J. Ansel and C. Stricker, Lois de martingale, densits et dcomposition de Fllmer-Schweizer, Annales de l, Institut Henri Poincar, vol.28, pp.375-392, 1992.

T. Arai, Some properties of the variance-optimal martingale measure for discontinuous semimartingales, Statistics & Probability Letters, vol.74, issue.2, pp.163-170, 2005.
DOI : 10.1016/j.spl.2005.04.040

T. Arai, An extension of mean-variance hedging to the discontinuous case, Finance and Stochastics, vol.9, issue.1, pp.129-139, 2005.
DOI : 10.1007/s00780-004-0136-5

O. E. Barndorff-nielsen and C. Halgreen, Infinite divisibility of the hyperbolic and generalized inverse gaussian distributions Zeitschrift fr Wahrscheinlichkeitstheorie und verwandte Gebiete, pp.309-312, 1977.

O. E. Barndorff-nielsen, Processes of normal inverse Gaussian type, Finance and Stochastics, vol.2, issue.1, pp.41-68, 1998.
DOI : 10.1007/s007800050032

F. E. Benth, J. Kallsen, and T. Meyer-brandis, A Non???Gaussian Ornstein???Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing, Applied Mathematical Finance, vol.368, issue.2, pp.153-169, 2007.
DOI : 10.1111/1368-423X.00042

F. E. Benth, D. Nunno, G. Løkka, A. Øksendal, B. Proske et al., Explicit representation of the minimal variance portfolio in markets driven by Lvy processes, Conference on Applications of Malliavin Calculus in Finance (Rocquencourt Math. Finance, vol.13, issue.1, pp.55-72, 2001.

F. E. Benth, J. Saltyte-benth, and S. Koekebakker, Stochastic modelling of electricity and related markets Advanced Series on statistical, Science & Applied Probability, vol.11, 2008.

F. E. Benth and J. Saltyte-benth, THE NORMAL INVERSE GAUSSIAN DISTRIBUTION AND SPOT PRICE MODELLING IN ENERGY MARKETS, International Journal of Theoretical and Applied Finance, vol.07, issue.02, pp.177-192, 2004.
DOI : 10.1142/S0219024904002360

J. Bertoin, Lvy processes, 1996.

R. Buckdahn and J. Kallsen, Backward stochastic differential equations driven by a martingale. Unpublished. [12] ? Cern`Cern`y, A On the structure of general man-variance hedging strategies, The Annals of probability, pp.1479-1531, 1993.

L. Clewlow and C. Strickland, Energy derivatives. Pricing and risk management Lacima Publications, 2000.

T. Choulli, L. Krawczyk, and C. Stricker, E-martingales and their applications in mathematical finance, The Annals of Probability, vol.26, pp.853-876, 1998.

J. Collet, D. Duwig, and N. Oudjane, Some non-Gaussian models for electricity spot prices, 2006 International Conference on Probabilistic Methods Applied to Power Systems, 2006.
DOI : 10.1109/PMAPS.2006.360293

R. Cont and P. Tankov, Financial modelling with jump processes Chapman & Hall, 2003.

H. Cramer, On the representation of a function by certain Fourier integrals, Transactions of the American Mathematical Society, vol.46, pp.191-201, 1939.
DOI : 10.1090/S0002-9947-1939-0000073-2

F. Delbaen and W. Schachermayer, A general version of the fundamental theorem of asset pricing, Mathematische Annalen, vol.286, issue.1, pp.463-520, 1994.
DOI : 10.1007/BF01450498

F. Delbaen and W. Schachermayer, Attainable claims with p'th moments, Ann. Inst. H.Poincar Probab. Statist, vol.32, pp.743-763, 1996.

E. Eberlein, C. Glau, and A. Papapantoleon, Analysis of Fourier Transform Valuation Formulas and Applications, Applied Mathematical Finance, vol.118, issue.3, 2009.
DOI : 10.1098/rspa.2005.1583

E. Karoui, N. Quenez, and M. , Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market, SIAM Journal on Control and Optimization, vol.33, issue.1, pp.29-66, 1995.
DOI : 10.1137/S0363012992232579

D. Filipovic and S. Tappe, Existence of L??vy term structure models, Finance and Stochastics, vol.51, issue.3, pp.83-115, 2008.
DOI : 10.1007/s00780-007-0054-4

H. Fllmer and P. Leukert, Quantile hedging, Finance Stoch, pp.251-273, 1999.

H. Fllmer and M. Schweizer, Hedging of contingent claims under incomplete information Applied stochastic analysis, Stochastics Monogr, vol.5, pp.389-414, 1989.

J. P. Fouque, G. Papanicolaou, and K. R. Sircar, Derivatives in financial markets with stochastic volatility, 2000.

M. Frittelli, The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets, Mathematical Finance, vol.10, issue.1, pp.39-53, 2000.
DOI : 10.1111/1467-9965.00079

T. Goll and L. Ruschendorf, Minimal distance martingale measures and optimal portfolios consistent with observed market proces, Stochastic Processes and Related Topics, pp.141-154, 2002.

S. Goutte, N. Oudjane, and F. Russo, Variance Optimal Hedging for discrete time processes with independent increments.Application to Electricity Markets, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00473032

S. Hodges and A. Neuberger, Optimal replication of contingent claims under transactions costs, Review of forward markets, pp.222-239, 1989.

C. Hou and I. Karatazas, Least-squares approximation of random variables by stochastic integrals . Stochastic analysis and related topics in Kyoto, Adv. Stud. Pure Math, vol.41, pp.141-166, 2004.

F. Hubalek, J. Kallsen, and L. Krawczyk, Variance-optimal hedging for processes with stationary independent increments, The Annals of Applied Probability, pp.853-885, 2006.

R. Huisman and R. Mahieu, Regime jumps in electricity prices Energy economics, pp.425-434, 2003.

J. Hull, Options, futures and other derivatives, 2005.

J. Jacod, Calcul stochastique et problmes de martingales, Lecture Notes in Mathematics, vol.714, 1979.
DOI : 10.1007/bfb0064907

J. Jacod and A. Shiryaev, Limit theorems for stochastic processes, second edition, 2003.
DOI : 10.1007/978-3-662-02514-7

D. B. Madan, P. P. Carr, and E. C. Chang, The Variance Gamma Process and Option Pricing, Review of Finance, vol.2, issue.1, pp.79-105, 1998.
DOI : 10.1023/A:1009703431535

T. Meyer-brandis and P. Tankov, MULTI-FACTOR JUMP-DIFFUSION MODELS OF ELECTRICITY PRICES, International Journal of Theoretical and Applied Finance, vol.11, issue.05, pp.503-528, 2008.
DOI : 10.1142/S0219024908004907

URL : https://hal.archives-ouvertes.fr/hal-00705978

P. Monat and C. Stricker, Fllmer-Schweizer decomposition and mean-variance hedging for general claims, The Annals of Probability, pp.605-628, 1995.

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, Systems & Control Letters, vol.14, issue.1, pp.55-61, 1990.
DOI : 10.1016/0167-6911(90)90082-6

P. Protter, Stochastic integration and differential equations, second edition, 2004.

S. Raible, Lvy processes in finance: theory, numerics and empirical facts, 2000.

D. Revuz and M. Yor, Continuous martingales and Brownian motion, 2005.

B. Rdiger and S. Tappe, Stability results for term structure models driven by Lvy processes, 2009.

W. Rudin, Real and complex analysis, 1987.

K. Sato, Lvy processes and infinitely divisible distributions, 1999.

M. Schl, On Quadratic Cost Criteria for Option Hedging, Mathematics of Operations Research, vol.19, issue.1, pp.121-131, 1994.
DOI : 10.1287/moor.19.1.121

E. S. Schwartz, The stochastic behaviour of commodity prices: implications for valuation and hedging, Journal of Finance, vol.LII, pp.923-973, 1997.

M. Schweizer, Approximating Random Variables by Stochastic Integrals, The Annals of Probability, vol.22, issue.3, pp.1536-1575, 1994.
DOI : 10.1214/aop/1176988611

M. Schweizer, On the minimal martingale measure and the Fllmer-Schweizer decomposition, Stochastic Analysis and Applications, pp.573-599, 1995.

M. Schweizer, Variance-Optimal Hedging in Discrete Time, Mathematics of Operations Research, vol.20, issue.1, pp.1-32, 1995.
DOI : 10.1287/moor.20.1.1

M. Schweizer, A guided tour through quadratic hedging approaches. Option pricing, interest rates and risk management, Handb. Math. Finance, pp.538-574, 2001.