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Abstract This paper addresses the problem of accurateliKeywords Object recognition Segmentation Random
segmenting instances of object classes in images withodtields
any human interaction. Our model combines a bag-of-words
recognition component, with spatial regularization based on
arandom eld and a Dirichlet process mixture. Bag-of-words| |ntroduction
models successfully predict the presence of an object within
an image; however, they can not accurately locate objedifter several decades of research, image segmentation still
boundaries. Random Fields take into account the spatial layemains an open problem. Many different approaches have
out of images and provide local spatial regularization. Yetbeen investigated, combining various image properties such
as they use local coupling between image labels, they fals color, texture, edges, motion, etc. Initially, these meth-
to capture larger scale structures needed for object recogrids worked in an unsupervised way: without exploiting a
tion. These components are combined with a Dirichlet prodatabase of manually segmented images to automatically
cess mixture. It models images as a composition of regionsearn parameters for optimal performance. Also, many of
each representing a single object instance. Gibbs samplinge methods operate in a “bottom-up' way, generating the
is used for parameter estimations and object segmentationimage segmentation by a process of aggregating local image
Our model successfully segments object category instanggsmation, and usually failing to capture high level image
despite cluttered backgrounds and large variations in apnformation. However, image segmentation is deeply related
pearance and viewpoints. The strengths and limitations ab image understanding, requiring long-range dependencies
our model are shown through extensive experimental evalue resolve ambiguities that arise at a small scale.
ations. First, we evaluate the result of two methods to build  The problem we address in this paper is that of accu-
visual vocabularies. Second, we show how to combine strongtely segmenting instances of object classes in images, with-
labeling (segmented images) with weak labeling (images arput giving any prior information on object identities, orien-
notated with bounding boxes), in order to limit the labelingtations, positions and scales. This is also known as * gure-
effort needed to learn the model. Third, we study the effectround segmentation'. Note that this differs from “image
of different initializations. We present results on four imagesegmentation' or “scene segmentation’, which correspond to
databases, including the challenging PASCAL VOC'07 datahe situation where everything in the image has to be seg-
set on which we obtain state-of-the art results. mented. In object segmentation only several objects of in-
terest have to be segmented.

Diane Larlus . .
Darmstadt University of Technology, Germany We assume thg objects to belong to knowr? (.:ate.gorles,
E-mail: larlus@mis.informatik.tu-darmstadt.de and these categories are de ned by sets of training images
which are used to learn object appearance models. These
Jakob Verbeek L .
INRIA Rhone-Alpes, France training images play a fundamental role because object mod-
E-mail: jakob.verbeek@inria.fr els built from these images allow object recognition, which
Fréderic Jurie we couple with the segmentation process. In particular, we
University of Caen, France are interested in segmenting object categories that demon-

E-mail: frederic.jurie@unicaen.fr strate large intra-class appearance variations. In Figure



Fig. 1 Examples of object category segmentation obtained by our method without user interaction. Input images (columns 1 and 4), object
category masks (columns 2 and 5) and object category segmentation (columns 3 and 6).

show several typical images with corresponding segment& Discussion of related work

tion masks produced by our method. Starting from cluttered

images including objects of interest, the method is able t&egmentation can be seen as a “chicken-egg' problem, where

recognize and localize objects, and to automatically producebject detection and recognition is required for accurate seg-

segmentation masks that can be used to extract objects withrentation, and vice versa. We will rst discuss generative

out manual effort. The major contribution of our approachbag-of-words object recognition methods, and then turn to

is an instance based modeling of the scene. More preciselymethods which are primarily designed for segmentation.

the object recognition is enhanced by a mechanism which Bag-of-words methods have proven to be very effective

allows to distinguish and model the different instances befor the recognition of object classes. The “visual words' in

longing to a particular class. The number of instances ishe image representations are obtained by quantization of

automatically estimated and controls the number of regionfw-level image descriptors. The quantization can be com-

produced by our segmentation. puted in different ways. Often, visual vocabularies are pro-
duced by a standard unsupervised clustering technidgies [

,20). In our model, the visual vocabulary is used to dis-

The model presented in this paper combines three co criminate between classes at the level of patches. Methods

i ave been designed to produce more discriminative vocabu-

plementary components: (a) a random eld (RF) component . A .
. : - aries when labels are available at the image or at the patch
which ensures short-range spatial contiguity of the segmen:-

. o . g . evel [18,25]. Among such techniques, the ones based on
tation by aligning segment boundaries with low-level image . . : .
trees are of particular interest because of their ef ciency and

boundaries, (b) a Dirichlet process component that ensur . L
(b) P P ?ﬁe fact that they directly pursue class-discriminative quan-

mid-range spatial contiguity by modeling the image as g.__ . . . . .
g€ sp guity by . 9 ge ¢ %zatlon using patch labels. In Sectidrwe describe quanti-
composition of blobs, each of which corresponds to a single” . . . . )
ation using decision trees in detail, and we compare such

object, and (c) a bag-of-words object recognition componen o . . ;
. . . . _guantization to those obtained by k-means in our experi-
which allows for strong intra-class appearance and |mag|nﬁ1
- S . ents.
variations. Although the combination of RFs with a recog- ] o )
nition component based on visual words has been explored 1OPiC models, such as probabilistic Latent Semantic Anal-
before, the main contribution of the model presented in thigS!S (PLSA) and LaFent Dirichlet Allocation (_LDA) E13, )
paper is the addition of a Dirichlet process to achieve highetr]a\’e r(_acently been introduced as an alterpatlve over the sim-
guality segmentation and instance-level segmentation. Thf'},Ie Naive -Bayes model fgr bag-of-words image repres:enta-
paper extends![] with additional experiments and an eval- 1ons: Topic models consider the bag-of-words as a mixture
uation of vocabulary construction methods. of several “topics' which can be thought of scene elements in
images.e.g.the visual words in an image of a beach scene
are modeled as a mixture of words belonging to sea, sky,
people, trees, etc. Each image has its own distribution over
In the remainder we rst review related work in Sec- topics, and each topic is represented as a distribution over
tion 2. Then, in Sectior® we present our model and the esti- visual words. Several authors have extended the standard
mation of its parameters. Visual vocabulary construction fotopic models from the text analysis community to include
bag-of-words methods based on decision trees is describ@dodeling of some spatial aspects of the image. 0, 33].
in Section4. We present our experimental results in Sec-Such models are not only useful for image classi cation,
tion 5, and conclude with a discussion in Sectin where the images of each class are modeled using a gener-



ative topic model over the images of that class, but are alsmentation results can be obtained. The next step is to reduce
useful for object localization. The main limitation of these the user interaction to only specifying the object category,
methods is that they either use a very rigid and coarse modelg.a user could ask to segment all cats in an image.

of the object shape, are overly exible without any shape

prior, or use an initial over segmentation of the image and

assign each segment as a whole to a topic which breaks # The proposed segmentation model

the initial segmentation contains errors. In all cases a pre-

cise object segmentation is not obtained in general. In our model we represent images as a collection of over-
Various forms of Random Fields (RFs) have been prolapping square patchd;i 2 f1;:::;ng of a xed size
posed for image segmentationl[16,17,30,36]. They de- extracted on the nodes of a regular grid. We suppose the

ne a probability distribution over the labels of sites (pix- image patches are generated by a number of objects and a
els or image patches) which encodes correlations betwedrackground; we use simple Gaussian and uniform models
neighboring sites. RFs incorporate evidence terms acting dior their spatial extent, and refer to both objects and back-
individual sitesg.g. the visual word associated with a patch ground as “blobs'. In each image both the number of blobs
will increase the likelihood of the patch having a certain la-and their position, size, and shape are unknown. We asso-
bel. Ambiguities that arise when considering the local eviciate a blob label with each patch, and de ne a Random
dence for patches in isolation can be resolved by propagakield (RF) structured energy function over them to encode
ing evidence for labels spatially over the image. the short-range correlations among them. Through the cate-

Some models combine topic models and RF§{5). gory labels of blobs, we also associate category labels with
However, these models do not include a component to erthe patches. Once object model parameters have been es-
sure mid-range spatial contiguity of the segmentation: theyimated from labeled training images, we can use a Gibbs
only use the local regularization of the RF and the topicsampler to estimate the category labels of patches in a new
model that enforces a regularization at an image-wide scaléinlabeled image.
As compared to a standard topic model such models gen- Below, we rst describe our feature extraction proce-
erate a crisper segmentation, while compared to a standaggire in Sectior8.1, then we continue in Sectio®.2 with
RF small regions with a label that does not appear elsewhetbe Dirichlet process mixture model over the features, and
in the image are suppressed. In contrast, our model tries then come to the RF component of the model in Seciién
capture object instances using blobs, which will result inWe describe the Gibbs sampler for parameter estimation in
mid-range regularization. In a similar spirit, in]] a tree  Section3.4. Finally, in Sectior3.5we discuss how we map
structure is learned dynamically to locate the position of théhe category labels obtained at the patch level to a smooth
objects in an image, and the relative location of their partssegmentation on the pixel level.
The modeling of object parts can improve the ability to dif-
ferentiate instances, but the model does not include a ne
random eld type spatial regularization. 3.1 Visual feature extraction

A number of approaches combining local regularization
using RFs with more geometric object category models haveor image patch the feature seP; contains
been proposec![ T ]. These gpproache; model 1. the SIFT descriptord], coded by the visual worgS™ |
the shape of objects and their deformations, sometimes als :

taking occlusions and viewpoint changes explicitly into ac- .” the hue descriptosf], coded by the color word/f°" ,
9 P 9 plcttly . 3. the average RGB value in the patch center, dermgiiad

count. Although they are robust to small local shape vari- : .
. . . . 4. the image coordinates of the patch cedter ( Xi;V;).
ations, the strong geometric constraints embedded into the g P e (xi;yi)

models are not suitable to model the complex appearancess Sectiond we will discuss the quantization of the SIFT and

of weakly structured object classes. Examples of these conrue descriptor in detail which allows to c;ompméift and

plex appearances can be found in Figdrdor the classes w'" for all patches.

cats and people. Such classes require more exible models. |n addition we extract a boundary m&pthat gives for
Finally, we mention work on interactive segmentationeach pixel an estimate of the probability of being part of

tools [3,22,29] where a user roughly indicates the object ofa boundary between image segments. The map is based on

interest using a bounding box or using a brush tool. Modelgharacteristic changes in several local cues associated with

of the foreground and background are estimated, and thesatural boundaries, see Figiréor an example. Many meth-

models are used in combination with a RF to spatially prop-ods exist to extract natural boundaries, striking different bal-

agate the user-provided labels. After labels propagation thences between accuracy and computational complexity. Here,

models are re-estimated and the procedure is repeated. Usir choice was purely based on accuracy, and we used one

ing such an interactive approach, remarkably accurate segf the current state-of-the-art methods]



p(Xij k) = N(Xi; «; «k)- The category associated with
the blob is denotedi, and Cx denotes the parameters of
a mixture of Gaussian (MoG) model over the color vectors
rghy of the associated patches. The background is de ned
by a color distributionCpg and its spatial model is de ned
as uniform over the image area.
In addition to the feature®; = fw®" ;W :rgh; X;g
Fig. 2 Example image from the Graz database and its boundary mapW€ associate two random variablds,and ¢, with each
patch. The index of the blob that generated the patch is de-
noted byh, andc; denotes the generating component in the
3.2 A Dirichlet process over patch characteristics corresponding MoG over RGB values.
Given the index of the blob that generated a p&ckhe
In this section we present a generative model for rough obfeatures are assumed to be independent, and we have
mct/bgckgrou_nd segmentaﬂon. We use a_m(.)del msplr_ed bty(Pijh = k) = p(Wism i k)p(Wicolorj <)
[33] with explicit spatial structure information: we consider . .
that an image is made of regions that we call *blobs'. Each p(rgbj P(Xi) k): @
blob generates the features of the patches associated with The color models, as ir?p], capture color distributions
that blob, where the distribution over features depends oof speci ¢ object instances and the background. This helps
the parameters associated with the blob. Intuitively, if an imus to achieve coherent object instance level segmentation,
age contains three objects, say a car, a pedestrian and a bikeen if locally recognition is ambiguous. Note that this color
we may have four blobs: one corresponding to each objectodel plays a different role than the model over the color
plus an additional blob for the background. Given the blobsvordsw'" , which model category-level color information
and their parameters, the patches in an image are assumemd have some degree of invariance to lighting conditions.
to be independent. The generative process for a patch is as The probability of visual words associated with color
follows: (i) sample a blob, and (ii) sample the features usingand SIFT descriptors are modeled by multinomials asso-
the distribution of the blob. The remainder of this sectionciated with the category of the blohg. p(wis'ft j k) =

details this generative process. p(wWS™ jl) andp(weler j ) = p(weer jI). These distri-

The Dirichlet process (DPY[] can be seen as the limit butions encode category-level appearance information, and
asK !'1 of a nite K-component mixture model. The form the recognition component of our model. The category
mixing weights of the components are controlled by a ‘Conm0d6|s are the only source of information which is shared
centration parameter' > 0; smaller values implement a across images, and they are learned from annotated training
prior to use fewer mixture components. Note that even for #nages. The maximum likelihood estimates of these distri-
mixture with an in nite number of components, only nitely butions are found by simply normalizing the counts of how
many mixture components can be associated with a nit@ften visual words appear in each class and in the back-
sample. In our case the blobs will take the role of mixtureground, for all training images.
components. This means that a newly sampled patch, can be

either sampled from one of the blobs that have been used q Id h-to-blob ;
before, with probabiligNy=(n 1+ ) whereNy is the 3.3 Arandom eld over patch-to-blob assignments

number of samples as-somated with bigiandn is the num- Given the categories associated with the blobs, the patch-to-
ber of samples including the current one. Alternatively, theblob assignmerib = fby::::: b, g determines the segmen-

patch can be sampled from a new blob with prObablmytation of an image. To enforce local spatial contiguity in the

_ NN - i : i _ _
(r.1 1 ). DPs ex'h|b|t a so-called clustering prpp above model we add an RF prior over blob assignments. By
erty: the more often a given value has been sampled in th&Sin the image boundary mao to de ne the RE botentials

past, the more likely it is to be sampled again. The cluster: 9 9 y map P '

; . . o . label changes will be aligned with low-level image bound-
ing property is desirable as it will reduces the likelihood toa ies. The RF is de ned over the rectangular grid of patches

assign patches to classes that are rare in the image: if a patch. . .
anp 9 P using an 8-neighbor connectivity.

observation leaves ambiguity on the corresponding categor
guity >Sponding gory Above we de ned a model over the patch-to-blob as-
the most frequent class throughout the image is preferred

Below, we usep;; to denote the probability of the patch- signments and patch featu_r| é ;b]. .) - p(b)p(PJb;_ ),
: wherep(b) was modeled using a Dirichlet process prior. We
to-blob assignment.

i ) _include the RF in the mod@(b) by de ning our new model
With each blolB we associate a setof parameters= 44 the product of a RF model and the Dirichlet process:
f «; «;Ck;lkg. The density over the spatial positioKs

of associated patches is given by a Gaussian distributiop(P;b )/ ppir (D)pre (B )p(Pjb; ): (2)




To simplify the formulation of the RF, we drop from the  the posteriors over the parameters. For the parameters gov-
notation, and rewrite the joint probability sgP;bj ) / erning the spatial extent of the blob, and , we nd:
exp( E(P;b)) and de ne the energy function as ) 1 )
X k N (MeanfX; :i2Bg; N—Covfxi 11 2BkQ); (6)
E(P;b) = U(P;b)+ Vij (b:h); 3 k
(Pib)=U(P:D i 2 i (B:B); ®) k W (CovfX;:i2Byg Nk 1) @)
whereC represents the set of neighbors (or cliques) in thé’vhere we usN to denote a normal distribution ard

eight-connected patch grid, is a parameter that balances g? (:IJenote a W|Isha|\r/|t d(lsstnbuni_n. Tthz pa_rametl@prs]of EheEM
the two terms, antl encompasses the Dirichlet process: 0b-speci ¢ color Vo> are estimated using stochastic =W,
using samples rather than expectations in the E-step. Finally,

U(P;b)= log(p(Pjb; )poir (b): (4)  the multinomial from which we sample the category labels
Ix are given by:

The second term in Equatio)(representgrg , and its % _

pair-wise potentials are de ned as p(lkjb) / pOWS™ 1) p(WE jly): (8)
2B

Vij (b;8)=[lp 6 Iplexp( i ); (5)

Given the patch-to-blob assignments, theariables that
where[:] is the indicator function. This potential enforces denote the component of the color MoG used for each patch,
local coherence of the patch labdds and encourages la- are straightforwardly sampled from the posterior over mix-
bel changes to be located with high values in the boundaryure components in the corresponding MoG.
mapG, similar to the approach ir?p, 30, 36]. The maximum The patch-to-blob assignmenrts are sampled sequen-
value in the boundary map between the centers of paihes tially, given the blob parametersy and all other patch-
andP; is denoted ;; , and is the inverse of the average to-blob assignments ; = bn flhg. We distinguish two
of the ; over the image. Thusy;; = O for neighbor- cases: sampling an assignment to a blob also assigned to
ing patches that are assigned to the same blob, otherwisepgher patches, and assigning the patch to a new blob:

penalty is incurred that decreases when the probability of 8 P
having a boundary between the patches increases, according % p(Pijb)- Nfl exp( 2 Vi )
to G. See Figures for an illustration. TR existing lob

We note that the de nition of Equatior2 may seem p(bib ;5 P) 3 p(Pijb) 7—— exp( 4 2¢ Vii )

problematic due to the fact thpp;, distributes over an in- new blob

nite state space, whereggr Will be de ned over a nite )

state space. However, in practice we can php to assign

zero probability to using more blobs than image patches, antio calculate Equation9j for a new blob, we sample pa-

re-normalizing the distribution over the remaining con gu- rameters for the blob as follows. The category lakels

rations. Since we will use a Gibbs sampler for inference wesampled uniformly among the available categories, the blob

do not actually need to include the normalization term, anaenter  is sampled uniformly over the image area, and

we omitted the clipping term fqup;; in Equation ). is taken isotropic with standard deviation corresponding to
half the smallest side of the image. The parameters of the

_ _ _ _ _ color MoG, Cy, are set to the mean and covariance of all
3.4 Approximate inference using Gibbs sampling pixels in the image.

In this section we consider how to use the model to infer

the patch-to-blob assignmebfor an image, together with 3.5 Towards a pixel-level segmentation

the blob-to-category assignmemis Exact inference in our

model is intractable, and we thus have to resort to approxithe model presented above works at the patch level, but our

mate inference techniques. We have chosen to use a Gibpseal is to produce a precise pixel level segmentation. By

sampler, motivated by its conceptual and practical simplicusing overlapping patches we can ensure precision of the

ity, and not aiming to use the most ef cient possible tech-segmentation using a simple post-processing method. The

nique for approximate inference in our model. The GibbsGibbs sampler gives us estimates of the posterior probabili-

sampler samples in turn the blob parametegs and the ties of the blob assignment of each patch, and a probability

patch level variableg andc; . of the category label of each blob. From those, we can es-
Given a xed patch-to-blob assignmehtthe blob pa- timate the class label probability for a patch by summing

rameters ¢ = f ; «;Cx;lkg are distributed indepen- the blob-class probabilities, weighted by the probability that

dently. We assume uninformative priors oveg, and we the patch belongs to each blob. The probability for pixel

use the shorthanBx = fi : b = kgto compactly write to belong to a category or to the background is computed



Fig. 3 The model captures spatial regularity by (i) a contrast sensitive pairwise potential, and (ii) the Gaussian and uniform spatial models
associated with the object blobs and background, left panel. The right panel shows the graphical representation of the model.

by accumulating the probabilities of all patches containingraining dataj.e. maximum likelihood estimation is not ro-
this pixel. We do this with a weighted sum of the patch-levelbust. Second, for most practical problems it is intractable to
probabilities, where the weights depend on the distance bend the best decision trees for a given training set. In prac-
tween the pixel and the center of a patch. A crisp segmertice very good results are obtained by randomly constructing
tation mask can then be obtained by assigning each pixel toear-optimal trees and averaging over their predictions, sim-
the most probable class. ilar to Bayesian model averaging. The randomized construc-
tion starts at the root node, and adds nodes one-by-one, for
each node the best among several randomly generated can-
didate splits is used. The ensemble of multiple trees is often
referred to as a “forest'. The forest is characterized by (i) the

Our segmentation model relies on a visual vocabulary t§'umbper of trees, (i) the number of leaves in the trees, and
represent image patches. It has recently been shafip [ (iiif) the number of candidate splits used d_urlng constryctlon.
in the context of image categorization, that decision tree¥Ve Study the effect of these parameters in our experiments.
are an ef cient alternative to clustering for vocabulary con-  Recall thatin our original model we used two visual vo-
struction that lead to more discriminative vocabularies. Mo-abularies, one for the SIFT descriptors and one for the color
tivated by this success, we consider them here in the conte®€SCriptors. When using a forest of decision trees for multi-
of segmentation. Decision trees have been used by othePt€ descriptors we proceed in a similar way: each patch hav-
as a quantization method for segmentatiof [but a direct "9 @ many visual words as we have trees. Recall that each
comparison to using clustering was not presented. patchP; is represented using a RGB valtgh, and its 2d
Note that the reason for quantizing the descriptor spact"29€ coordljngte(i, and multiple visual words which we
is to facilitate the modeling of highly multi-modal class con- "OW denotew; ;j 2 f 1;:::;Jg. Equation () which gives
ditional distributions in the form of multinomials over a dis- the probability of the patch characteristics given the blob as-
crete vocabulary. The usual manner to create visual vocalsignment now becomes
ularies, using simple clustering algorithms like k-means, is \ ,
computationally expensive; both to create the visual vocabP(Pijb = k) = p(rghij «)p(Xij k)  pWij «): (10)
ulary, and to assign descriptors to words. Furthermore, there i=1
is no guarantee that a vocabulary obtained by clustering i$he Gibbs sampler of blob parameters changes onlyifor
good at discriminating the appearance of object classes. which are now sampled from
Decision trees are bhinary trees with a test embedded in v
egch non-leaf node. They are constructeq for 0p_t|mal Pres(1jb) / p(W jli): (11)
diction of an output, here category label, given an input, the 128 j=1

patch descriptor here. As 2], we use binary tests that . . . . .
: , JhIS formulation with multiple vocabularies can be used for
compare one of the descriptor components with a threshold. .
ny type of vocabulary (clustering or tree based).

Depending on the result of this test, the patch descends 8
the left or right child node. Note that decision trees partition
the descriptor space, just like clustering methods. 5 Experimental results

Using multiple randomly constructed decision trees con-
currently is important for two reasons,[L7]. First, the opti-  In this section we present our experimental results. First we
mal decision trees have a high variance as a function of théescribe the data sets in Sectlof. Then, in Sectio®.2we

4 Decision trees as discriminant vocabularies



Fig. 4 Example images from PASCAL VOC 2006 for categoas(top) andpeople(bottom).

study the in uence of the features used in our model, andmages. There are 300 images of each object class with a
show that all contribute to the nal segmentation. We alsoprecise ground truth segmentation mask, and we only con-
compare vocabulary construction methods, and demonstras@der this subset in our experiments.
the effectiveness of tree-based vocabularies. The PASCAL VOC'06 data set contains examples of ten
In Section5.3 we present qualitative segmentation re-categories: bicycles, buses, cats, cars, cows, dogs, horses,
sults; quantitative results follow in Sectié. First, we as- motorbikes, peopleandsheep The data set is composed of
sess performance in comparison to the state-of-the-art r&304 images which are divided in 1277 images for training,
sults, and obtain comparable results. Then we show how w&341 images for validation, and 2686 images for testing. As
successfully combine a small set of annotated images witbegmentation masks are not available for these images, they
a larger set of weakly labeled images. We also study the inanly interest us for qualitative experiments.
uence of the initialization of our algorithm, and show that The PASCAL VOC'07 data set contains ten categories
this has a big impact on results. in addition to those of PASCAL VOC'0virds, boats, bot-
Finally, in Sectiorb.5we consider how the modeling of tles, chairs, planes, potted plants, sofa, tables, traars]
individual instances of an object class can help the segmeimonitors The data set contains 2501 training images, 2510
tation at the category level. We show images where it helpgalidation images, and 4952 test images. Within the train-
as well as typical failures; in particular we present caseing and validation sets, for a subset of 422 images, object
where the number of modeled instances does not correspoffktances are segmented at pixel level, in the other images
to the real number of instances in the image. object instances are marked by bounding boxes.
We also present results on the MSRC data set, which
consists of 591 images which are manually segmented in 21
5.1 Object category data sets categories. Each image typically contains two to ve cat-
egories, but the manual segmentation does not distinguish
In our experiments, we consider four challenging data setgifferent object instances. Furthermore, several non-object
for object segmentation: the TU Graz-02 data set, the PA&ategories are included, suchsky, grassandroad.
CAL VOC 2006 and 2007 data sets, and the MSRC data set.  kor gl data sets the same settings have been used to ex-
All four contain large intra-class appearance variations ingygct patches. Between 2000 and 4000 patchez5of 25
cluding scale, illumination, and viewpoint changes, as welhiye|s are extracted per image, and e 5 pixel center is

as occlusions and complex backgrounds. In Figiwee il- - sed to compute the RGB patch value.
lustrate two categories of the PASCAL VOC'06 data set.

The TU Graz-02 set contains images of the categdiies
cycle car, andperson The availability of ground-truth seg-
mentation masks makes this database interesting for quanfi-2 Evaluation of features and vocabulary construction
tative evaluation of segmentation methods, and for paramet-
ric studies. This set is composed of 404 bicycle images, 42blere we evaluate different feature sets and vocabulary con-

car images, 311 images with people, and 380 backgroungfruction methods for our method using the TU-Graz02 data

set. Images in this set contain only one object category, so

! These data sets are publicly available at the following URLs  the segmentation task can be seen as a binary classi cation
Eﬁg3meggqstggﬂﬁﬁgrk org /challzeréé ds?\t/aoc’ problem. Thus the accuracy can be measured by precision-
http://research.microsoft.comivision/ ’ recall curves that show how many pixels from the object cat-

cambridge/recognition . egory (all images of a class merged) are correctly classi ed.




For each class, we use half of the 300 images to learn thehe left part of Figuré shows the comparison of the two vo-
model, while the second half is used for testing. cabulary types for the bike category of the Graz data set, for
We found that the effect of low-level features is indepen-combination of 5 vocabularies. The models include in both
dent of the vocabulary construction method. Therefore, weases: SIFT descriptors converted into visual words, RGB
evaluate them only for k-means vocabularies. components and patch positions. Each k-means vocabulary
has 5000 visual words, while the tree based vocabulary has
5000 leaves per tree (for these experiments we tried 50 tests
5.2.1 Effect of different feature sets per node). The results show that for this setting, tree-based

) _vocabularies outperform those obtained using k-means clus-
For each patch we compute a SIFT descriptor, a hue deSC”Pe'ring. The right part of Figurd shows that varying the

tor, the average RGB values, and the 2d image coordinateg, mper of k-means clusterings considered does not signi -
Here we evaluate the relative importance of these featurq;antW change the segmentation results.

for the segmentation result. We compare the full model, de-

notedws™ +we°" + rgh+ X , which is the one using all the

features, with different models using only a subset of these The random trees approach is relying on different pa-
features. We used the random eld (RF) component of ourameters. It is therefore interesting to evaluate their in uence
model in experiments that use the spatial image coordinates the segmentation results. First, the number of leaves per
X, in other experiments we did not. Visual vocabularies oftree is an important parameter. The results in the left panel
5000 words are created for the SIFT descriptors, and of 1008f Figure8 show that the average precision improves when
words for the hue descriptors. They are obtained by clusteincreasing the number of leaves, at least up to 5000, while

ing the descriptors of training images with k-means. keeping the number of trees xed to 3. The right part of the
The results of this parametric study are reported in Figsame gure shows the in uence of the number of trees (for
ure 5. We observe that the two visual vocabulane® , 5000 leaves); having more trees slightly improves the aver-

weor are essential. If one of them is missing the perfor-age precision, but the results are less dependent on the num-
mance decreases signi cantly, however the SIFT descriptdper of trees than on the number of leaves, which is coherent
is more critical than the hue descriptor. These results showith previous ndings pP5].

that we need indeed strong category level recognition cues to

guide the segmentation process. Spatial regularization using ) ] N

the RF and the blob model, improves the results consider- Another key parameter is the number of split conditions
ably, as the comparison of the red (all features) and magen@yaluated for choosing the best split for each node. This pa-
(without spatial information) curves shows. rameter controls the amount of randomness while also hav-

Thergb color feature, used at the instance level, gives arf"d @ impact on the time needed to build the trees. The left
improvement for two categories out of three. When an 0bpanel of Figure® shows precision-recall curves obtained for

ject is correctly localized, we observed that this color comdifferent values of this parameter, between one (fully ran-

ponent improves considerably the segmentation accuracy. fiPM tree) and 100 trials per node, while keeping the number
this case, non class-discriminative patches can be assign8htrees xedto 3. The improvementis signi cant from fully

to object or background depending on their color, as showﬁandom to 19 te;ts per nodes; Iarger. values (above 10_0) do
in Figure®6. In the same gure, we also illustrate the role of not lead to signi cant improvements in accuracy. The time

the different components of our model by showing the Segpeeded to build the trees increases with the number of tri-

mentation of an image obtained using a) a simple patch clad!S: The right panel of Figuré shows the corresponding
si er (each visual word predicts its category), b) the Dirich- processing times. Note that the training time, even with 100

let process mixture model, and c) the full model including?1lS: IS much lower than running k-means once. The gain

the RE. in ef ciency is also visible during the test stage, where patch

descriptors have to be assign to visual words: assigning a de-

scriptor to a k-means word takes 1030, while assigning
5.2.2 Comparison between k-means and trees this descriptor to a leaf takes 4.58. In the rst case one

Euclidean distance per visual word has to be computed in a
Next, we compare the quality of the segmentation when udhigh dimensional space, while in the second case we only
ing k-means vocabularies and ones obtained using decisi@mompare a few descriptor dimensions to thresholds. Nev-
trees. For simplicity, we consider here only the SIFT de-ertheless, converting patch descriptors into visual words is
scriptor to code the category level information. To achieve anly a small part of the total processing time; computing the
fair comparison with the forest, we run several times the kfeatures takes about 30 seconds for a dense extraction of an
means algorithm and combined statistics obtained by thesmage (3000 descriptors), and parameter estimation with the
multiple-vocabularies in the same way trees are combinedsibbs sampler takes about 1 minute.



Bike Graz Car Graz
1 T T T —— T T T 1 T T T —— T T T
WSIﬂ+WCOIOr+rgb+X WSIft+WCOIOr+I’gb+X
08l WS|ft+Wc0Ior+X | 08l WS|ﬂ+WcoIor+X
witsrgh+X - - - - -
________________ sift . color F-
5 06 5 06
i) K]
[3] N o
o = o
T QL4 fres T Y T 0.4
0.2+ b 0.2
0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
05 055 0.6 065 0.7 0.75 0.8 0.85 0.9 0.95 05 055 06 065 0.7 0.75 0.8 0.85 0.9 0.95
Recall Recall

Fig. 5 Performance using different feature subsets from: SIFT vocabué&y (), color vocabularyw<®°" ), color componentsgb) and spatial
coordinatesX ). The MRF component is used in experiments when the image coordkates used.

Fig. 6 Left: our model, with (a) and without (b) the instance speci ¢ RGB color model. Right: image, boundary map, and segmentation produced
using a) simple patch based classi @FT + whue ), b) using the Dirichlet process mixture model, and c) the full model.

5.3 Qualitative results More segmentation results are shown Figu@nd Fig-
ure 13. Our algorithm automatically detects and segments
objects accurately despite large intra-class appearance vari-

. . . . ations, even with weak supervision (training with bounding
In this section, we discuss some segmentation masks com-

puted on Graz02, MSRC and PASCAL VOC 2006 databaseS°XS OnY)- Even in a multi-class framework, MSRC im-
resented Fiqura0. For each class. images are seqmente ges are accurately segmented, however, the variation of ob-
P 9 ) ' g g ect appearance is less signi cant that for the PASCAL 2006

into objects of interest and background regions. For the Gr .
and MSRC data sets, the object model is trained using tﬁ%ata set. Indeed, we observed that the simple pure patch

available segmentation masks. On the PASCAL 2006 dattglased classi cation already performs well for these images.
set object category models are trained from bounding box

annotations only. It should be noted that this data set is usesl4 Quantitative results

in a binary classi cation framework, object vs background,

which reduces the complexity of the task. Accurate segmertlere, we rst brie y present results on the MSRC data set,
tation are produced despite the very strong appearance vahefore turning to the PASCAL VOC 2007 data set.

ations of these categories. We will see in Secfighthat on Due to its popularity we compared our method with re-
the PASCAL 2007 data set, the 20 object classes competirgults recently published on the MSRC data set. Note that the
at the same time makes the problem much harder. task is here different because the background is divided into
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Fig. 7 Left: comparison between 5 k-means vocabularies and 5 trees based vocabulary. Right: in uence on the number of vocabularies for k-means.
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Fig. 8 In uence of the number of leaves per tree (left) and of the number of trees (right), on the accuracy of the nal segmentation.
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Fig. 9 Left: in uence of the number of tests for each node on the quality of the nal segmentation. Right: the associated computation time
compared to k-means clustering.
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Fig. 10 Examples of segmentation obtained by our method on the Graz-02, PASCAL VOC 2006, and MSRC data sets (best viewed in color). For
the last a color coding is used for the classes: building (B), car (C), grass (G), road (R), sky (S), and tree (T). For some.glaas&sdategory
models are learned from bounding boxes only. We observe that even with complex backgrounds, the amount of confusion is limited.

Q
g
% = ) % = >
o = =
sl |8z 2|2|2|8|%|8|%8]¢8
@) n < L O o0 n m (@) O [a) m o0
TextonBoost$(] || 58 | 50 | 60 | 74 | 63 | 75| 35| 19 | 15 | 54 | 19| 62 | 7
MFAM[35] || 73 | 84| 88 | 70 | 68 | 74 | 33 | 19| 34 | 46 | 49| 54 | 31
Our Method || 84 | 81 | 66 | 78 | 50 | 62 | 36 | 22 | 16 | 43 | 52| 30| 9

Table 1 Pixel-level classi cation accuracies for the 13 object categories of the MSRC data sgercentage of pixels correctly recognized.

several classes (grass, building, trees, etc.) so the goal is ngadrithm and compare it to state-of-the-art results. The seg-
gure/ground segmentation but full segmentation of imagesmentation challenge considers generating pixel-wise segmen-
As our method models instances as geometrical clusters tditioni.e. the label of each pixel has to be predicted as be-
patches, it is not designed to deal with large background réng an object class or the background, which is exactly the
gions (stuff) surrounding these objects. That is why here weéask we consider in this paper. The experiments have been
consider only objects (things) themselves in Tablg gives  done according to the Pascal VOC 2007 protocol. We com-
the classi cation accuracies of our algorithm on the 13 ob-pute the average segmentation accuracy across the twenty
ject categories of the data set. More precisely, for each clagdasses and the background class. The segmentation accu-
is computed the number of pixels correctly labeled for thisracy, for each class, is the number of correctly labeled pixels
class divided by the total number of pixels belonging to thisof that class divided by the true total number of pixels of that
class. We compared with the TextonBoost restit§,[and  class P].

with the Markov Field Aspect Model (MFAM)J5]. Our

method gives comparable results, although it is not designed To estimate the model parameters we use all annotations;
explicitly for this kind of task. both segmentation masks and bounding boxes. The training

is done in two steps. First a rough initial model of object cat-
In its past three editions the PASCAL Visual Object Classgmries is learned from the segmented training images only.
(VOC) challenge has evolved to be a major platform forWe then use the remaining training images to re ne the ini-
comparison of current state-of-the-art methods for imagéal model. To this end, we use our initial model to segment
categorization, object detection, and segmentation. We ugbe images for which only the bounding box is given. This
this data set to evaluate our category level segmentation ak done by running our segmentation algorithm, while rep-
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resenting each object bounding box by a single blob in ouThey used the TKK detecto] which outperformed our
model; xing the blob's spatial model and category label INRIA _PlusClass detector and thus obtained slightly better
to values given by the bounding box. We only estimate thesegmentation results. Third, we clearly outperform the best
patch labels and color models given these constraints. Thimethods that entered in the challenge and have comparable
gives us new series of more accurate annotations, which war better results than the one proposed after the challenge
use to re-estimate the category level appearance models. W& 28,31]. We note that [] uses a global image classi er
experimentally con rmed that these automatically producedwvhich also guides the segmentation algorithm, this follows
annotations are reliable; examples of produced segmentatidhe same intuition than using the object detector.

masks are illustrated in Figufiel. In order to better understand the role of the detector, Fig-

When processing test images, the number and classesge12illustrates the behavior of the model on some images.
of objects present in an image is not known. With the relaStarting from the initial detections ( rst column), the seg-
tively large number of possible classes, we observed (resultsentation method validates the object hypotheses and re-
are given below) that initializing the algorithm with local nes the object boundaries in most of the cases (segmenta-
patch predictor, as we have done before, is not enough to oben results shown in the third column). This can be com-
tain good results. We then tried to use a template matchingared to the results obtained using local patch predictor ini-
based detector, and noticed that this signi cantly improvedialization (last column). For the third image, we can clearly
the segmentation accuracy. More precisely, we used the INsee both aicycle and amotorbikedetection. From these
RIA_PlusClass detectoi] to initialize the blob positions competing hypotheses the segmentation selects the bicycle.
and labels. This is a detector based on a sliding window apA/e can also see that some obvious false detections, like the
proach including a linear SVM classi er and image descrip-person in the third image, are mostly discarded.
tors based on histograms of oriented gradiefitsWhen re-
porting our results, we use "DI' to denote the use of this De-
tector for the _Ini_tializ_ation. The Naive Initialization, based g 5 |nstance based segmentation and limits of the method
on patch predictions is denoted "NI'.

In addition to these two types of initialization, we also Most evaluation campaigns only consider category level seg-
evaluated how much the segmentation of unsegmented traifhentation; instance based segmentation is usually not con-
ing images helps to segment test images. We compare ogjdered. The strength of our model lies in its ability to iden-
method trained with only the 422 segmented training im+jfy single object instances. Modeling different instances of
ages, denoted "ST', and trained with the full training set ofthe same category individually is of particular interest be-
more than 5000 images including additional segmentatiogause it allows to t an appearance model to each instance
masks generated by our algorithm, denoted "FT". and make its description even more precise. This is illus-

Thus, we have four possible combinations, that have beerated on the rst column of Figur&3, where two different
evaluated; results obtained on the 20 classes of the VOE€ar instances, with different colors, can each benet from
2007 are given Tabl2. We also report the best segmentationan accurate color appearance model. In this example, the
result submitted to the VOC 2007 competition, as well aDirichlet process prior favors the creation of a second blob.
the best result obtained using detection algorithms, in which However, when objects are too close, the estimation of
case the segmentation is simply given by the predicted olithe number of instances fails, and multiple objects which are
ject bounding box. Finally we report results obtained byclose to each other, or which are too similar to each other
three methods proposed since the challengeq 31]. are considered as a single instance. See for example the two

From these results, we can draw several conclusiongows presented Figurewhich are grouped in a single ob-
First, we see that for nearly all classes including training imject. This behavior of our model can be explained by the
ages with bounding box annotations (FT) brings a clear imfact that the Dirichlet process prior tends to limit the num-
provement. Second, the results demonstrate the importanber of regions per image; unless there is enough evidence
of good initializations using the detector results (DI). Us-due to different appearances that are spatially coherent. In
ing the detector gives an overall improvement of about 20%hese situations an external object detector can be valuable
mean accuracy. This can be explained by the large numbéo initialize our model with good estimate of the number of
of classes involved in the segmentation task. The detectioinstances per category. See for example the second columns
algorithm proposes relevant candidates, which are then vabf Figure13, in this image the detector returned multiple in-
idated and re ned by the segmentation algorithm. For someatances allowing the segmentation of the correct number of
classes, likeableor dog, the results are better with the naive people. As a comparison, we considered for each class of the
initialization; for these classes the detector often fails. ThiPASCAL VOC 2007 data set, images containing at least an
behavior was also observed ifl], where the use of a de- instance of this category and computed the average number
tector also improved the accuracy of their method by 20%of instances per image, within this subset. Our model pro-
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Fig. 11 Examples of additional annotations (segmentation masks) automatically produced for the unsegmented training images, obtained by
applying our algorithm on the provided bounding boxes (best viewed in color, with color coding shown in Bgure

|| backgrd | plane | bicycle | bird | boat | bottle | bus | car | plant| sheep | sofa

FT+DI 49.4 20.5 70.4 | 235 | 165 | 28.7 | 227 | 584 | 22.0 23.7 27.9
ST+DI 57.2 13.6 35.1 19.6 | 10.6 | 23.8 16.8 56.8 14.4 17.8 24.1
FT+NI 15.0 17.7 9.4 16 | 159 | 48 102 | 25.1 | 38.0 8.9 4.2
ST+NI 21.0 11.7 10.0 3.6 15.5 8.7 10.7 17.4 34 8.5 8.7
Brookes 7.7 5.5 0.0 04 | 04 0.0 8.6 5.2 2.3 2.3 0.3
TKK 22.9 18.8 20.7 52 | 161 | 31 1.2 78.3 | 64.7 30.2 34.6
Texton Forests{1] DI 22 77 45 45 19 14 45 48 40 42 10
Texton Forests1] NI 33 46 5 14 11 14 34 8 19 19 8
Multiple Segmentation4d] 59 27 1 8 2 1 32 14 11 26 1

| cat | chair | cow | table| dog | horse| moto | person| train | monitor | mean
FT+DI 65.5 28.2 104 09 | 3.7 | 654 | 51.8 | 60.1 | 65.2 65.5 37.2
ST+DI 63.1 25.0 10.6 0.6 4.0 41.2 | 55.3 64.1 46.2 59.7 31.4
FT+NI 15.2 23.8 7.5 106 | 20.7 | 157 | 219 | 27.6 4.9 175 15.1
ST+NI 7.4 21.2 7.8 58 | 15.7 | 143 11.3 40.5 3.9 18.1 12.6
Brookes 9.6 1.4 1.7 106 | 0.3 5.9 6.1 28.8 | 10.6 0.7 8.5
TKK 11 25 0.8 234 | 69.4| 444 | 421 0.0 89.3 70.6 30.4
Texton Forests{1] DI 29 26 20 59 45 54 63 37 68 72 42
Texton Forests1] NI 6 3 10 39 40 28 23 32 24 9 20
Multiple Segmentatiorid] 14 4 8 32 9 24 15 81 28 17 20

Table 2 Segmentation accuracié. pixel-level classi cation accuracy) on the PASCAL VOC 2007 data set. The rst four rows give the results
obtained with our method using the full training set (FT), the small training set (ST), detector based initialization (DI), and naive initialization (NI).
The two following rows, give best results among the submitted segmentation and detection methods respectively. The remaining rows correspond
to methods proposed since the challenge/]roply the performance averaged over all classes is reported at 39.8.

duces an average of 1.73 while the ground truth shows af Discussion and conclusions
average of 1.63 instances per image.

We have seen in Figur2 that mistakes made by the de- We conclude this paper with a discussion of our model, and
tector can be recovered by the segmentation algorithm. Thigdicate extensions to overcome some of its limitations.
is not always possible, c.f. the second column of FidiLBe Segmentation is commonly considered as an isolated prob-
where a person in the crowd was detected as a cat, or on them: a given image has to be segmented in some “meaning-
second line of Figuré2 where a dog was confused with a ful' manner, without any supplementary information. Where
cat. As a last example, the third column of Figafeshows “meaningful’ is often understood as segmenting at the level
a sofa which is detected as car, this hypothesis being mow# objects, or their constituent parts. Much early work on
consistent with its context. Another problem for most detecsegmentation tried to solve the task at a local level; clearly
tion methods, is the detection of multiple instances whersuch methods can not resolve ambiguities in the local image
in reality there is only one. In particular it happens for un-features. Semantic grouping is required within the segmen-
usually big objects, and the segmentation method does ntdtion process, and category-level recognition can provide
always recover from such initializations. This is the case irthe necessary cues for this. Similarly, recognition requires
the last row of Figurd 3. accurate segmentation to avoid distraction from background
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Fig. 12 Three example images from PASCAL VOC 2007. From left to right: (i) the original image with the detector results superimposed, (ii)
category assignments after a few iterations, (iii) the nal segmentation result produced from this initialization, (iv) class labels from patch-level
initialization, and (v) the nal result obtained using this initialization (best viewed in color, with color coding shown in Higure

Fig. 13 lllustration of instance based segmentation. The role of the Dirichlet process prior and the detector, together with explanation of failures
are described in the text. Ellipses represent blobs, and the color coding used in three of the images is shown on the right.

clutter and occluding objects. Our model couples these twd he Dirichlet process over patch-to-blob assignments in our
processes, and the parameters of its category appearamedel is interesting because it introduces dependencies at an
models are estimated from manually segmented images. Tlaitomatically adapted scale, which is determined by the size
estimate category models can then be applied to segmeahd number of the blobs. We can imagine using multi-scale
new instances of the same categories in other images. patches which would probably improve the recognition abil-

Robust category-level recognition requires dealing withIty of the model butincrease its complexity.

intra-class variations and imaging conditions such as occlu- Our experiments show the bene t of using a supplemen-
sions, illumination changes, view point and scale variationstary object category detector, which operates at a level of
Our choice of patch descriptors ensures some level of invarbounding boxes, to improve results when segmenting many
ance to illumination changes. Where some methods rely oabject categories simultaneously. Note that the segmentation
rigid shape models for recognition, ours relies on a bag-ofthat our model returns is richer than what could be obtained
words representations which are intrinsically robust to ocusing a simple combination between a detector and a color-
clusions and non-rigid deformations. Our blob model doedbased segmentation method, as our model separates differ-
not impose hard constraints between object parts, but doent object instances and handles multiple categories per im-
implement accumulation of evidence on the object positiorage. Note that even if the nal goal is to predict a class label
and size to guide the assignment from patches to objectper pixel, and not to identify all different instances of each
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category, it can be bene cial to separately model the dif-12.

ferent instances. This is because it allows the modeling of

instance speci ¢ appearance models, for color in our casel,s'
which can improve the segmentation accuracy. Furthermorg,

we experimentally nd that we can successfully combine an-
notations in the form of pixel-level segmentation and bound-

ing boxes, the latter being much easier to produce. Addinﬂ;5'
images annotated with bounding boxes leads to improvegy

segmentation results.

In future work we want to further study the interplay be- 17.

tween the instance speci c and category level appearance
models. In the current work low-level image cues are use
by either the instance level or category level model, whereas

in principle the features used by both models do not needlo.

to be disjoint. In particular it is interesting whether we could
learn which features are useful at the instance level and whiE
are useful at the category level. Furthermore, it is worth-

while to improve the capacity of the model to distinguish21.

multiple instances of the same category which are very close
to each other. Some form of geometric information should2
be included in the category level appearance models to re-

solve such ambiguities and improve segmentation results. 23.
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