of functions computable by a basic population protocol is a subset of the ones computable by asyncAGP,

and vice-versa. �

On one hand, consider that PP ≺ asyncAGP with the following lemma.

Lemma 2 If f is computable by a basic population protocol, then there exists a protocol from asyncAGP

which can compute f .

Proof. Let P the basic population protocol computing f and defined by the 7-tuples (Λ,Σ, Y,Q, ι, ω, δ). Consider

the anonymous gossip protocol G described below. We have to show that G simulates P .

Similarities: Each agent in Λ is hosted by a specific peer of G. Input, output and state sets are the same in G than

in P . A fortiori, both map function ι and ω remain identical in G.

Dealing with the transition function: The G’s DataProcessing function is defined from δ: consider two peers

in the system l and r, gossiping with each other at a time t. Let assume that l initiates the gossip exchange with

r. Let pl (respectively pr) the selected information obtained by DataExchange from l’s state (respectively r’s state).

Thus, as l calls the function during its active thread, DataProcessing returns locally the third entry of the 4-tuple

(pl, pr, p
′
l, p

′
r) ∈ δ, and the state of l becomes p′l. On the remote peer r, a call to the function DataProcessing during

its passive thread returns the last entry of the same 4-tuple (pl, pr, p
′
l, p

′
r).

Thus, the sequence of population configurations is valid and represents the basic population protocol P , as it only

stems from the transition function δ using pairwise interactions.

On the fairness assumption: The last assumption to verify is the fairness condition. In asyncAGP, the scheduler

is fully defined by the order of gossip exchanges, itself defined by (i) the selectPeer function; (ii) the randomization

of the gossip time and; (iii) the asynchronous environment which, as we mentioned before, potentially leads to gossip

exchange losses. In that context, every possible finite scheduling has a non-null probability to happen. Thus, every

possible transaction between two system configurations C → C ′ has a non-null probability to happen. Moreover, if

the asynchronism acts against this condition, given a specific interaction, which is avoided for a while, the probability

that it continues to be avoided tends to zero. So, if the configuration C appears an infinite number of times during an

execution of P in the aforementioned context, then C ′ also appears an infinite number of times in this execution. The

fairness assumption is then verified.

Then, G simulates the basic population protocol P , which computes the function f . Thus, for any function

computable by basic population protocols, there exists an anonymous gossip protocol, which stably computes this

function. �

On the other hand, let’s show the inverse of Lemma 2, corresponding to the second implication of

Theorem 1: asyncAGP ≺ PP.



Lemma 3 If f is computable by a protocol from asyncAGP, then there exists a basic population protocol

which can compute f .

Proof. Let G an anonymous gossip protocol that computes a specific function f using the primitive DataExchange

and DataProcessing. As presented above, in a gossip protocol, peers are modeled by a finite-state machine.

Mapping the domain of the transition function: The domain of DataProcessing is finite (and corresponds to the

Cartesian product of DS , the set of peer states, with DE , the range of DataExchange). Moreover, as DataProcessing

is a function, its range is also finite by definition. Based on these sets, we define DG a specific subset of the Cartesian

product between the domain and the codomain of DataProcessing (i.e. DG contains each ordered pair such that

the first entry is in the domain of DataProcessing and the second entry is the mapped element of this first entry by

DataProcessing). More formally, DG ⊆ (DS ×DE)×DS . Thus, DG is finite and contains all the possible transitions

of peer states, based on the knowledge of a remote peer sub-state.

Design of the basic population protocol for the purpose of simulation: Consider the following basic population

protocol P , represented by the 7-uplet (Λ,Σ, Y,Q, ι, ω, δ). Consider a complete interaction graph Λ. Let the set of

agent states be identical to the set of peer states, i.e. Q = DS . Consider that Σ and Y are the same as the input and

output sets of G, if they exist. In this case, ι and ω are the same functions than the ones which respectively associate

the input set of G to DS , and DS to the output set of G. Conversely, if no specific input and output sets are defined in

G, then Σ = Y = DS and ι ≡ ω corresponding to the identity function. Finally, the transition function δ is defined as

follows.

∀(sl, sr, s
′
l) ∈ DG ,∃(sr, sl, s

′
r) ∈ DG such that (sl, sr, s

′
l, s

′
r) ∈ δ.

On the periodicity of the fair scheduler: Periodicity of exchange is an inherent characteristic of many gossip

protocols. However, the only difference between asyncAGP and syncAGP is that asyncAGP potentially temporary

jeopardize the periodicity of exchanges, in case of arbitrary long transmission delays. Thus, as presented in Lemma 2,

no periodic assumption can be considered in an asynchronous environment. Therefore, a fair scheduler is sufficient to

lead to a correct execution of G, using the aforementioned P .

Thus, there exists a basic population protocol P , which simulates the considered asyncAGP G and computes the

function f . Then, for any function computable by a protocol from asyncAGP, there exists a basic population protocol,

which stably computes this function. �

4.2 Equivalence between community protocols and NGP

Along the same lines, we prove here the following theorem in order to prove the equivalence between

community and NGP protocols. In fact, we show in the proof of Lemma 6 that it is possible to simulate

the periodicity of protocols from syncNGP using a protocol from asyncNGP (these two classes are then

equivalent).

Theorem 4 A predicate is computable by a community protocol if and only if it can be computed by a

non-anonymous gossip protocol (NGP).

Proof. As Theorem 1, the proof of Theorem 4 is directly infered from the statements of Lemmas 5 and 6, which show

respectively both implications of this equivalence. �

Consider the first implication of this theorem. Inspired from the equivalence between basic population

protocols and asyncAGP, the following theorem is almost trivial.

Lemma 5 For each f computable by a community protocol, there exists a NGP protocol which compute f .

Proof. The only difference between a basic population protocol and a community protocol consists in the definition

of the set of states (i.e. Q = B × Ud) and the two constraints on the state’s identifier part (i.e. the part belonging to

Ud cannot be used freely). Then, due to Lemma 2 and its sketch of proof, the protocol from NGP has to be designed

to simulate a given community protocol C. Then, we can still consider the function selectPeer as a black box which

provides a fair scheduler. In other hand, functions DataExchange and DataProcessing are defined respectively on the

domain DS = B × Ud (instead of B in the anonymous gossip version) and DS ×DE .



This does not violate the definition of NGP as the additional information used here only depends on the presence

of unique identifier on agents, which is a mandatory assumption in non anonymous gossip protocols. �

Finally, let now show the opposite of Lemma 5, corresponding to the second part of Theorem 4.

Lemma 6 For each f computable by a NGP protocol, there exists a community protocol which computes

f .

Proof. Let G the given protocol from NGP. Thus, each peer in the system is aware of its unique identifier. Consider

the following community protocol C.

Preliminary assumptions on C: We assume that, in the community protocol used on C, agents are uniquely

identified, and a unique agent is assigned a specific identifier idL. This agent is considered as the leader by all other

agents. In this specific community protocol, we assume that this leader is aware of the size of the system1 (denoted n

in the sequel). In other words, the view of a peer is modeled as the set of d − 1 identifiers in the community protocol

model (one space of the d-tuple in Ud is set aside for storing its own identifier).

Summary of agent state requirement: In addition of the gossip peer state in DS , each agent maintains:

– a binary variable gcparity to memorize the current gossip cycle parity;

– a ternary variable gcprogress storing the gossip state of an agent at the corresponding cycle. gcprogress can only

take one of the three following values: (i) todo if the active thread has not been run yet during the current gossip cycle,

(ii) done if it has been run or (iii) wait representing the inter-cycle state, as explained below (i.e. the agent waits to

pass across the synchronization barrier);

– an agent’s identifier variable idnext, which stores the identifier of the next agent to gossip with;

– the leader agent L maintains a counter gccount used in the synchronization cycle process.

To make a long story short, the set of agent states is defined as

Q = DS × {true, false} × {todo, done, wait} × U × J1;nK × Ud

i.e. the Cartesian product between (i) the domain of the function DataProcessing (to represent the gossip peer state),

(ii) the domain of gcparity, (iii) the domain of gcprogress, (iv) the identifier set U for idnext, (v) the domain of gccount and

finally (vi) Ud for the view of the agent. At initialization, each agent sets gcparity to false, gcprogress to todo and idnext

to idL. Moreover, gccount is set to 0 for the leader agent L.

Simulating a gossip cycle in C: We now describe the behavior of an agent during a gossip cycle, according

to its gcprogress value. In the case that gcprogress = todo, the corresponding agent has not run its active thread in a

given gossip round. Then, it waits to meet its next gossip partner, corresponding to the identifier stored in idnext.

For each interaction (id1, id2), the agent corresponding to id1 verifies if gcprogress = todo. If this is the case, it

checks if id2 = idnext. Only in that case, id1 and id2 run respectively DataProcessing(q1,DataExchange(q2)) and

DataProcessing(q2,DataExchange(q1)) (where q1 and q2 represents respectively the state of these agents). All the

possible transitions are included in DG introduced in the proof of Theorem 3. At the end of this interaction, id1 and

id2 have updated their own state according to the previous one (qi) and the remote one (DataExchange(qj)). Finally,

id1 sets gcprogress to done. In other words, each agent waits until it encounters the agent with the identifier stored in

idnext to gossip with.

How to simulate the T periodicity: In order to simulate the cycle in the context of community protocol, the T

time slot can be simulated through a synchronization barrier. In the rest of this proof, we present how to establish such a

barrier and how to assign agents to gossip cycles. So, we introduce the behavior of agents in case that gcprogress 6= todo.

Consider an agent id. After its own active gossip, the gossip state of id becomes done. In this state, it only waits

until it encounters the agent idL. During its next interaction with idL, id sets its gcprogress to wait and idL increments

gccount by 1. Thus, all agents eventually stabilize to the wait state, and gccount eventually converges to n (the number

of agents in the population). At this point, all agents have reached the synchronization barrier.

After the barrier, idL enables all agents to begin the next gossip cycle as described hereinafter. idL switches its

own gcparity to its opposite value, gcprogress to the todo value, idnext to the returned value of selectPeer and finally gccount

to 0. At this point, each time an agent in the wait state interacts with an agent owning the opposite value of gcparity,

will fall into the next cycle by switching gcparity, and setting gcprogress and idnext respectively to the todo value and the

returned value of selectPeer. Then, all agents eventually leave the wait state of the last cycle, and are ready for their

next gossip exchange.

1This assumption is only expected for the synchronisation barrier. It can be relaxed using the probabilistic clock phase mecha-

nism proposed for population protocols in [2].



In conclusion, if G computes the function f , then the community protocol C simulates the behavior of G and also

computes the function f . �

The last step of this proof lets us show that a protocol from NGP in an asynchronous environment is able

to simulate a syncNGP. It is obvious that asyncNGP ≺ syncNGP (for the same reason that in AGP). Thus,

we can conclude that asyncNGP ∼= syncNGP, and consequently, that community protocols are equivalent to

all protocols from NGP (asyncNGP ∪ syncNGP). We then have proved all the claims presented in Figure 1.

4.3 Leveraging the relations

The equivalences above are of the utmost importance in the area of gossip protocols. They clearly define

what can be computed with an anonymous gossip protocol. They show that the functions of the Presburger

arithmetic eventually converge using an anonymous gossip protocol. They also prove that no other function

can be computed with such a protocol [1, 3]. This is a new and important result in the area of gossip

protocols. On the other hand, the empirical results on the convergence times and practicality of the gossip

protocols can be used to evaluate the efficiency of population protocols.

Likewise, gossip protocols relying on a peer sampling service providing peers, with a bounded set

of identifiers, are equivalent to community protocols. This can be used to achieve any computation of

symmetric function from NSPACE(n log n) (namely a high number of functions) and also to implement

algorithms tolerating failures (and not only benign ones).

These results can be leveraged for existing results as well as results to come in both areas. Due to

space constraint, we cannot develop these observations in this paper, but in [9], we illustrate this claim by

considering a gossip protocol and considering it from the population protocol standpoint and the other way

around.

5 Conclusion and future works

The main contribution of this paper is to establish a correlation between population and gossip protocols.

This parallel between two worlds, explored so far independently, offers several extremely interesting out-

comes. First it enables to provide a first classification of gossip protocols, a theoretical framework for such

protocols, allowing to specify in a formal way what can and cannot be computed by a gossip protocol de-

pending on the nature of the underlying peer sampling service. If a gossip protocol relies on a peer sampling

service oblivious to identifiers, it is equivalent to a population protocol. If the peer sampling service is

identifier-aware, a gossip protocol is equivalent to a community protocol. For example, it is now clear that

the multiplication, which does not belong to the Presburger arithmetic, cannot be achieved by an anonymous

gossip protocol.

Conversely, this equivalence enables to leverage the properties obtained empirically on gossip protocols

with respect to scalability, practicality and speed of convergence and apply them to population protocols.

Apart from exploiting the already known results, this opens the door to leverage any new result in one of

these two areas as our case studies demonstrate [9].

Part of the future work is to explore further the classes of population protocol to refine our classification

of gossip protocols. Quantifying formally the convergence times of such protocols also remains an open

issue.
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