R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, On the multifractal nature of fully developed turbulence and chaotic systems, Journal of Physics A: Mathematical and General, vol.17, issue.18, pp.3521-3531, 1984.
DOI : 10.1088/0305-4470/17/18/021

C. Meneveau and K. R. Sreenivasan, Simple multifractal cascade model for fully developed turbulence, Physical Review Letters, vol.59, issue.13, pp.1424-1427, 1987.
DOI : 10.1103/PhysRevLett.59.1424

J. F. Muzy, E. Bacry, and A. Arneodo, Wavelets and multifractal formalism for singular signals: Application to turbulence data, Physical Review Letters, vol.67, issue.25, pp.3515-3518, 1991.
DOI : 10.1103/PhysRevLett.67.3515

K. R. Sreenivasan, Fractals and Multifractals in Fluid Turbulence, Annual Review of Fluid Mechanics, vol.23, issue.1, pp.539-600, 1991.
DOI : 10.1146/annurev.fl.23.010191.002543

A. Arneodo, C. Baudet, F. Belin, R. Benzi, B. Castaing et al., Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity, Europhysics Letters (EPL), vol.34, issue.6, pp.411-416, 1996.
DOI : 10.1209/epl/i1996-00472-2

P. Kestener and A. Arnéodo, Three-Dimensional Wavelet-Based Multifractal Method: The Need for Revisiting the Multifractal Description of Turbulence Dissipation Data, Physical Review Letters, vol.91, issue.19, 2003.
DOI : 10.1103/PhysRevLett.91.194501

A. Turiel, G. Mato, N. Parga, and J. P. , Self-Similarity Properties of Natural Images Resemble Those of Turbulent Flows, Physical Review Letters, vol.80, issue.5, pp.1098-1101, 1998.
DOI : 10.1103/PhysRevLett.80.1098

URL : https://hal.archives-ouvertes.fr/hal-00143846

A. Turiel and N. Parga, The Multifractal Structure of Contrast Changes in Natural Images: From Sharp Edges to Textures, Neural Computation, vol.12, issue.4, pp.763-793, 2000.
DOI : 10.1098/rspb.1998.0303

R. N. Mantegna and H. E. Stanley, Turbulence and financial markets, Nature, vol.383, issue.6601, pp.587-588, 1996.
DOI : 10.1038/383587a0

B. B. Mandelbrot, A. Fisher, and L. Calvet, A multifractal model of asset returns, Cowles Foundation Discussion Paper No. 1164, 1997.

J. F. Muzy, J. Delour, and E. Bacry, Modelling fluctuations of financial time series: from cascade process to stochastic volatility model, The European Physical Journal B, vol.17, issue.3, pp.537-548, 2000.
DOI : 10.1007/s100510070131

F. Schmitt, D. Schertzer, and S. Lovejoy, MULTIFRACTAL FLUCTUATIONS IN FINANCE, International Journal of Theoretical and Applied Finance, vol.03, issue.03, pp.361-364, 2000.
DOI : 10.1142/S0219024900000206

A. Turiel and C. Pérez-vicente, Multifractal geometry in stock market time series, Physica A: Statistical Mechanics and its Applications, vol.322, pp.629-649, 2003.
DOI : 10.1016/S0378-4371(02)01830-7

URL : https://hal.archives-ouvertes.fr/inria-00527183

A. Turiel and C. Pérez-vicente, Role of multifractal sources in the analysis of stock market time series, Physica A: Statistical Mechanics and its Applications, vol.355, issue.2-4, pp.475-496, 2005.
DOI : 10.1016/j.physa.2005.04.002

P. Oswiecimka, J. Kwapien, S. Drozdz, and R. Rak, Investigating multifractality of stock market fluctuations using wavelet and detrending fluctuation methods, Acta Physica Polonica B, vol.36, pp.2447-2457, 2005.

A. Turiel and C. Perez-vicente, DYNAMICAL DECOMPOSITION OF MULTIFRACTAL TIME SERIES AS FRACTAL EVOLUTION AND LONG-TERM CYCLES: APPLICATIONS TO FOREIGN CURRENCY EXCHANGE MARKET, Complexus Mundi, pp.73-82, 2006.
DOI : 10.1142/9789812774217_0007

Y. Ashkenazy, J. A. Hausdorff, H. E. Stanley, and P. C. Ivanov, A stochastic model of human gait dynamics, Physica A: Statistical Mechanics and its Applications, vol.316, issue.1-4, pp.316-662, 2002.
DOI : 10.1016/S0378-4371(02)01453-X

B. J. West, N. Scafetta, and L. Griffin, Holder exponent spectra for human gait, Physica A, vol.328, pp.561-583, 2003.

L. F. Burlaga, Multifractal structure of the interplanetary magnetic field: Voyager 2 observations near 25 AU, 1987-1988, Geophysical Research Letters, vol.43, issue.1/2, pp.69-72, 1987.
DOI : 10.1029/90GL02596

R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R. G. Baraniuk, A multifractal wavelet model with application to network traffic, IEEE Transactions on Information Theory, vol.45, issue.3, pp.992-1018, 1999.
DOI : 10.1109/18.761337

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.414.9140

S. Lovejoy, W. J. Curri, Y. Tessier, M. R. Claereboudt, E. Bourget et al., Universal multifractals and ocean patchiness: phytoplankton, physical fields and coastal heterogeneity, Journal of Plankton Research, vol.23, issue.2, pp.117-141, 2001.
DOI : 10.1093/plankt/23.2.117

URL : http://plankt.oxfordjournals.org/cgi/content/short/23/2/117

V. K. Gupta and E. C. Waymire, A Statistical Analysis of Mesoscale Rainfall as a Random Cascade, Journal of Applied Meteorology, vol.32, issue.2, pp.251-267, 1993.
DOI : 10.1175/1520-0450(1993)032<0251:ASAOMR>2.0.CO;2

D. Schertzer and S. Lovejoy, Universal Multifractals Do Exist!: Comments on ???A Statistical Analysis of Mesoscale Rainfall as a Random Cascade???, Journal of Applied Meteorology, vol.36, issue.9, pp.1296-1303, 1997.
DOI : 10.1175/1520-0450(1997)036<1296:UMDECO>2.0.CO;2

A. Turiel, J. Grazzini, and H. Yahia, Multiscale Techniques for the Detection of Precipitation Using Thermal IR Satellite Images, IEEE Geoscience and Remote Sensing Letters, vol.2, issue.4, pp.447-450, 2005.
DOI : 10.1109/LGRS.2005.852712

URL : https://hal.archives-ouvertes.fr/inria-00423740

A. Turiel, J. Isern-fontanet, E. García-ladona, and J. Font, Multifractal Method for the Instantaneous Evaluation of the Stream Function in Geophysical Flows, Physical Review Letters, vol.95, issue.10, pp.10-1103, 2005.
DOI : 10.1103/PhysRevLett.95.104502

J. Isern-fontanet, A. Turiel, E. Garcia-ladona, and J. Font, Microcanonical multifractal formalism: Application to the estimation of ocean surface velocities, Journal of Geophysical Research, vol.30, issue.1, p.5024, 2007.
DOI : 10.1029/2006JC003878

L. A. Amaral, A. L. Goldberger, P. Ch, H. E. Ivanov, and . Stanley, Scale-Independent Measures and Pathologic Cardiac Dynamics, Physical Review Letters, vol.81, issue.11, pp.2388-2391, 1998.
DOI : 10.1103/PhysRevLett.81.2388

Z. Neufeld, C. Lopez, E. Hernandez-garcia, and T. Tel, Multifractal structure of chaotically advected chemical fields, Physical Review E, vol.61, issue.4, pp.3857-3866, 2000.
DOI : 10.1103/PhysRevE.61.3857

I. J. Benczik, Z. Neufeld, and T. , Multifractal spectra of chemical fields in fluid flows, Physical Review E, vol.71, issue.1, pp.71-016208, 2005.
DOI : 10.1103/PhysRevE.71.016208

S. G. Roux, A. Arneodo, and N. Decoster, A wavelet-based method for multifractal image analysis. III. Applications to high-resolution satellite images of cloud structure, The European Physical Journal B, vol.15, issue.4, pp.765-786, 2000.
DOI : 10.1007/s100510051180

D. Sachs, S. Lovejoy, and D. Schertzer, The multifractal scaling of cloud radiances from 1 m to 1 km, Fractals, vol.10, issue.3, pp.1-12, 2002.

A. Davis, A. Marshak, and W. Wiscombe, Wavelet-Based Multifractal Analysis of Non-Stationary and/or Intermittent Geophysical Signals, Wavelets in Geophysics, pp.249-298, 1994.
DOI : 10.1016/B978-0-08-052087-2.50016-5

Y. Chigirinskaya, D. Schertzer, S. Lovejoy, A. Lazarev, and A. Ordanovich, Unified multifractal atmospheric dynamics tested in the tropics: part I, horizontal scaling and self criticality, Nonlinear Processes in Geophysics, vol.1, issue.2/3, pp.105-114, 1994.
DOI : 10.5194/npg-1-105-1994

URL : https://hal.archives-ouvertes.fr/hal-00331027

R. Benzi, S. Patarnello, and P. Santangelo, Self-similar coherent structures in two-dimensional decaying turbulence, Journal of Physics A: Mathematical and General, vol.21, issue.5, pp.1221-1237, 1988.
DOI : 10.1088/0305-4470/21/5/018

C. Meneveau and K. R. Sreenivasan, The multifractal nature of turbulent energy dissipation, Journal of Fluid Mechanics, vol.40, issue.-1, pp.429-484, 1991.
DOI : 10.1103/PhysRevA.41.2246

G. Parisi and U. Frisch, On the singularity structure of fully developed turbulence, Turbulence and Predictability in Geophysical Fluid Dynamics. Proc. Intl. School of Physics E. Fermi, pp.84-87, 1985.

A. Turiel, C. Pérez-vicente, and J. Grazzini, Numerical methods for the estimation of multifractal singularity spectra on sampled data: A comparative study, Journal of Computational Physics, vol.216, issue.1, pp.362-390, 2006.
DOI : 10.1016/j.jcp.2005.12.004

A. B. Chhabra, C. Meneveau, R. V. Jensen, and K. R. Sreenivasan, Direct determination of the f(??) singularity spectrum and its application to fully developed turbulence, Physical Review A, vol.40, issue.9, pp.5284-5294, 1989.
DOI : 10.1103/PhysRevA.40.5284

O. Pont, A. Turiel, and C. J. Pérez-vicente, Application of the microcanonical multifractal formalism to monofractal systems, Physical Review E, vol.74, issue.6, pp.61110-061123, 2006.
DOI : 10.1103/PhysRevE.74.061110

URL : https://hal.archives-ouvertes.fr/inria-00438520

A. Turiel, H. Yahia, and C. Pérez-vicente, Microcanonical multifractal formalism???a geometrical approach to multifractal systems: Part I. Singularity analysis, Journal of Physics A: Mathematical and Theoretical, vol.41, issue.1, p.15501, 2008.
DOI : 10.1088/1751-8113/41/1/015501

URL : https://hal.archives-ouvertes.fr/hal-00937370

A. Turiel and A. Pozo, Reconstructing images from their most singular fractal manifold, IEEE Transactions on Image Processing, vol.11, issue.4, pp.345-350, 2002.
DOI : 10.1109/TIP.2002.999668

URL : https://hal.archives-ouvertes.fr/inria-00532760

A. Palanques, P. Puig, J. Guillén, J. Jiménez, V. Gràcia et al., Near-bottom suspended sediment fluxes on a river-influenced, tideless fetch-limited shelf (the Ebro continental shelf, Continental Shelf Research, pp.285-303, 2002.

P. Puig, A. Palanques, and J. A. Guillén, Near-bottom suspended sediment variability caused by storms and near-inertial internal waves on the Ebro mid continental shelf (NW Mediterranean), Marine Geology, vol.178, issue.1-4, pp.1-4, 2001.
DOI : 10.1016/S0025-3227(01)00186-4

J. H. Van-hateren, A. Van, and . Schaaf, Independent component filters of natural images compared with simple cells in primary visual cortex, Proceedings of the Royal Society B: Biological Sciences, vol.265, issue.1394, pp.359-366, 1998.
DOI : 10.1098/rspb.1998.0303

R. J. Adrian, C. D. Meinhart, and C. D. Tomkins, Vortex organization in the outer region of the turbulent boundary layer, Journal of Fluid Mechanics, vol.422, pp.1-53, 2000.
DOI : 10.1017/S0022112000001580

W. J. Emery, A. C. Thomas, M. J. Collins, W. R. Crawford, and D. L. Mackas, An objective method for computing advective surface velocities from sequential infrared satellite images, Journal of Geophysical Research, vol.2, issue.C11, pp.12865-12878, 1986.
DOI : 10.1029/JC091iC11p12865

H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford Science publications, 1987.
DOI : 10.1063/1.3127900

B. Castaing, The Temperature of Turbulent Flows, Journal de Physique II, vol.6, issue.1, pp.105-114, 1996.
DOI : 10.1051/jp2:1996172

URL : https://hal.archives-ouvertes.fr/jpa-00248278

E. A. Novikov, Infinitely divisible distributions in turbulence, Physical Review E, vol.50, issue.5, p.3303, 1994.
DOI : 10.1103/PhysRevE.50.R3303

B. Dubrulle, Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance, Physical Review Letters, vol.73, issue.7, pp.959-962, 1994.
DOI : 10.1103/PhysRevLett.73.959

Z. S. She and E. C. Waymire, Quantized Energy Cascade and Log-Poisson Statistics in Fully Developed Turbulence, Physical Review Letters, vol.74, issue.2, pp.262-265, 1995.
DOI : 10.1103/PhysRevLett.74.262

Z. S. She and E. Leveque, Universal scaling laws in fully developed turbulence, Physical Review Letters, vol.72, issue.3, pp.336-339, 1994.
DOI : 10.1103/PhysRevLett.72.336