
HAL Id: inria-00438486
https://inria.hal.science/inria-00438486v2
Submitted on 15 Mar 2010 (v2), last revised 12 Jul 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-Adapting Point Location
Pedro M. M. de Castro, Olivier Devillers

To cite this version:
Pedro M. M. de Castro, Olivier Devillers. Self-Adapting Point Location. [Research Report] RR-7132,
2009, pp.24. �inria-00438486v2�

https://inria.hal.science/inria-00438486v2
https://hal.archives-ouvertes.fr


appor t  


de  r ech er ch e


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
71

32
--

FR
+E

N
G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Self-Adapting Point Location

Pedro Machado Manhães de Castro — Olivier Devillers

N° 7132 — version 2

initial version December 2009 — revised version Mars 2010





Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Self-Adapting Point Location

Pedro Machado Manhães de Castro , Olivier Devillers

Thème : Algorithmique, calcul certifié et cryptographie
Équipe-Projet Geometrica

Rapport de recherche n° 7132 — version 2 — initial version December 2009
— revised version Mars 2010 — 24 pages

Abstract: Point location in spatial subdivision is one of the most studied
problems in computational geometry. In the case of triangulations of Rd, we
revisit the problem to exploit a possible coherence between the query-points.

For a single query, walking in the triangulation is a classical strategy with
good practical behavior and expected complexityO(n1/d) if the points are evenly
distributed. For a batch of query-points, the main idea is to use previous queries
to improve the current one; we compare various strategies that have an influence
on the constant hidden in the big-O notation.

Still regarding the complexity of a query, we show how the Delaunay hierar-
chy can be used to answer, under some hypotheses, a query q with aO(log #(pq))
randomized expected complexity, where #(s) indicates the number of simplices
crossed by the line segment s, and p is a previously located query. The data-
structure has O(n log n) time complexity and O(n) memory complexity.

Key-words: Point location, Delaunay triangulation
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Localisation de points s’adaptant aux requètes
Résumé : La localisation de points dans une subdivision de l’espace est un
classique de la géométrie algorithmique, nous réexaminons ce problème dans le
cas des triangulations de Rd pour exploiter une éventuelle cohérence entre les
requêtes.

Pour une requête, marcher dans la triangulation est une stratégie classique de
localisation qui donne de bons résultats pratique et a une complexité moyenne
O(n1/d) si les points sont uniformément distribués. Pour des paquets de re-
quêtes, l’idée principale est d’utiliser les requêtes précédentes pour améliorer la
requête courante; nous comparons différente stratégies qui ont une influence sur
les constantes cachées dans les grands O.

Toujours à propos de la complexité d’une requête, nous montrons que la
hiérarchie de Delaunay peut être utilisée pour localiser un point q à partir d’une
requête précédente q avec une complexité randomisée O(log #(pq)) pourvu que
la triangulation vérifie certaines hypothèses (#(s) désigne le nombre de simplex
traversés par le segment s). La structure de donnée a une taille O(n) et un coût
de construction O(n log n).

Mots-clés : Localisation, Triangulation de Delaunay



Self-Adapting Point Location 3

1 Introduction
Point location in spatial subdivision is one of the most classical problems in
computational geometry [13]. Given a query-point q and a partition of the d-
dimensional space in regions, the problem is to retrieve the region containing q.
This paper addresses the special case where the spatial subdivision is a simplicial
decomposition satisfying some hypotheses.

In two dimensions, locating a point has been solved in optimal O(n) space
and O(log n) worst-case query time a quarter of a century ago by Kirkpatrick’s
hierarchy [16]. In some applications however, query-points are contained within
a region, which is smaller than the whole domain in which the triangulation is
defined; thus, optimality of the worst case does not necessarily translate into
good performances. For example, in geometric information system the data base
contains some huge geographic area, while the user usually is exploring some
small region of interest; in that case queries are spatially coherent. Another
example is the Poisson surface reconstruction method [1], which uses point di-
chotomy to find the solution to some equation; here also, the queries have some
spatial coherence. For such applications, we can imagine a point location al-
gorithm which is capable to adapt to the query distribution. A point location
data-structure that benefits from the coherence of the queries is called a self-
adapting data-structure.

Self-adapting data-structures have been successfully formalized either in
terms of the entropy of the query distribution or by some special distances be-
tween two queries. In two dimensions, we mention: Arya et al. data-structure [2]
or Iacono data-structure [14], both achieving a query time proportional to the
entropy of the distribution of the queries, and linear space; or Iacono and Langer-
man’s data-structure [15] and Demaine et al. data-structure [7], where the loca-
tion time is logarithmic in terms of the distance between two successive queries
for some special region-counting distances.

Despite the good theoretical behavior of the above-mentioned methods, al-
ternative methods using simpler data-structures are still used by practitioners.
Amongst these methods, walking from a simplex to another using the neighbor-
hood relationships between simplices, is a straightforward method which does
not need any additional data-structure [9]. Walking performs well in practice for
Delaunay triangulations of evenly distributed points [10], but has a non-optimal
complexity. Building on the simplicity of the walk, the Jump & Walk [17] and
the Delaunay hierarchy [8] improves the complexity while retaining the simplic-
ity of the data-structure. The main idea of these two structures is to find a
good starting point for the walk to reduce the number of traversed simplices.

Our Results. This work introduces the Distribution Condition: a region C
of a triangulation T satisfies this condition if the cost of walking in T along a
segment inside C is proportional to the length of this segment. Then, we relate
this condition to the length of the edges of some graphs embedded in Rd, so as to
establish complexity results for point location. Section 6 provides experimental
evidences that some realistic triangulations verify the Distribution Condition
for the whole region inside their convex-hull.

We investigate constant-size-memory strategies to choose the starting point
of a walk. More precisely, we compare strategies that are dependent on previous
queries (self-adapting) and strategies that are not (non-self-adapting), mainly
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4 P. de Castro & O. Devillers

in the case of random queries. Random queries are, a priori, not favorable to
self-adapting strategies, since there is no coherence between the queries. Never-
theless, our computations prove that self-adapting strategies are, either better,
or not really worse in this case. Thus, there is a good reason for the use of
self-adapting strategies since they are competitive even in situations that are
seemingly unfavorable. Section 6 provides experiments to confirm such behavior
on realistic data.

We revisit Jump & Walk in a self-adapting way by allowing a ω(1)-size mem-
ory to choose the starting point for a next query; and give theoretical guarantees
that, in this case, the computational complexity is at least the same as the classi-
cal Jump & Walk. Section 6 shows that our modification (Keep, Jump, & Walk)
has an improved performance compared to the classical Jump & Walk in prac-
tice, and it is actually a very competitive method to locate points in a triangu-
lation.

Finally, we show how the Delaunay hierarchy can be used to answer a query
q in O(log #(pq)) randomized expected complexity, where #(s) indicates the
expected number of simplices crossed by the line segment s, and p is a previously
located query.

2 Preliminaries

2.1 Previous results on point location
Given a triangulation T of n points, a query-point q and the location of another
point p (starting point), we present here some existing results that will be useful
in the sequel.

Walk The query-point q can be located by repeatedly walking from p in T ,
either from a simplex to its adjacent simplex, or from a vertex to its adjacent
vertex, using various strategies [9]. The straight-walk is one of these strate-
gies. It requires visiting the triangles stabbed by a line segment s = pq. The
straight-walk has a worst-case complexity linear in the number of simplices of
the triangulation. If T is the Delaunay triangulation of points evenly distributed
in some finite convex domain and s is not close to the domain boundary, the
expected number of simplices stabbed by a segment s is O(|s| · n1/d) [10].

Jump & Walk The Jump & Walk technique takes a random sample of k ver-
tices of T , and uses a two-steps location process to locate a query q. First,
the jump step determines the nearest vertex in the sample in (brute-force)
O(k) time, then a walk in T is performed from that vertex. Usual analysis
of Jump & Walk made the hypothesis that T is the Delaunay triangulation
of points evenly distributed. Taking k = n1/(d+1) gives a final complexity of
O(n1/(d+1)) [17, 11].

Delaunay hierarchy Building on that idea, the Delaunay hierarchy [8] uses
several levels of random samples: At each level of the hierarchy, the walk is per-
formed starting at the closest vertex of the immediately coarser level. Building
the hierarchy by selecting a point in the coarser level with some fixed probabil-
ity, yields a good complexity. In two dimensions, the complexity is O(log n) in
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Self-Adapting Point Location 5

the worst case. In higher dimensions, this logarithmic time holds if the points
are evenly distributed, or even on some weaker hypotheses [8]. We will show in
Section 5, that the knowledge of a vertex of the triangulation being not too far
from the query, can be used to achieve faster point location.

2.2 Distribution Condition
To analyze the complexity of the straight-walk and derived strategies for point
location, we need some hypotheses claiming that the behavior of a walk in a
given region C of the triangulation is as follows.

Distribution Condition: For a given triangulation T of some set
of points following some distribution in Rd, and a region C inside
the domain of T , there exists a value F(T , C) ∈ R such that for a
segment s ⊆ C, the expected number of simplices of T intersected by
s is less than 1 + F(T , C) · |s|, where the expectation relates to the
choice of the sites in the distribution.

For a fixed region C, if we are considering a distribution of sites such that the
part of T included in C depends only on the number of points, we will denote
F(T , C) by F(n), where n is the number of points inside C.

Delaunay triangulations of points following the Poisson distribution in the
d-dimensional space assure the Distribution Condition with F(n) = O(n1/d),
for any region C. Another example, is the case of points lying on some manifold
in a space of dimension d, and we make the following conjecture (supported by
our experiments in Section 6):

Conjecture 1. The Delaunay triangulations under Euclidean metrics of n
points evenly distributed on a smooth hypersurface Π of dimension d, verify the
Distribution Condition inside CH(Π), with F(n) = O(n1/(d−1)). Here, CH(Π)
is the convex-hull of Π.

The Distribution Condition affects the relationship between the cost of lo-
cating points and the proximity between points. Indeed, the expected cost of
locating a finite sequence S of m query-points inside a region C ⊆ CH(T ), given
that C verifies the Distribution Condition for T , is at most

F(T , C) ·
m∑
i=1

|ei|+m, (1)

where ei is the line segment formed by the i-th starting point and the i-th
query-point.

Since the only points we can use as starting points for next locations are
points that we know where they are, the line segments (ei)1≤i≤m must be con-
nected. Therefore the graph E formed by these line segments is a tree spanning
the query-points; such a tree is called the Location Tree in the sequel. Its length
is given by:

|E| =
∑
e∈E
|e|.

Note that the Location Tree might have vertices not belonging to S.
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6 P. de Castro & O. Devillers

2.3 On Trees Embedded in Rd

The tree theory is older than computational geometry itself. Here, we mention
some of the well-known trees (and graphs) [22], which are related with the theory
of point location. Let S = {xi, 1 ≤ i ≤ n} be a set of query-points in Rd and
G = (V,E) be the complete graph such that the vertex vi ∈ V is embedded on
the point xi ∈ S; the edge eij ∈ E linking two vertices vi and vj is weighted by
its Euclidean length |xi−xj |. G is usually referred to as the geometric graph of
S.
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Figure 1: Trees embedded in Rd.

2.3.1 Definitions

We review below some well-known trees. Two special kinds of tree get a special
name: (i) a star is a tree having one vertex that is linked to all others; and (ii)
a path is a tree having all vertices of degree 2 but two with degree 1.
EMST. Among all the trees spanning S, a tree with the minimal length is
called an Euclidean minimum spanning tree of S and denoted EMST (S), see
Figure 1a. EMST can be computed with a greedy algorithm at a polynomial
complexity.
EMLP. If instead of searching a tree, we search a path with minimal length
spanning S, we get the Euclidean minimum length path denoted by EMLP (S),
see Figure 1b. Another related problem is the search for a minimal tour spanning
S: the Euclidean traveling salesman tour, denoted by ETST . Both problems
are NP-complete.

Since a complete traversal of the EMST (either prefix, infix or postfix)
produces a tour, and removing an edge of ETST produces a path, we have

|EMST (S)| ≤ |EMLP (S)| < |ETST (S)| < 2|EMST (S)| (2)

EMIT. Above, subgraphs of G are independent of any ordering of the vertices.
Now, consider that an ordering is given by a permutation σ, vertices are inserted
in the order vσ(1), vσ(2), . . . , vσ(n). We build incrementally a spanning tree Ti
for Si = {xσ(j) ∈ S, i ≤ j} with T1 = {vσ(1)} and Ti = Ti−1 ∪ {vσ(i)vσ(j)}, such
that vσ(i)vσ(j) has the shortest length for any 1 ≤ j < i. This tree is called
the Euclidean minimum insertion tree, and will be denoted by EMIT (S), see
Figure 1c. Unlike the previous trees, EMIT does not require points to be known
in advance, and hence it is a dynamic structure. Its length depends on σ and
for some carefully chosen permutations it coincides with |EMST |.
EST. The use of additional vertices usually allows to decrease the length of a
tree. Such additional vertices are called Steiner points and the minimum-length
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Self-Adapting Point Location 7

tree with Steiner points is the Euclidean Steiner tree of S; it is denoted by
EST (S), see Figure 1d. Finding EST is NP-complete.
ESS. A star has one vertex linked to all other vertices. If this vertex is an
additional vertex that does not belong to V , we can choose its position so as to
minimize the length of the star. This point is called the Fermat-Weber point of
S and the associated star is denoted by ESS(S) (Euclidean Steiner star), see
Figure 1e.

2.3.2 Results on Tree’s Length.

We present here some results on the length of the above-mentioned structures.
We start by subgraphs independent of an ordering of the vertices. The Beard-
wood, Halton and Hammersley theorem [4] states that if xi are i.i.d. random
variables with compact support, then |ETST (S)| = O(m1−1/d) with probabil-
ity 1. By Eq.(2) the same bound is obtained for |EMLP (S)| and |EMST (S)|.
While this result gives a practical bound on the complexity, they are depen-
dent on probabilistic hypotheses. This was shown to be unnecessary. Steele
proves [24] that the complexity of these graphs remains bounded by O(m1−1/d)
even in the worst case.

Consider the length of the path formed by sequentially visiting each vertex in
V . This gives a total length of

∑m
i=2 |xi−1xi|. Let Vσ = {xσ(1), xσ(2), . . . , xσ(m)}

be a sequence of m points made by reordering V with a permutation func-
tion σ such that points in Vσ would appear in sequence on some space-filling
curve. Platzman and Bartholdi [19] proved that in two dimensions the length
of the path made by visiting Sσ sequentially is a O(logm) approximation of
|ETST (S)|, and hence

∑m
i=2 |xσ(i−1)xσ(i)| = O(

√
m logm). One of the main

interests of such heuristic is that σ can be found in O(m logm) time.
The asymptotic length of |EMIT (S)|, which is dynamic, is shown to be the

same as the one of |EMST (S)|, which is static. More precisely:

Theorem 2 (Steele [23]). Let S be a sequence of m points in [0, 1]d, d ≥ 2,
then we have the following inequality: |EMST (S)| ≤ |EMIT (S)| ≤ γdm

1−1/d.
Here, γd = 1 + 24ddd/2/(d− 1) is a constant depending only on d.

3 Constant-Size-Memory Strategies
In this section, we analyze the Location Tree length of strategies that store a
constant number of possible starting points for a straight-walk. We also provide
a comparative study between them.

3.1 Fixed-point strategy.
In the fixed-point strategy, the same point c is used as starting point for all the
queries, then the Location Tree is the star rooted at c, denoted by Sc(S). The
best Location Tree we can imagine is the Steiner star, but of course computing
it is not an option, neither in a dynamic setting nor in a static setting. This
strategy is used in practice: In CGAL 3.5, the default starting point for a walk
is the so-called vertex at infinity ; thus the walk starts somewhere on the convex
hull, which looks like a kind of worst strategy.

RR n° 7132



8 P. de Castro & O. Devillers

In the worst case, one can easily find a set of query-points S such that
|ESS(S)| = Ω(m), or such that |Sc(S)|/|ESS(S)| goes to infinity for some c.
Now we focus on the case of evenly distributed queries.

Theorem 3. Let S be a sequence of m query-points uniformly i.i.d in the unit
ball, then the expected Location Tree length of the best fixed-point strategy is(

d

d+ 1

)
·m.

Proof. The proof uses simple integral computations. By symmetry, the Fermat-
Weber point goes to the center of the sphere when m goes to infinity, thus we
evaluate the average length E(|Op|) between a random point p and the origin.
Let Bl be a ball with radius l centered at the origin, we have

E(|Op|) =
∫ 1

0

lP rob(p ∈ Bl+dl \ Bl)dl =
∫ 1

0

l
(dVd(l)/l)dl

Vd(1)
=
∫ 1

0

dlddl =
d

d+ 1
,

where Vd(l) is the volume of a ball of radius l (and dVd(l)/l is its area). Multi-
plying by m gives the expected Location Tree length.

Theorem 4. Let S be a sequence of m query-points uniformly i.i.d in the unit
ball, then the expected Location Tree length of the worst (on the choice of c inside
the ball) fixed-point strategy is

2d+1

(
2d+ 1
2d+ 2

)
B
(
d
2 + 1

2 ,
d
2 + 1

)
B
(
d
2 + 1

2 ,
1
2

) ·m,

where B(x, y) =
∫ 1

0
λx−1(1− λ)y−1dλ is the so-called Beta function.

By symmetry, any point on the boundary of the unit sphere is a worse
center for a star. The computation of the average is a bit more involved than
in Theorem 3, and we split the computation in several lemmas.

Lemma 5. Consider the spherical cap Hh formed by crossing a ball BR with
radius R centered at the origin, with the plane x = R− h. Denote h the height
of the cap. The volume of Hh is the volume of the intersection between the
half-space x ≥ R− h and BR. This volume is given by:

Rd
π

d−1
2

Γ(d+1
2 )

∫ arccos ( R−h
R )

0

sind(λ)dλ. (3)

Proof. The volume Vd(r) of a ball with radius r in dimension d is given by
rd · π d

2 /Γ(1 + d
2 ). Each cross-section x = R − h + δ, 0 ≤ δ ≤ h is a (d −

1)-dimensional ball. If we integrate all those balls along the x axis, we have∫ R
R−h Vd−1(

√
R2 − t2)dt. Eq.(3) follows from replacing t by λ = R cos (t).

Lemma 6. Let Ω be a point on the boundary of the unit ball Bunit, and PH(l) =
Prob(|Ωp| ≤ l ; p ∈ Bunit) be the cumulative distribution function of distances
between an uniformly distributed random point inside Bunit and Ω, then

PH(l) =
1

B
(
d
2 + 1

2 ,
1
2

) (∫ arccos (1−l2/2)

0

sind(λ)dλ+ ld
∫ arccos (l/2)

0

sind(λ)dλ

)
,

where B(x, y) =
∫ 1

0
λx−1(1− λ)y−1dλ is the Beta function.
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Proof. If we denote Bl the ball of radius l centered in Ω, the desired probability
is clearly volume(Bl ∩ Bunit)/volume(Bunit). Bl ∩ Bunit is the union of two
spherical caps limited by the plane x = 1− l2/2 which can be computed using
Lemma 5.

Proof of Theorem 4. The theorem follows from:

E(|Ωp|) =
∫ 2

0

lP ′H(l)dl

=
∫ 2

0

l


1
2 l
d
(

1− l2

4

) d−1
2

B
(
d
2 + 1

2 ,
1
2

) + dld−1

∫ arccos (l/2)

0

sind(λ)dλ

B
(
d
2 + 1

2 ,
1
2

)
 dl

=
1
2

∫ 2

0

ld+1
(

1− l2

4

) d−1
2

dl

B
(
d
2 + 1

2 ,
1
2

) +
1
2

∫ 2

0

2dld

∫ arccos (l/2)

0

sind(λ)dλ

B
(
d
2 + 1

2 ,
1
2

) dl.(4)

The right part of Expression (4) corresponds exactly to the expected value of l
where l is the length of a random segment determined by two evenly distributed
points in the unit ball [21]. Its value is given by:

∫ 2

0

2dld

∫ arccos (l/2)

0

sind(λ)dλ

B
(
d
2 + 1

2 ,
1
2

) dl = 2d+1

(
d

d+ 1

)
B
(
d
2 + 1

2 ,
d
2 + 1

)
B
(
d
2 + 1

2 ,
1
2

) . (5)

The left part of Expression (4) can be obtained as follows:

∫ 2

0

ld+1
(

1− l2

4

) d−1
2

dl

B
(
d
2 + 1

2 ,
1
2

) = 2
∫ 1

0

2d+1yd+1
(
1− y2

) d−1
2 dy

B
(
d
2 + 1

2 ,
1
2

)
=

∫ 1

0

2d+1z
d
2 (1− z)

d−1
2 dz

B
(
d
2 + 1

2 ,
1
2

)
= 2d+1B

(
d
2 + 1

2 ,
d
2 + 1

)
B
(
d
2 + 1

2 ,
1
2

) .

Finally, we have

E(|Ωp|) = 2d+1

(
2d+ 1
2d+ 2

)
B
(
d
2 + 1

2 ,
d
2 + 1

)
B
(
d
2 + 1

2 ,
1
2

) .

Multiplying by m gives the expected Location Tree length.

Corollary 7. Let S be a sequence of m query-points uniformly i.i.d in the unit
ball, then the ratio between the expected Location Tree lengths of the best and
worst fixed-point strategies is at most 2 (for d = 1), and at least

√
2 (when

d→∞).
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10 P. de Castro & O. Devillers

Proof. This ratio is a decreasing function of the dimension. Using Theorem 3
and Theorem 4, the ratio ρ(d) between the expected Location Tree length of
the worst and the best fixed-point strategies is given by:

ρ(d) = 2d+1

(
2d+ 1

2d

)
B
(
d
2 + 1, d2 + 1

2

)
B
(
d+1
2 , 1

2

) (6)

Since ρ(d) is a monotonic decreasing function, its extremal values are ρ(1) and
lim
d→∞

ρ(d). We have trivially from Eq.(6) that ρ(1) = 2. To prove Corollary 7,

it remains to find lim
d→∞

ρ(d). Using the Stirling’s identities:

B(a, b) ∼
√

2π aa− 1
2 bb− 1

2

(a+b)a+b− 1
2
, a, b� 0,

B(a, b) ∼ Γ(b)a−b, a� b > 0,

we have:

lim
d→∞

ρ(d) = lim
d→∞

2d+1

(
2d+ 1

2d

)
B
(
d
2 + 1, d2 + 1

2

)
B
(
d+1
2 , 1

2

)
= lim

d→∞
2d+1B

(
d
2 + 1, d2 + 1

2

)
B
(
d+1
2 , 1

2

)
= lim

d→∞

2d+1
√

2π
(
d
2 + 1

2

) d
2
(
d
2 + 1

) d
2 + 1

2

√
π
(
d+ 3

2

)d+1 (d
2 + 1

2

)− 1
2

= 21/2 · lim
d→∞

(d+ 1)
d+1
2 (d+ 2)

d+1
2

(d+ 3
2 )

d+1
2 (d+ 3

2 )
d+1
2

= 21/2 · e− 1
4 · e 1

4

=
√

2

Then we have that
√

2 ≤ ρ(d) ≤ 2 for d ≥ 1.

Figure 2 gives the expected average length of an edge of the best and worst
fixed-point Location Trees.

3.2 Last-point strategy.
An easy alternative to the fixed-point strategy is the last-point strategy. To
locate a new query-point, the walk starts from the previously located query.
The Location Tree obtained with such a strategy is a path. When T verifies the
Distribution Condition, the optimal path is the EMLP (S).

In the worst case, the length of such a path is clearly Ω(m); an easy example
is to repeat alternatively the two same queries. In contrast with the fixed-
point strategy, the last-point strategy depends on the query distribution. If the
queries have some spatial coherence, it is clear that we improve on the fixed-point
strategy. Such a coherence may come from the application, or by reordering the
queries. There is always a permutation of indices on S such that the total length
of the path is sub-linear [24, 12]. Furthermore, in two dimensions, one could
find such permutation in O(m logm) time complexity [19].

Now, the question is “if there is no spatial coherence, how the fixed and last
point strategies do compare?”.
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Self-Adapting Point Location 11

Theorem 8. The ratio between the Location Tree lengths of the last-point strat-
egy and the fixed-point strategy is at most 2.

Proof. This is an easy consequence of the triangle inequality.
Take S = x1, x2, . . . , xm, and any fixed-point c. Then we have:

|xixi+1| ≤ |cxi|+ |cxi+1|,

for all 1 ≤ i < m. Summing the term above for each value of i leads to the
inequality:

m−1∑
i=1

|xixi+1| ≤
m−1∑
i=1

|cxi|+
m∑
i=2

|cxi| ≤ 2
m∑
i=1

|cxi|,

which completes the proof.

Theorem 9. The ratio between the Location Tree lengths of the last-point strat-
egy and the fixed-point strategy is arbitrarily small.

Proof. Consider a set of m queries distributed on a circle in Rd. If the queries
are visited along the circle, the length of the location tree of the last-point
strategy is O(1), while |ESS| = Ω(m).

Combining the results in Theorem 8 and Theorem 9, it is reasonable to
conclude that the last-point strategy is better in general, as the improvement
the fixed-point strategy could bring does not pay the price of its worst-case
behavior. We now study the case of evenly distributed queries.

Theorem 10. Let S be a sequence of m query-points uniformly i.i.d in the unit
ball, then the expected Location Tree length of the last-point strategy is

2d+1

(
d

d+ 1

)
B
(
d
2 + 1

2 ,
d
2 + 1

)
B
(
d
2 + 1

2 ,
1
2

) ·m.

Proof. This is equivalent to find the expected length of a random segment de-
termined by two evenly distributed points in the unit ball, which is given in [21]
for instance.

Theorems 3, 4, and 10 give the following result:

Corollary 11. Let S be a sequence of m query-points uniformly i.i.d in the unit
ball, then the ratio between the expected Location Tree lengths of the last-point
and the best fixed-point strategies is at most

√
2 (when d → ∞), and at least

4/3 (when d = 1) whereas the ratio between the expected Location Tree lengths
of the last-point and the worst fixed-point strategies is 2d/(2d+ 1).

As shown in Figure 2, the last-point strategy is in between the best and worst
fixed-point strategies, but closer and closer to the worst one when d increases.
Thus, in the context of evenly distributed points in a ball, the last-point strategy
cannot be worse than any fixed point strategy by more than a factor of

√
2. Still,

the fixed-point strategy may have some interests under some conditions: (i)
queries are known a priori to be random and; (ii) a reasonable approximation
of the center of ESS(S) can be found.
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Figure 2: Expected lengths. Expected average lengths of an edge of the last-point,
best and worst fixed-point Location Trees. The domain C here is a d-dimensional ball,
and the queries are evenly distributed in C.

Theorem 10 and Corollary 11 assume that the region C, where the queries lie
in, is a ball. Now, one might ask whether the shape of C affects the cost of the
strategies. In the quest for an answer, we may consider query-points uniformly
i.i.d in the unit cube [0, 1]d. This leads to the following related expressions:

Bd =

Z 1

0
. . .

Z 1

0

`
λ2
1 + . . .+ λ2

d

´1/2
dλ1 . . . dλd,

Xd =

Z 1

0
. . .

Z 1

0

`
(λ1 − 1/2)2 + . . .+ (λd − 1/2)2

´1/2
dλ1 . . . dλd,

∆d =

Z 1

0
. . .

Z 1

0

`
(λ1 − λ′

1)2 + . . .+ (λd − λ′
d)2
´1/2

dλ1 . . . dλd dλ′
1 . . . dλ

′
d,

where Bd, Xd, and ∆d are respectively the average length of an edge of: the
largest star (rooted at a corner), the smallest star (rooted at the center), and
of a random path. Above expressions are often referred to as box integrals [3].
First, note that by substitution of variable we have Bd/Xd = 2, independently
of d. In Anderssen et al. [20], we have that, Xd ∼

√
d/3 and ∆d ∼

√
d/6 and

thus Bd/∆d and ∆d/Xd ∼
√

2 when d goes to infinity. These ratios have to
be compared with Corollary 11. If C is an unit cube, the expected Location
Tree length of the last-point, best and worst fixed-point strategies remains in
bounded ratio, but with different values compared to the case where C is a ball.
Notice however that, when d is large, the ratio between the best fixed-point and
the last-point strategies remains

√
2 in both cases. This ratio in some sense is

more robust than the ratios involving the worst-case fixed-point strategy.

3.3 k-last-points strategy.
We explore here a variation of the last-point strategy. Instead of remembering
the place where the last query was located, we store the places where the k
last queries were located, for some small constant k. These k places are called
landmarks in what follows. Then to process a new query, the closest landmarks
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Self-Adapting Point Location 13

are determined by O(k) brute-force comparisons, then a walk is performed from
there. This strategy has some similarity with Jump &Walk, the main differences
are that the sample has fixed size and depends on the query distribution (it is
dynamically modified).

The Location Tree associated with such a strategy has bounded degree k+1
(or the kissing number in dimension d, if it is smaller than k+1) and its length is
greater than |EMST | and smaller than the length of the path associated to the
same vertices ordering, thus previous results provide upper and lower bounds.
A tree of length Ω(m/k) = Ω(m) is easily achieved by repeating a sequence of k
queries along a circle of length 1. The following Theorem gives the complexity
when the queries are evenly distributed:

Theorem 12. Let S be a sequence of m query-points uniformly i.i.d in the unit
ball, then the expected Location Tree length of the k-last-points strategy verifies(

1
d

)
B

(
k + 1,

1
d

)
·m ≤ E(length) ≤ 2

(
1
d

)
B

(
k + 1,

1
d

)
·m. (7)

First we will evaluate the distance between the origin and the closest amongst
k points (p1p2, . . . , pk) evenly distributed in the unit ball.

Lemma 13. Let PB,k(l) = Prob (min(|Opj |)1≤j≤k ≤ l) be the cumulative distri-
bution function of the minimum distance among k points following a uniformly
i.i.d inside the unit ball, and the center of the unit ball, then

PB,k(l) = 1− (1− ld)k.

Proof.

PB,k(l) = Prob (min(|Opj |)1≤j≤k ≤ l)
= 1− Prob (|Opj | > l , 1 ≤ j ≤ k)

= 1− Prob (|Op1| > l)k

= 1− (1− Prob (|Op1| ≤ l))k

= 1−
(
1− ld

)k
,

since Prob (|Op1| ≤ l) is the ratio of the ball of radius l over the unit ball.

Lemma 14. The expected value E (min(|Opj |)1≤j≤k) of the minimum distance
among k points following a uniformly i.i.d inside the unit ball and the center of
the unit ball, is given by

E (min(|Opj |)1≤j≤k) =
1
d
B

(
k + 1,

1
d

)
.

Proof. Using Lemma 13, we have:

E (min(|Opj |)1≤j≤k) =
∫ 1

0

lP ′B,k(l)dl

= kd

∫ 1

0

ld
(
1− ld

)k−1
dl

= k

∫ 1

0

λ1/d (1− λ)k−1 dλ

= kB

(
k, 1 +

1
d

)
=

1
d
B

(
k + 1,

1
d

)
.
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14 P. de Castro & O. Devillers

Lemma 14 gives us the lower-bound in Theorem 12. Now, we shall obtain the
upper-bound, which is a bit more involved. First we will evaluate the distance
between a point on the boundary and the closest amongst k points (p1p2, . . . , pk)
evenly distributed in the unit ball.

Lemma 15. Let Ω be a point on the boundary of the unit ball and PH,k(l) =
Prob (min(|Ωpj |)1≤j≤k ≤ l) be the cumulative distribution function of the min-
imum distance among k points following a uniformly i.i.d inside the unit ball,
and Ω, then

PH,k(l) = 1− (1− PH(l))k .

Proof.

PH,k(l) = Prob (min(|Ωpj |)1≤j≤k ≤ l)
= 1− Prob (|Ωpj | > l , 1 ≤ j ≤ k)

= 1− Prob (|Ωp1| > l)k

= 1− (1− Prob (|Ωp1| ≤ l))k ,

PH(l) as given at Lemma 6. The exact expression of PH,k(l) is not necessary in
the sequel.

Now, we obtain a general expression for the expected value of min(|Ωpj |)1≤j≤k.

Lemma 16. The expected value E (min(|Ωpj |)1≤j≤k) of the minimum distance
among k points following a uniformly i.i.d inside the unit ball and Ω, is given
by

E (min(|Ωpj |)1≤j≤k) =
∫ 2

0

(1− PH(l))kdl.

Proof. As PH(0) = 0 and PH(2) = 1, integration by parts gives us the following
identity: ∫ 2

0

lP ′H(l)P i−1
H (l)dl =

2−
∫ 2

0

P iH(l)dl

i
, i > 0. (8)

We also have the following expression for E (min(|Ωpj |)1≤j≤k):

E (min(|Ωpj |)1≤j≤k) =
∫ 2

0

klP ′H(l)(1− PH(l))k−1dl

=
k−1∑
i=0

(−1)i
(
k − 1
i

)∫ 2

0

klP ′H(l)P iH(l)dl. (9)

Replacing Eq. (8) in Eq. (9) leads to:

k−1∑
i=0

(−1)i
(
k − 1
i

)∫ 2

0

klP ′H(l)P iH(l)dl =
k∑
i=0

(−1)i
(
k

i

)∫ 2

0

P iH(l)dl

=
∫ 2

0

k∑
i=0

(−1)i
(
k

i

)
P iH(l)dl

=
∫ 2

0

(1− PH(l))kdl.
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Self-Adapting Point Location 15

Proof of Theorem 12. Now, if we take a function Ψ(l) such that Ψ(l) ≤ PH(l)
for 0 ≤ l ≤ 2, it upper-bounds the integral in Lemma 16. Take Ψ(l) = (l/2)d,
then we have:

E (min(|Ωpj |)1≤j≤k) =
∫ 2

0

(1− PH(l))kdl ≤
∫ 2

0

(1−Ψ(l))kdl

=
∫ 2

0

(
1− ld

2d

)k
dl

= 2
∫ 1

0

(1− λd)kdλ

= 2
(

1
d

)
B

(
k + 1,

1
d

)
.

Multiplying by m completes the proof.

Remark: If we no longer consider k as a constant, then taking k = m makes
the Location Tree of the k-last-points strategy an EMIT . And hence, using
the Stirling’s identity B(x, y) ∼ Γ(y)x−y, gives an expected length |EMIT | =
Θ
(
m1−1/d

)
. Comparing to Theorem 2, the asymptotic growth in both random

and worst case are the same, but the constant is much better in the random
case.

Intuitively, if the queries have some not too strong spatial coherence, the
k-last-points strategy seems a good way to improve the last-point strategy. Sur-
prisingly, experiments in Section 6 shows that even if the points have some
strong coherence, a small k strictly greater than 1 improves on the last-point
strategy when points are sorted along a space-filling curve. More precisely, k = 4
improves the location time by up to 15% on some data sets.

To conclude this section, assume that, in Theorems 3, 4, 10, and 12, the
region C where the m queries lie in satisfies the Distribution Condition for a
triangulation T , and the size of the Location Tree is given respectively by L1,
L2, L3, and L4. Then, by Eq.(1), the expected cost to locate the queries in T
is bounded respectively by m+ L{1,2,3,4} · F(T , C).

4 Jump & Walk revisited: Keep, Jump & Walk
In this section, the k-last-points strategy is extended to a variable k. Here, it
is necessary to have a closer look at the way of managing the landmarks. The
classical Jump & Walk 1 strategy [11, 17] uses a set of k landmarks randomly
chosen in the vertices of T , then a query is located by walking from the closest
landmark. To ensure adaptation of the query distribution we have several pos-
sibilities:
(i) we can use k queries chosen at random in previous queries, (ii) we can use
the k last queries for the set of landmarks, and (iii) we can keep all the queries
as landmarks, and regularly clear the landmarks set after a batch of k queries.

1 Apropos, Jump & Walk is a bit confusing terminology, since k is usually chosen such
that the jump and the walk take the same time; it does not really match the intuitive idea of
the relative speed of a jumper and a walker.
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16 P. de Castro & O. Devillers

For any rule to construct the set of landmarks, the time to process a query
q splits in:
— Keep: the time Q(k) for updating the set of landmarks if needed,
— Jump: the time J(k) for finding the closest landmark lq, and
— Walk: the time O(|qlq|F(T , C)) to walk in the region C of T , assuming that
C satisfies the Distribution Condition.

Combining various options for F(T , C) and the data-structure to store the
landmarks, gives us some interesting possibilities. The trick is always to balance
these different costs, since increasing one decreases another.

Jump & Walk. Classical Jump & Walk uses a simple data-structure (e.g.
a list) to store the random sample of T and assumes F(n) = O(n1/d). Here,
we will use the same data-structure to store the set of landmarks. Keep step
decides whether the query is kept at a landmark and inserts it if needed. This
takes Q(k) = O(1). Jump step takes J(k) = O(k). Then taking k = n1/(d+1)

landmarks amongst the queries ensures an amortized query time of O(n1/(d+1))
as |qlq| = O(k−1/d) by Theorem 2. It is noteworthy that the complexity obtained
here matches the classical Jump & Walk complexity with no hypotheses on the
distribution of query-points (naturally, the queries must lie in the region C,
which in turn must lie inside the domain of T , see Section 2.2).

Outside this classical framework, Jump & Walk has some interests, even
with weaker hypotheses. Theorem 2 ensures that |qlq| has amortized length
O(k−1/d). Therefore, taking k = F(T , C)1−1/(d+1) balances the jump and the
walk costs. Another remark is that if the landmarks are a random subset of
the vertices of T (as is the classical Jump & Walk), then the cost of the walk is
F(n/k) [8, Variation of Lemma 4]. Assuming F(j) = O(jβ), the jump and the
walk costs are balanced by taking k = n1−1/(β+1) in this case.

If Conjecture 1 is verified, Jump & Walk should use a sample of size O(n3/8)
to construct Delaunay triangulation for surface reconstruction purpose, and not
O(n1/4) as for random points in 3D; this is verified experimentally in Section 6.

Walk & Walk. In Walk & Walk, the data-structure to store the landmarks
is a Delaunay triangulation L, in which it is possible to walk (notice that T may
not be a Delaunay triangulation). Assuming a random order on the landmarks,
inserting or deleting a landmark after location takes Q(k) = O(1) and jump
step takes J(k) = O(F(L, C)).

If the queries and the sites are both evenly distributed we get J(k) = O(k1/d)
and |qlq| · F(T , C) = O(k−1/d · n1/d) which gives k =

√
n to balance the jump

and walk costs. Finally, the point location takes expected time O(n1/2d).
If walking inside T and L takes linear time, k = n1−1/(d+1) balances Walk

& Walk costs.
Delaunay Hierarchy of Queries. A natural idea is to use several layers

of triangulations, walking at each level from the location at the coarser layer.
When the landmarks are vertices of T and each sample takes a constant ratio
of the vertices at the level below, this idea yields the Delaunay hierarchy [8].

Storing the queries in a Delaunay hierarchy may have some interesting ef-
fects: If the region C of T has some bad behavior F(T , C)� n1/d and there is
many well-distributed queries, we can get interesting query time to the price of
polynomial storage. More precisely, if the queries are such that a random sam-
ple of the queries has a Delaunay triangulation of expected linear size (always
true in 2D), then using a random sample of k queries for the landmarks and a
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Self-Adapting Point Location 17

Delaunay hierarchy to store L, gives Q(k) = J(k) = O(log k). Then by Theo-
rem 2 we have |qlq| = O(k−1/d) (amortized) and taking k = F(T , C)d/ logd n
balances jump and walk costs, giving a logarithmic location time.

5 Climbing up in the Delaunay Hierarchy
Up to now, the aim was to choose a good starting point to walk in T . In this
section, we show how a good starting point can be used within the Delaunay
hierarchy to improve point location. Assume T is a Delaunay triangulation,
then classical use of the Delaunay hierarchy provides a logarithmic cost in the
total size of T to locate a point. The cost we reach here is logarithmic in
the local complexity of the triangulation, that is logarithmic in the number of
vertices of T in between the starting point and the query.

Given a set of n points P in the plane, the Delaunay hierarchy [8] constructs
random samples P = P0 ⊆ P1 ⊆ P2 ⊆ . . . ⊆ Ph such that Prob(p ∈ Pi+1 | p ∈
Pi) = 1/α for some constant α > 1. The h+1 Delaunay triangulations Di of Pi
are computed and the hierarchy is used to find the nearest-neighbor of a query
q by walking at one level i from the nearest-neighbor of q at the level i+ 1. It
is proven that the expected cost of walking at one level is O(α) and since the
expected number of levels is logα n, we obtain a logarithmic expected time to
descend the hierarchy for point location.

If a good starting vertex v = v0 in D0 is known, the Delaunay hierarchy can
be used in another way: From v0 a walk starts in D0 visiting simplices crossed
by segment v0q; the walk is stopped, either if the simplex containing q is found,
or if a simplex having a vertex v1 belonging to the sample P1 is found. If the
walk stops because v1 is found, then a new walk in D1 starts at v1 along segment
v1q. This process continues recursively up to the level l, where a simplex of Dl
that contains q is found. Finally, the hierarchy is descended as in the usual
point location.

Theorem 17. Given a set of n points P, and a convex region C ⊆ CH(P),
such that C satisfies the Distribution condition for the Delaunay triangulation
of a random sample of size r of P with F(r) polynomial, then the expected cost
of climbing and descending the Delaunay hierarchy from a vertex v to a query
point q, both lying in C, is O(logw), where w is the cost of the walk from v to
q in D the Delaunay triangulation of P.

Proof. Climbing one level. Since the probability that any vertex ofDi belongs
to Di+1 is 1/α, and that each time a new simplex is visited during the walk a
new vertex is discovered, the expected number of visited simplices before the
detection of a vertex that belongs to Di+1 is 1 +

∑∞
j=0 j

1
α

(
1− 1

α

)j = α.
Descending one level. The cost of descending one level is O(α) [8, Lemma
4].
Number of levels. Let wi denote the number of edges crossed by viq in Di;
the Distribution Condition gives wi = F(n/αi)|viq| ≤ F(n/αi)|v0q|. If F(r)
is a polynomial function O(rβ), the expected number of levels that we climb
before descending is less than l = (logw0)/β, since we have

wl = F(n/αl)|vlq| ≤ F(n/αl)|v0q| = w0/α
lβ = w0/α

logw0 = 1

RR n° 7132



18 P. de Castro & O. Devillers

(where the big O have been omitted). Thus, at level l the walk takes constant
time.

6 Experimental Results
Experiments2 have been realized on synthetic and realistic models3 (scaled to
fit in the unit cube).

6.1 The Distribution Condition
Our first set of experiments is an experimental verification of the Distribution
Condition. We compute the Delaunay triangulation of different inputs, either
artificial or realistic, with several sizes; for realistic inputs we construct files of
various sizes by taking random samples of the desired size.

We consider several data sets in 3D:
— points distributed in a cube with random uniform distribution,
— points distributed in a cube with a ρ = x2 density,
— points distributed on the surface of an ellipsoid with random uniform distri-
bution, the lengths of the ellipsoid axes are 1/3, 2/3, and 1,
— Pooran’s Hand is a data set obtained by scanning a 3D model of a Hand,
and
— Galaad is a data set obtained by scanning a 3D model of a toy soldier.

Files of different sizes, smaller than the original model are obtained by taking
random samples of the main file with the desired number of points.

Pooran’s Hand and Galaad are originally defined in a parallelepiped much
bigger than [0, 1]3. We scaled each axis by the same factor and translated so to
have these models constrict inside [0, 1]3.

Figure 3 shows the number of simplices crossed by the walk in terms of the
length of the walk, for various, randomly chosen, walks in the triangulation.
Notice that even if there is some dispersion in the result, the dispersion is much
more below than above the clouds of points. This is a very good news because
it means that you more likely to go faster than slower compared to the expected
behavior.

From that picture, the slope of lines through these points give F(T ,CH(T )),
then we draw F(T ,CH(T )) in terms of the triangulation size in Figure 4; the
slope of the different curves gives the exponent of n. The points sampled on
an ellipsoid give logF(n) ∼ 0.52 log n, which is not far from Conjecture 1 that
claims F(n) = O(n1/2). The points evenly distributed in a cube gives logF(n) ∼
0.31 log n, which is not far from F(n) = O(n1/3).

6.2 k-last-points strategy
CGAL library [18] uses spatial sorting [6] to introduce a strong spatial coherence
in a set of points. For several models, we locate 1M queries evenly distributed

2 The hardware used for the experiments described in the sequel, is a MacBook Pro 3,1
equipped with an 2.6 GHz Intel Core 2 processor and 2 GB 667 MHz DDR2 SDRAM, Mac
OS X version 10.5.7. The software uses CGAL 3.5 [5] and is compiled with g++ 4.3.2 and
options -O3 -DNDEBUG.

3The scanned models used here: Pooran’s Hand and Galaad, are taken from Aim@shape
repository.
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Figure 3: Distribution condition. ] of crossed tetrahedra in terms of the
length of the walk.
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inside the model with the k-last-point strategy after a spatial sorting of the
queries. Surprisingly, using a small k slightly improves on k = 1 which indi-
cates that even with such a strong coherence, k-last-points strategy is relevant.
Table 1 shows the running times on various sets for different values of k, taking
k = 4 always improves on k = 1 and in some cases by a substantial amount.

k 1 2 3 4 5 6 k = 4 improves on k = 1 by
2D
uniform square 1.70s 1.65s 1.65s 1.65s 1.66s 1.67s 2%
anisotropic square 1.64s 1.61s 1.60s 1.60s 1.61s 1.62s 1%
ellipse 3.07s 2.73s 2.62s 2.56s 2.54s 2.52s 17%
3D
uniform cube 3.57s 3.45s 3.41s 3.39s 3.40s 3.46s 5%
anisotropic cube 3.45s 3.35s 3.32s 3.31s 3.32s 3.39s 4%
ellipsoid 6.34s 5.71s 5.48s 5.38s 5.34s 5.44s 15%
Pooran’s Hand 3.81s 3.63s 3.58s 3.57s 3.56s 3.63s 6%
Galaad 4.19s 4.08s 4.04s 4.03s 4.07s 4.12s 3%

Table 1: Static point location with space-filling heuristic plus last-k-
points strategy. Times are in seconds.

6.3 Self adapting point location
Now, we compare the performance of classical Jump & Walk, Delaunay hierar-
chy, last-point strategy and Keep, Jump, & Walk. For this purpose we consider
the following experiment scenario. LetM be a scanned model with 1M points
inside the unit cube, and Br be a ball centered at (0.5, 0.5, 0.5) with radius r.
Now define Sn as the set of n points on the surface of the model enclosed by
Br. Take values of r such that n = ni = 2i, for i = 14, 15, . . . , 20. Now form
the sequence Ai of 1M points taken randomly from Sni

and slightly perturbed
(as to avoid arithmetic filter failures). Figure 5 shows the computation times
for point location for the different strategies in function of log2 ni.

INRIA



Self-Adapting Point Location 21

1516171819
log # of points enclosed by the ball

0

10

20

30

40

50

60
se

co
nd

s

last-point

Delaunay hierarchy

J&W, k=n1/4

K&J&W, k = n

K&J&W, k = n1/4

3/8

(a)

141516171819
log # of points enclosed by the ball

0

10

20

30

40

50

60

se
co

nd
s

last-point

Delaunay hierarchy

J&W, k=n1/4

K&J&W, k = n3/8

K&J&W, k = n1/4

(b)

Figure 5: Performance on a dynamic setting. Computation times of the
various algorithms in function of the number of points on the model enclosed by a ball
centered at (0.5, 0.5, 0.5) for: (a) Pooran’s Hand model; and (b) Galaad model.

In both models, Keep, Jump, & Walk becomes quickly faster than the clas-
sical Jump & Walk when the locality of the queries is stronger. Moreover,
Keep, Jump, & Walk becomes faster than the Delaunay hierarchy when the
ball encloses less than 64K points. This quantity of points could be multiplied
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by approximately 4 if instead of picking n1/4 landmarks we pick n3/8 land-
marks (which is in accord with Conjecture 1, see Section 4). As the number of
points enclosed by the ball decreases, Keep, Jump, & Walk improves its per-
formance, and becomes twice faster than the Delaunay hierarchy. The classical
Jump & Walk cannot perform better than the Delaunay hierarchy on such big
examples.

Finally, complementing the experiments in Section 6.2, consider the sequence
A′ formed by ordering points in S1M on a space-filling curve. Now A′ has a
strong spatial coherence. This situation is slightly different from Section 6.2;
here the queries are close to the model boundary, while in Section 6.2 they were
inside the model. Table 2 shows the performance of the different strategies to
locate sequential queries in A′, for Pooran’s Hand model and Galaad model.

Models last-point J&W, k = 32 J&W, k = 101

Pooran’s Hand 3.86s 25.73s 20.01s
Galaad 3.91s 28.41s 21.62s

Delaunay hierarchy 32-last-points 101-last-points
Pooran’s Hand 15.14s 3.49s 4.30s
Galaad 16.44s 3.49s 4.27s

Table 2: Performance on a static setting. Queries close to the model boundary
are ordered as to appear in sequence on a space-filling curve. The table shows the
computation time to locate the whole sequence of points with different strategies (times
are in seconds).

The improvement k-last-points strategy (k = 32) gives with respect to the
last-point strategy to locate A′ is around 10%, even though A′ has a strong
spatial coherence.

7 Conclusion
This work discussed how the Distribution Condition and the length of some
trees embedded in Rd can be put together to explain self-adapting variants
of well-known algorithms for point location. In the case of query-points with
no spatial coherence, this works showed that the constant involved with self-
adapting strategies, such as the last-point strategy, is not that bad for evenly
distributed points. In particular, Keep, Jump, & Walk has the same computa-
tional complexity than Jump & Walk if we use a brute-force nearest neighbor
search approach. This work also provides experimental evidences that: (i) real-
istic data-sets satisfy the Distribution Condition; and (ii) self-adapting variant
of the Jump & Walk is rather likely to improve performance, than decrease it,
in both static and dynamic settings.

Designing a point location data-structure to retrieve queries in a time log-
arithmic in the local complexity, without any hypotheses, is a very delicate
question [7]. As long as the triangulation satisfies some hypotheses, we showed
a simple data-structure which achieves this complexity. The good points here
are three: (i) the Delaunay hierarchy is simple and has a good practical behavior
[8] (it is currently implemented in CGAL) (ii) the pre-processing and memory
complexity are strictly better than previous data-structures [15, 7] (which in
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the other hand work for general planar triangulation), (iii) the proposed point
location algorithm generalizes for any finite dimension.

Acknowledgments The authors wish to thank Aim@shape for providing the
realistic models.
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