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Abstract

Face identi�cation is the problem of determining
whether two face images depict the same person or not.
This is dif�cult due to variations in scale, pose, light-
ing, background, expression, hairstyle, and glasses. In
this paper we present two methods for learning robust dis-
tance measures: (a) a logistic discriminant approach which
learns the metric from a set of labelled image pairs (LDML)
and (b) a nearest neighbour approach which computes the
probability for two images to belong to the same class
(MkNN). We evaluate our approaches on theLabeled Faces
in the Wild data set, a large and very challenging data set
of faces from Yahoo! News. The evaluation protocol for this
data set de�nes a restricted setting, where a �xed set of pos-
itive and negative image pairs is given, as well as an unre-
stricted one, where faces are labelled by their identity. We
are the �rst to present results for the unrestricted setting,
and show that our methods bene�t from this richer train-
ing data, much more so than the current state-of-the-art
method. Our results of 79.3% and 87.5% correct for the
restricted and unrestricted setting respectively, signi�cantly
improve over the current state-of-the-art result of 78.5%.
Con�dence scores obtained for face identi�cation can be
used for many applicationse.g. clustering or recognition
from a single training example. We show that our learned
metrics also improve performance for these tasks.

1. Introduction

Face identi�cation is a binary classi�cation problem over
pairs of face images: we have to determine whether or not
the same person is depicted in both images. More gener-
ally, visual identi�cation refers to deciding whether or not
two images depict the same object from a certain class. The
con�dence scores, ora posterioriclass probabilities, for the
visual identi�cation problem can be thought of as an object-
category-speci�c dissimilarity measure between instances
of the category. Ideally it is 1 for images of different in-
stances, and 0 for images of the same object. Importantly,

Figure 1. Several examples face pairs of the same person from the
Labeled Faces in the Wilddata set. We show pairs that were cor-
rectly (top) and incorrectly (bottom) classi�ed with our method.

scores for visual identi�cation can also be applied for other
problems such as visualisation, recognition from a single
example [18], associating names and faces in images [2, 11]
or video [7], or people oriented topic models [16].

Recently there has been considerable interest for face
and visual identi�cation [5, 8, 12, 15, 20, 24]. Faces are par-
ticularly challenging due to possible variations in appear-
ance, see for example Figure1. Furthermore, the analysis of
humans (identity, pose, actions, etc.) is an important topic
in computer vision. In this paper we propose two methods
for face identi�cation based on learning Mahalanobis met-
rics over a given representation space. The �rst method,
LDML, uses logistic discriminant to learn a metric from a
set of labelled image pairs. Its objective is to �nd a metric
such that positive pairs have smaller distances than negative
pairs. The second method, MkNN, uses a set of labelled im-
ages, and is based on marginalising ak-nearest-neighbour
(kNN) classi�er for both images of a pair. The MkNN clas-
si�er computes the marginal probability that the two faces
are the same person,i.e. marginalising over who that ex-
actly is. For this second method we also use a learned met-
ric, albeit one that is optimised for kNN classi�cation [23].
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Metric learning has received a lot of attention, for re-
cent work in this area seee.g. [1, 6, 9, 10, 23, 25]. Most
methods learn a Mahalanobis metric based on an objec-
tive function de�ned by means of a labelled training set,
or from sets of positive (same class) and negative (dif-
ferent class) pairs. The difference among these methods
mainly lies in their objective functions, which are designed
for their speci�c tasks (clustering [25], kNN classi�ca-
tion [23]). Some methods explicitly need all pairwise dis-
tances between points [10], making large scale applications
(say more than 1000 data points) more dif�cult. Among the
existing methods for learning metrics, large margin near-
est neighbor (LMNN) [23] and information theoretic metric
learning (ITML) [6] are state-of-the-art. Surprisingly, there
is a lack of experimentation of these techniques on chal-
lenging, large, real-world data sets of human faces.

Compared to other face identi�cation methods, experi-
mental results show that our metric learning approaches are
able to improve results signi�cantly if more training data
is available. This is, for example, not the case for the cur-
rent best approach of [24], as it does not learn parameters
in a discriminative manner, but based on an estimate of the
covariance over all available face images.

We report experimental results on theLabeled Faces in
the Wild (LFW) data set [14], which is thede factostandard
dataset for face identi�cation. It contains 13233 labelled
faces of 5749 people, for 1680 people there are two or more
faces. Furthermore, the data is challenging, as the faces are
detected in images “in the wild”, taken fromYahoo! News.
The faces exhibit appearance variations as they occur in un-
controlled settings, including changes in scale, pose, light-
ing, background, hairstyle, clothing, expression, color sat-
uration, image resolution, focus, etc. The data set comes
with �xed, fully independent training and test data sets, and
allows two forms of supervision. In the “restricted” setting
a subset of pairs are labelled as being the same person (posi-
tive) or not (negative). In the “unrestricted” setting, one can
use all available face labels, either by using them directly,
or to generate larger sets of labelled pairs.

In Section2, we describe our logistic discriminant-based
metric learning method and existing state-of-the-art metrics
(LMNN [ 23], ITML [ 6]), and in Section3 our marginalised
kNN method. We present the data set and experimental
setup in Section4, and the experimental results for face
identi�cation in Section5. In the restricted setting, we �nd
slightly improved performance, 79.3%, as compared to the
current state-of-the-art result of 78.5% [24], but only our
method bene�ts from the larger training set of the unre-
stricted setting, pushing the accuracy to 87.5%.

Additional experiments presented in Section6 show that
our learned metrics also lead to improvements in cluster-
ing and recognition from a single example. We present our
conclusions and directions for further research in Section7.

2. Metric Learning for Face Identi�cation

In this section we present three methods to learn Maha-
lanobis metrics for visual identi�cation. First we present
two state-of-the-art methods, LMNN [23] and ITML [6].
Then we propose our method, LDML. We notex i 2 IRD

the representation of imagei andyi its class label. Image
i andj form a positive pair ifyi = yj , and a negative pair
otherwise. The Mahalanobis distance betweenx i andx j is

dM (x i ; x j ) = ( x i � x j )> M (x i � x j ); (1)

whereM 2 IRD � D is a symmetric positive de�nite matrix.

2.1. Large Margin Nearest Neighbour Metrics

Recently, Weinbergeret al. introduced a method that
learns a matrixM designed to improve results ofk nearest
neighbour (kNN) classi�cation [23]. The intuition is that
for each data point such a metric should make thek nearest
neighbours of its own class – target neighbours – closer than
points from other classes. The objective is composed of two
terms. The �rst term minimises the distances between tar-
get neighbours, while the second term is a hinge-loss that
encourages target neighbours to be at least one distance unit
closer than points from other classes.

Rather than requiring pairs of images labelled positive or
negative, this method needs labelled triples(i; j; l ) of tar-
get neighbours(i; j ) and points which should not be neigh-
bours(i; l ). It is thus not possible to use it in the restricted
setting. However, triples can be formed from the labelled
training data(x i ; yi ) in the unrestricted setting. This ap-
proach may not be optimal when thresholding the distances,
but is well suited to use as base metric to de�ne neighbours
in our MkNN approach that we present in Section3.

2.2. Information Theoretic Metric Learning

Davis et al. [6] have taken an information theoretic ap-
proach to optimizeM under a wide range of possible con-
straints and prior knowledge on the Mahalanobis distance.
This is done by regularizing the matrixM such that it is as
close as possible to a known priorM 0. This closeness is in-
terpreted as a Kullbach-Leibler divergence between the two
Gaussian distributions corresponding toM andM 0. Typi-
cally, the other contraints will be of the formdM (x i ; x j ) �
u for positive pairs anddM (x i ; x j ) � l for negative pairs.
The trade-off between satisfying the constraints and regu-
larization is controlled in the objective function using an
additional parameter . The parametersM 0, upper bound
u, lower boundl and have to be provided, although it is
also possible to resort to cross-validation techniques.

2.3. Logistic Discriminant based Metric Learning

Our proposed method is based on the idea that we would
like the distance between images in positive pairs to be



smaller than the distances corresponding to negative pairs,
and obtain a probabilistic estimation of whether the two im-
ages depict the same object. Using the Mahalanobis dis-
tance between two images, we model the probabilitypn that
pair n = ( i; j ) is positive,i.e. the pair labeltn is 1, as:

pn = p(yi = yj jx i ; x j ; M ; b) = � (b� dM (x i ; x j )) ; (2)

where� (z) = (1 + exp( � z)) � 1 is the sigmoid function
andb a bias term. Interestingly for the visual identi�cation
task, the bias will directly work as a threshold value and is
learned together with the metric parameters.

Note thatdM (x i ; x j ) is linear with respect to the ele-
ments ofM , and thus, when we rewritepn = � (b� W > X n )
whereW is the vector containing the elements ofM and
X n the entries of(x i � x j )(x i � x j )> , the model in Eq. (2)
appears as a standard linear logistic discriminant model. We
use maximum log-likelihood to optimize the parameters of
the model. The log-likelihoodL can be written as:

L =
X

n

tn ln pn + (1 � tn ) ln(1 � pn ) (3)

rL =
X

n

(tn � pn )X n ; (4)

which is known to be smooth and concave. The optimiza-
tion process, using gradient ascent, is therefore simpler and
faster than ITML or LMNN.

Several convex constraints can be imposed on the ma-
trix M , such as diagonality or positive de�niteness, without
losing the smoothness or concavity of the log-likelihood. In
this case, the maximum likelihood estimates for the metric
M and bias termbare obtained using the projected gradient
method of [3]. Positive de�niteness is required in appli-
cations where the data needs a vectorial representation. For
our experiments, we did not constrainM , as we only use the
probabilities given by Eq. (2). A prior can also be added so
as to obtain a MAP estimate ofM . We refer to this method
as LDML, for logistic discriminant metric learning.

3. Identi�cation with Nearest Neighbors

In the previous section we presented methods to learn
Mahalanobis metrics, which are always linear transforma-
tions of an original space. With this limitation, it may be
impossible to separate positive and negative pairs, as ap-
pearance variations for a single person might be non-linear
and larger than the inter-person variations for a similar pose
and expression. In this section, we show how kNN classi-
�cation can be used for visual identi�cation. The resulting
non-linear, high-capacity classi�er implicitly uses all pairs
that can be generated from the labelled data.

Normally, kNN classi�cation is used to assign single
data pointsx i to one of a �xed set ofk classes associated
with the training data. The probability of classc for x i is

A

B

C

x i

x j
12 pairs

6 pairs
6 pairs

24 pairs
A

C
B

Figure 2. Schematic representation ofk = 10 neighbourhoods for
x i andx j , and the 24 neighbour pairs (out of 100) that have the
same name and contribute to the score.

p(yi = cjx i ) = ni
c=k, whereni

c is the number of neigh-
bours ofx i of classc. Here, we have to predict whether a
pair of images(x i ; x j ) belongs to the same class, regardless
of which class that is, and even if the class is not represented
in the training data. To answer this question we compute the
marginal probability that we assignx i andx j to the same
class using a kNN classi�er, which equals:

p(yi = yj jx i ; x j ) =
X

c

p(yi = cjx i )p(yj = cjx j )

= k� 2
X

c

ni
cnj

c: (5)

Alternatively, we can understand this method directly as
a nearest neighbor classi�er in the implicit binary labelled
set ofN 2 pairs. In this set, we need a measure to de�ne
neighbours of a pair. One choice to do so for a pair(x i ; x j )
is to take all the pairs we can make using one of thek neigh-
bours ofx i and one of thek neighbours ofx j . The proba-
bility for the positive class given by this classi�er for a pair
is then determined by the number of positive and negative
neighbour pairs, and is precisely given by Eq. (5).

Either way, the score of our Marginalized kNN (MkNN)
binary classi�er for a pair of images(x i ; x j ) is based
on how many positive neighbour pairs we can form from
neighbours ofx i andx j . In Figure2 we illustrate the proce-
dure with a simple example. We expect this method to ben-
e�t from an LMNN base metric to de�ne the neighbours, as
it is designed to improve kNN classi�cation.

Using this approach, we pro�t from the amount of avail-
able data and �exibly model non-linearities, at the expense
of a higher computational cost at test time. It is not “local”
in the sense of usual kNN classi�ers or other “local learn-
ing” methods [4, 9], as MkNN measures the correspondence
between two distinct local neighbourhoods. It implicitly
uses all pairs we can generate from the labeled faces.

4. Data Set, Experimental Setup, and Features

The Labeled Faces in the Wild(LFW) data set con-
tains 13233 face images labelled by the identity of the per-
son [14]. In total 5749 people appear in the images, 1680



of them appear in two or more images. The faces were de-
tected in images downloaded fromYahoo! Newsin 2002–
2003, and show a big variety in pose, expression, lighting,
etc. An aligned version of all faces is available, referred to
as “funneled”, which we use throughout our experiments.1

The data set comes with a division in 10 fully indepen-
dent parts (folds) that can be used for cross validation exper-
iments. The folds contain between 527 and 609 different
people each, and between 1016 and 1783 faces. From all
possible pairs, a small set of 300 positive and 300 negative
image pairs are provided for each fold. Using only these
pairs for training is referred to as the “restricted” paradigm;
in this case the identity of the people in the pairs cannot be
used. The “unrestricted” paradigm is used to refer to train-
ing methods that can use all available data, including the
identity of the people in the images. This allows us to use
the labels directly as MkNN and LMNN do, or explicitly
generate a much larger number of pairs per fold (thousands
in each fold). In turn, each fold is held-out to measure, on its
600 pairs from the restricted setting, performance of classi-
�ers learned on the 9 other folds. Below, we present results
following both training paradigms.

The results are reported based on the operating points
of the ROC curves at equal misclassi�cation cost (ROC-
EMC). This standard performance measure slightly differs
from the accuracy used to report results on the LFW web-
site where a separate threshold is learnt for each fold. For
direct comparison with the state-of-the-art in Section5.3,
we report performance using the LFW accuracy.

We have experimented with several feature sets for faces
used in recent work: Local Binary Patterns (LBP) [21], and
its variations proposed in [24]. For details on these descrip-
tors we refer the reader to [24]. Following [11] we have
also used SIFT descriptors [19] computed at �xed points on
the face (corners of the mouth, eyes, and nose) found using
a facial feature detector [7]. We compute 128 dimensional
SIFT descriptors at three scales, centered on 9 points, lead-
ing to a3 � 9 � 128 = 3456dimensional face descriptor.

5. Experimental Results on Face Identi�cation

In Section5.1 we present face identi�cation results on
the LFW data set in the restricted setting, and in Section5.2
we present the �rst results ever published on the unrestricted
setting. We compare to related work in Section5.3.

5.1. Image Restricted Training Paradigm

We �rst evaluate an unsupervised baseline method; re-
sults are obtained by thresholding standard metrics. Since
all our descriptors are histograms we applied the Hellinger
(obtained as the L2 distance after taking the square root of

1Data set available at:http://vis-www.cs.umass.edu/lfw/

Descriptor L2 Hellinger � 2

LBP 67.65� 0.7 68.13� 0.7 68.33� 0.6

TPLBP 66.90� 0.4 66.82� 0.4 66.58� 0.2

FPLBP 66.52� 0.5 67.37� 0.4 67.10� 0.5

SIFT 67.78� 0.6 68.50� 0.5 68.77� 0.4

Table 1. ROC-EMC classi�cation results for L2, Hellinger and� 2

distances for different descriptors.

Method / PCA dim. Original Square Root

LDML 76.6� 0.7 77.5� 0.5

ITML 35 75.2� 0.7 75.8� 0.5

LDA-based 73.8� 0.4 74.2� 0.4

LDML 72.8� 0.6 72.8� 0.4

ITML 55 75.6� 0.6 76.2� 0.5

LDA-based 74.9� 0.8 75.3� 0.3

LDA-based 600 78.6� 0.4 79.4� 0.2

Table 2. ROC-EMC performances for LDML, ITML and the
LDA-based method of [24] in the restricted setting (600 train-
ing pairs per fold) using SIFT. The parameters for ITML are
u = l =  = 1 andM 0 = I . ITML and LDML are intractable
when using 600 PCA dimensions.

the histogram values),� 2 and L2 distances. Perhaps sur-
prisingly, the results in Table1 show that all descriptors and
distances lead to comparable ROC-EMC of 66% to 69%.
As the SIFT based descriptor performs slightly better than
the others, we use it hereafter to compare methods.

To apply our LDML approach we pre-process the data
using PCA (separately for each fold), as otherwise the num-
ber of parameters is too large (almost 6 million). We tried
several dimensionalities for the PCA projection and found
that performance dropped when using more than 35 dimen-
sions, as shown in Table2. This is explained by the large
number of parameters to estimate when using larger dimen-
sional PCA spaces, which causes over-�tting as we only
have 5400 training samples in the restricted paradigm: 600
pairs from each of the 9 folds. We also �nd that taking the
square root of the data values gives a small improvement.

For comparison, we trained an ITML2 [6] metric and im-
plemented the state-of-the-art Linear Discriminant Analy-
sis (LDA) based method [24]. The performance levels re-
ported in Table2 show that, using the same descriptor and
the same PCA dimensions, our method can outperform the
LDA-based method and ITML when over-�tting is avoided.
Using more PCA dimensions increases the performance of
the LDA-based method and ITML, at the expense of a larger
face representation and higher training times.

Interestingly, SIFT based features yield better results
than any of the descriptors reported in [24], where the best
single descriptor results in 74.6% accuracy.

2Cf: http://www.cs.utexas.edu/users/pjain/itml/

http://vis-www.cs.umass.edu/lfw/
http://www.cs.utexas.edu/users/pjain/itml/


Method / PCA dim. 1.000 2.000 10.000

LDML 76.3� 0.6 77.2� 0.5 77.4� 0.5

ITML 35 75.6� 0.7 76.2� 0.6 75.9� 0.6

LDA-based 74.0� 0.6 73.9� 0.5 73.9� 0.6

LDML 76.2� 0.4 78.5� 0.5 80.4� 0.4

ITML 55 77.3� 0.5 78.3� 0.4 78.4� 0.6

LDA-based 74.8� 0.6 74.8� 0.4 75.0� 0.6

LDML 71.3� 0.8 76.7� 0.8 83.2� 0.4

ITML 100 77.6� 0.3 78.4� 0.5 80.5� 0.5

LDA-based 76.5� 0.3 76.4� 0.5 76.4� 0.5

LDA-based 600 79.3� 0.3 79.1� 0.2 79.1� 0.3

Table 3. ROC-EMC classi�cation results of LDML, ITML and
LDA-based method in the unrestricted setting, when varying the
number of training pairs per fold, and the PCA dimensionality of
the SIFT descriptor. ITML and LDML are intractable with 600
PCA dimensions.

5.2. Unrestricted Training Paradigm

In the unrestricted setting more image pairs are avail-
able for training. This reduces over-�tting and allows us to
use models with more parameters. Table3 shows perfor-
mance of LDML when using an increasing number of train-
ing pairs: 1000, 2000 and 10000 pairs per cross-validation
fold, instead of the 600 provided in the restricted setting. As
expected, we see that the models with the largest number of
parameters bene�t the most from an increased number of
training pairs. When using a 100 dimensional PCA pro-
jection of the SIFT data,i.e. 5050 parameters, more than
10% increase in ROC-EMC is obtained by using 10 times
more training examples (90000 in total). Interestingly, us-
ing more training data signi�cantly increases the perfor-
mance of our LDML model (up to 83.2%), but only slightly
impacts ITML and does not impact the current state-of-the-
art LDA-based approach at all. This is because LDA is not
learning parameters in a discriminative manner, but relies
on the leading eigenvectors of the covariance matrix over
all available face images. These can be estimated accurately
based on a limited number of training pairs.

Using the labels of the unrestricted setting, we can em-
ploy LMNN3 and our MkNN approach. For LMNN we
used a PCA projection of the data to 200 dimensions; using
less dimensions gave slightly worse results, and using more
dimensions gave slightly better results at the cost of much
higher training times. We used 5 target neighbours to learn
the LMNN metric; using between 3 and 20 target neigh-
bours gave similar performance, other values gave slightly
worse results. This resulted in a best performance of 80.5%.

We, then, applied the MkNN classi�er using L2, LMNN,
and LDML as base metrics. In the case of L2 and LDML

3We used code available at:http://www.weinbergerweb.net
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Figure 3. ROC-EMC performance using the MkNN classi�er, with
L2 and LMNN as base metrics.

ITML LDA-based LMNN LDML MkNN

80.5� 0.5 79.3� 0.3 80.5� 0.5 83.2� 0.4 83.1� 0.5

Table 4. Comparison of ROC-EMC classi�cation results for meth-
ods in the unrestricted setting (SIFT).

as base metric, the MkNN classi�er did not give as good re-
sults as the base metric. However, when using LMNN, de-
signed for kNN classi�cation, as a base metric, the MkNN
classi�er performs better when between 100 and 200 neigh-
bours are used: 83.1% instead of 80.5%, see Figure4. We
also considered a variant where a weighted sum of the base
metric and the class probability is learnt using a logistic dis-
criminant classi�er. This combination brings a small im-
provement over the base metric from 67.8% to 69.2% for
L2, from 83.2% to 83.3% for LDML and from 80.5% to
83.5% for LMNN. Furthermore, for LMNN, this improve-
ment is consistent over all neighbourhood sizes, as shown
in Figure3. Figure4 shows some of the examples that were
incorrectly classi�ed using the LMNN metric, but were cor-
rectly classi�ed using the MkNN classi�er. The bene�t of
the MkNN classi�er can be seen most for pairs with large
pose and or expression changes.

Table 4 summarises the performance of the different
methods in the unrestricted setting using SIFT features. We
can observe that the performance of the MkNN classi�er
with LMNN as a base metric is comparable to the best per-
formance we have obtained using LDML. Moreover, both
our approaches outperform the state-of-the-art methods,i.e.
LDA-based, ITML and LMNN.

5.3. Comparison to the stateoftheart

In this section, we compare with previously published
results on LFW [13, 20, 24]. We used the strict protocol

http://www.weinbergerweb.net


Figure 4. Examples of positive pairs correctly classi�ed using the
MkNN classi�er with LMNN as a base metric, but wrongly clas-
si�ed using the LMNN metric alone.

to calculate the ROC curve and accuracy for our method.
Note that each published result combines its own feature
extraction with its own machine learning technique, making
any conclusion harder to draw than in the previous sections.

Following recent work [22, 24], we have linearly com-
bined different scores to improve classi�cation perfor-
mance. In the restricted setting, we combine 4 descriptors
(cf. Table1) with the LDML metrics on the original data
and its square root (8 scores). In the unrestricted setting,
we combine the same inputs with the LDML, LMNN, and
MkNN metrics (24 scores). The linear combinations are
learnt using a logistic discriminant model for each fold in-
dependently. In the following and in Figure5, we refer to
these combined methods as LDML and LDML+MkNN.

The best result reported to date [24] attains 78.47% ac-
curacy in the restricted setting also by combining several
descriptors. LDML on the restricted setting obtains an
accuracy of 79.27%. Shifting to the unrestricted setting,
LDML+MkNN obtains a performance of 87.50%, which
is signi�cantly better than any previous result reported on
this data set, showing the bene�t of our metric learning ap-
proaches when using more training data. We observe that a
combination of descriptors and metrics improves over using
only one metric and one descriptor, highlighting the com-
plementarity of our two approaches. We refer to Figure1
for classi�cation examples using our combined method.

6. Applications of learned face metrics

Here we show the merit of learned metrics for two ap-
plications: unsupervised clustering of face images, and face
recognition from a single exemplar. We learn our metrics
on 90000 pairs from 9 of the LFW folds, and apply them to
faces in the held-out fold. The test fold contains 1369 faces
from 601 people. In the following experiments, we focus
on the 17 most frequent people (411 faces). We compare
L2 and LDML on SIFT, and LDML+MkNN of Section5.3.

Unsupervised hierarchical clustering of face images.
We cluster the faces using complete-linkage hierarchical
clustering. This method yields a hierachy of clusters by
varying the maximum distance with which clusters can be
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Figure 5. Comparison of our results with best results to date on the
LFW data: ROC curves, and average accuracy and standard error.

merged. To compare clustering results we de�ne a cost that
re�ects the labelling effort needed for a user to label the
faces,e.g. for a personal photo album. We assume the user
has two buttons: one to assign a single label to all faces in a
cluster, and one to assign a label to a single face. The most
ef�cient way to label all faces in a cluster is to �rst label
the cluster with the name of the most frequent person, and
then to correct the errors. For a cluster ofN faces, the cost
is 1 + ( N � max(f ni g)) , whereni denotes the number of
faces of personi in the cluster. The cost to label all faces is
then the sum of the costs to label the faces in each cluster.
The optimal clustering has cost 17, a trivial over-clustering
with a cluster for each face yields a cost of 411, while using
a single cluster of all faces yields a cost of 341 as we have
71 images of the most frequent person.

In Figure6 we show the costs as a function of the num-
ber of clusters using the L2 and LDML metrics on the SIFT
data, the LDML+MkNN combination, the average for ran-
dom clustering, and the minimum and maximum costs that
can be obtained. Clearly, LDML yields much better clus-
tering results than L2 for a wide range of number of clus-
ters. For LDML the minimum cost of 109 is obtained with
only 25 clusters, most of which are fairly pure. If we la-
bel the faces in each cluster by the identity of the most
frequent person in that cluster then 75% of the faces are
correctly classi�ed. For the L2 metric the minimum cost is
233 for 135 clusters (92% correct but over-clustered). Com-
bining the different descriptors with LDML leads to a de-
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creased cost of 88 with 28 clusters (85% correct), and with
LDML+MkNN the cost drops to 71 with 29 clusters (90%
correct). In Figure7 we show three example clusters from
this clustering. Note that the clustering is successful despite
big changes in expression, pose, and lighting.

Multi-class face recognition from single face exemplars.
Here, we perform multi-class face recognition using a sin-
gle, random training exemplar for each of the 17 people. We
test classi�cation accuracy on the remaining1369� 17 =
1352 faces. A test face is assigned to the exemplar with
the best score, or rejected if all scores are below a certain
threshold. From the 1352 test faces only411� 17 = 394
should be accepted as one of the 17 classes, and the re-
maining 958 should be rejected. We measure performance
using precision at equal error rate, where the number of
wrongly rejected faces equals the number of wrongly ac-
cepted faces. In Table5 we present quantitative results
showing that, as with the clustering, LDML leads to sig-
ni�cantly better performance than L2 on the SIFT features:
39% of the accepted faces are correctly recognised, com-
pared to only 14%. The LDML+MkNN combination boosts
precision to 53%. In Figure8 we show classi�cation exam-
ples for LDML+MkNN.

7. Conclusion

We have introduced two new methods for visual identi-
�cation: Logistic Discriminant Metric Learning (LDML),
and Marginalised kNN classi�cation (MkNN). We note that
LDML can be trained from labelledpairs as provided in
the restricted paradigm of LFW, where MkNN requires la-
belled training data and implicitly uses all pairs. The MkNN
classi�er is conceptually simple, but in practice it is compu-
tationally expensive as we need to �nd nearest neighbours
in a large set of labelled data. This computational cost can

Figure 7. Three example clusters obtained using LDML+MkNN
scores. The top two clusters are pure, and only few faces of these
persons are assigned to incorrect clusters. The last cluster is typi-
cal, it contains a few faces from other people (the last 2).

(a)

(b)

(c)

(d)

Figure 8. Illustration of face recognition of 7 (out of 17) people
using one training exemplar, with one person in each column. For
each person we show: (a) the exemplar image, (b) a correctly
recognised face of that person, (c) a non-recognised face of that
person, and (d) another failure: an erroneously accepted face of
another person.



Metric L2 LDML LDML+MkNN

Precision 14:0% 38:8% 53:3%

Faces of the 17 targets
correctly recognised (b) 55 153 210
wrongly recognised 107 81 40
wrongly rejected (c) 232 160 144

Faces of other people
correctly rejected 726 798 814
wrongly accepted (d) 232 160 144

Table 5. Comparison of one-exemplar classi�cation performances.
The test faces are broken down over the �ve possible situations.
The labels (b)–(d) refer to the example images shown in Figure8.

be alleviated by using ef�cient and/or approximate nearest
neighbour search techniques.

LDML in combination with our descriptors yields a clas-
si�cation accuracy of 79.3% on the restricted setting ofLa-
beled Faces in the Wilddata set, where the best reported
result so far was 78.5%. LDML and MkNN yield compa-
rable accuracies on the unrestricted setting, around 83%.
Remarkably, the gain when using the unrestricted setting is
not observed with the current state-of-the-art method [24].
To our knowledge, we are the �rst to present results on the
LFW data that follow and make good use of the unrestricted
paradigm. Combining our methods, the accuracy is further
improved to 87.5%. We also showed that metric learning
leads to great improvements as compared to a simple L2
metric for applications of face similarities like clustering
and recognition from a single exemplar.

Looking at the examples of failure cases of our method
in Figure 1, pose changes remain one of the major chal-
lenges to be tackled in future work. Explicit modeling of
invariance due to pose changes using techniques like those
in [17] is an interesting option. Furthermore, we plan to
apply our methods for automatic association of names and
faces, and to other visual identi�cation problems.
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