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Abstract This paper addresses the problem of accurately
segmenting instances of object classes in images without
any human interaction. Our model combines a bag-of-words
recognition component, with spatial regularization based on
a random �eld and a Dirichlet process mixture. Bag-of-words
models successfully predict the presence of an object within
an image; however, they can not accurately locate object
boundaries. Random Fields take into account the spatial lay-
out of images and provide local spatial regularization. Yet,
as they use local coupling between image labels, they fail
to capture larger scale structures needed for object recogni-
tion. These components are combined with a Dirichlet pro-
cess mixture. It models images as a composition of regions,
each representing a single object instance. Gibbs sampling
is used for parameter estimations and object segmentation.

Our model successfully segments object category instances,
despite cluttered backgrounds and large variations in ap-
pearance and viewpoints. The strengths and limitations of
our model are shown through extensive experimental evalu-
ations. First, we evaluate the result of two methods to build
visual vocabularies. Second, we show how to combine strong
labeling (segmented images) with weak labeling (images an-
notated with bounding boxes), in order to limit the labeling
effort needed to learn the model. Third, we study the effect
of different initializations. We present results on four image
databases, including the challenging PASCAL VOC'07 data
set on which we obtain state-of-the art results.
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1 Introduction

After several decades of research, image segmentation still
remains an open problem. Many different approaches have
been investigated, combining various image properties such
as color, texture, edges, motion, etc. Initially, these meth-
ods worked in an unsupervised way: without exploiting a
database of manually segmented images to automatically
learn parameters for optimal performance. Also, many of
the methods operate in a `bottom-up' way, generating the
image segmentation by a process of aggregating local image
information, and usually failing to capture high level image
information. However, image segmentation is deeply related
to image understanding, requiring long-range dependencies
to resolve ambiguities that arise at a small scale.

The problem we address in this paper is that of accu-
rately segmenting instances of object classes in images, with-
out giving any prior information on object identities, orien-
tations, positions and scales. This is also known as `�gure-
ground segmentation'. Note that this differs from `image
segmentation' or `scene segmentation', which correspond to
the situation where everything in the image has to be seg-
mented. In object segmentation only several objects of in-
terest have to be segmented.

We assume the objects to belong to known categories,
and these categories are de�ned by sets of training images
which are used to learn object appearance models. These
training images play a fundamental role because object mod-
els built from these images allow object recognition, which
we couple with the segmentation process. In particular, we
are interested in segmenting object categories that demon-
strate large intra-class appearance variations. In Figure1 we
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Fig. 1 Examples of object category segmentation obtained by our method without user interaction. Input images (columns 1 and 4), object
category masks (columns 2 and 5) and object category segmentation (columns 3 and 6).

show several typical images with corresponding segmenta-
tion masks produced by our method. Starting from cluttered
images including objects of interest, the method is able to
recognize and localize objects, and to automatically produce
segmentation masks that can be used to extract objects with-
out manual effort. The major contribution of our approach
is an instance based modeling of the scene. More precisely,
the object recognition is enhanced by a mechanism which
allows to distinguish and model the different instances be-
longing to a particular class. The number of instances is
automatically estimated and controls the number of regions
produced by our segmentation.

The model presented in this paper combines three com-
plementary components: (a) a random �eld (RF) component
which ensures short-range spatial contiguity of the segmen-
tation by aligning segment boundaries with low-level image
boundaries, (b) a Dirichlet process component that ensures
mid-range spatial contiguity by modeling the image as a
composition of blobs, each of which corresponds to a single
object, and (c) a bag-of-words object recognition component
which allows for strong intra-class appearance and imaging
variations. Although the combination of RFs with a recog-
nition component based on visual words has been explored
before, the main contribution of the model presented in this
paper is the addition of a Dirichlet process to achieve higher
quality segmentation and instance-level segmentation. This
paper extends [19] with additional experiments and an eval-
uation of vocabulary construction methods.

In the remainder we �rst review related work in Sec-
tion 2. Then, in Section3 we present our model and the esti-
mation of its parameters. Visual vocabulary construction for
bag-of-words methods based on decision trees is described
in Section4. We present our experimental results in Sec-
tion 5, and conclude with a discussion in Section6.

2 Discussion of related work

Segmentation can be seen as a `chicken-egg' problem, where
object detection and recognition is required for accurate seg-
mentation, and vice versa. We will �rst discuss generative
bag-of-words object recognition methods, and then turn to
methods which are primarily designed for segmentation.

Bag-of-words methods have proven to be very effective
for the recognition of object classes. The `visual words' in
the image representations are obtained by quantization of
low-level image descriptors. The quantization can be com-
puted in different ways. Often, visual vocabularies are pro-
duced by a standard unsupervised clustering techniques [6,
14,20]. In our model, the visual vocabulary is used to dis-
criminate between classes at the level of patches. Methods
have been designed to produce more discriminative vocabu-
laries when labels are available at the image or at the patch
level [18,25]. Among such techniques, the ones based on
trees are of particular interest because of their ef�ciency and
the fact that they directly pursue class-discriminative quan-
tization using patch labels. In Section4 we describe quanti-
zation using decision trees in detail, and we compare such
quantization to those obtained by k-means in our experi-
ments.

Topic models, such as probabilistic Latent Semantic Anal-
ysis (pLSA) and Latent Dirichlet Allocation (LDA) [1,13],
have recently been introduced as an alternative over the sim-
ple Naive Bayes model for bag-of-words image representa-
tions. Topic models consider the bag-of-words as a mixture
of several `topics' which can be thought of scene elements in
images,e.g.the visual words in an image of a beach scene
are modeled as a mixture of words belonging to sea, sky,
people, trees, etc. Each image has its own distribution over
topics, and each topic is represented as a distribution over
visual words. Several authors have extended the standard
topic models from the text analysis community to include
modeling of some spatial aspects of the image [5,10,33].
Such models are not only useful for image classi�cation,
where the images of each class are modeled using a gener-
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ative topic model over the images of that class, but are also
useful for object localization. The main limitation of these
methods is that they either use a very rigid and coarse model
of the object shape, are overly �exible without any shape
prior, or use an initial over segmentation of the image and
assign each segment as a whole to a topic which breaks if
the initial segmentation contains errors. In all cases a pre-
cise object segmentation is not obtained in general.

Various forms of Random Fields (RFs) have been pro-
posed for image segmentation [11,16,17,30,36]. They de-
�ne a probability distribution over the labels of sites (pix-
els or image patches) which encodes correlations between
neighboring sites. RFs incorporate evidence terms acting on
individual sites;e.g. the visual word associated with a patch
will increase the likelihood of the patch having a certain la-
bel. Ambiguities that arise when considering the local evi-
dence for patches in isolation can be resolved by propagat-
ing evidence for labels spatially over the image.

Some models combine topic models and RFs [27,35].
However, these models do not include a component to en-
sure mid-range spatial contiguity of the segmentation: they
only use the local regularization of the RF and the topic
model that enforces a regularization at an image-wide scale.
As compared to a standard topic model such models gen-
erate a crisper segmentation, while compared to a standard
RF small regions with a label that does not appear elsewhere
in the image are suppressed. In contrast, our model tries to
capture object instances using blobs, which will result in
mid-range regularization. In a similar spirit, in [32] a tree
structure is learned dynamically to locate the position of the
objects in an image, and the relative location of their parts.
The modeling of object parts can improve the ability to dif-
ferentiate instances, but the model does not include a �ne
random �eld type spatial regularization.

A number of approaches combining local regularization
using RFs with more geometric object category models have
been proposed [2,15,20,21,37,38]. These approaches model
the shape of objects and their deformations, sometimes also
taking occlusions and viewpoint changes explicitly into ac-
count. Although they are robust to small local shape vari-
ations, the strong geometric constraints embedded into the
models are not suitable to model the complex appearances
of weakly structured object classes. Examples of these com-
plex appearances can be found in Figure4, for the classes
cats and people. Such classes require more �exible models.

Finally, we mention work on interactive segmentation
tools [3,22,29] where a user roughly indicates the object of
interest using a bounding box or using a brush tool. Models
of the foreground and background are estimated, and these
models are used in combination with a RF to spatially prop-
agate the user-provided labels. After labels propagation the
models are re-estimated and the procedure is repeated. Us-
ing such an interactive approach, remarkably accurate seg-

mentation results can be obtained. The next step is to reduce
the user interaction to only specifying the object category,
e.g.a user could ask to segment all cats in an image.

3 The proposed segmentation model

In our model we represent images as a collection of over-
lapping square patchesPi ; i 2 f 1; : : : ; ng of a �xed size
extracted on the nodes of a regular grid. We suppose the
image patches are generated by a number of objects and a
background; we use simple Gaussian and uniform models
for their spatial extent, and refer to both objects and back-
ground as `blobs'. In each image both the number of blobs
and their position, size, and shape are unknown. We asso-
ciate a blob label with each patch, and de�ne a Random
Field (RF) structured energy function over them to encode
the short-range correlations among them. Through the cate-
gory labels of blobs, we also associate category labels with
the patches. Once object model parameters have been es-
timated from labeled training images, we can use a Gibbs
sampler to estimate the category labels of patches in a new
unlabeled image.

Below, we �rst describe our feature extraction proce-
dure in Section3.1, then we continue in Section3.2 with
the Dirichlet process mixture model over the features, and
then come to the RF component of the model in Section3.3.
We describe the Gibbs sampler for parameter estimation in
Section3.4. Finally, in Section3.5we discuss how we map
the category labels obtained at the patch level to a smooth
segmentation on the pixel level.

3.1 Visual feature extraction

For image patchi the feature setPi contains

1. the SIFT descriptor [23], coded by the visual wordwsif t
i ,

2. the hue descriptor [34], coded by the color wordwcolor
i ,

3. the average RGB value in the patch center, denotedrgbi ,
4. the image coordinates of the patch centerX i = ( x i ; yi ).

In Section4 we will discuss the quantization of the SIFT and
hue descriptor in detail which allows to computewsif t

i and
wcolor

i for all patches.
In addition we extract a boundary mapG that gives for

each pixel an estimate of the probability of being part of
a boundary between image segments. The map is based on
characteristic changes in several local cues associated with
natural boundaries, see Figure2 for an example. Many meth-
ods exist to extract natural boundaries, striking different bal-
ances between accuracy and computational complexity. Here,
our choice was purely based on accuracy, and we used one
of the current state-of-the-art methods [24].
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Fig. 2 Example image from the Graz database and its boundary map.

3.2 A Dirichlet process over patch characteristics

In this section we present a generative model for rough ob-
ject/background segmentation. We use a model inspired by
[33] with explicit spatial structure information: we consider
that an image is made of regions that we call `blobs'. Each
blob generates the features of the patches associated with
that blob, where the distribution over features depends on
the parameters associated with the blob. Intuitively, if an im-
age contains three objects, say a car, a pedestrian and a bike,
we may have four blobs: one corresponding to each object,
plus an additional blob for the background. Given the blobs
and their parameters, the patches in an image are assumed
to be independent. The generative process for a patch is as
follows: (i) sample a blob, and (ii) sample the features using
the distribution of the blob. The remainder of this section
details this generative process.

The Dirichlet process (DP) [26] can be seen as the limit
asK ! 1 of a �nite K -component mixture model. The
mixing weights of the components are controlled by a `con-
centration parameter'� > 0; smaller values implement a
prior to use fewer mixture components. Note that even for a
mixture with an in�nite number of components, only �nitely
many mixture components can be associated with a �nite
sample. In our case the blobs will take the role of mixture
components. This means that a newly sampled patch, can be
either sampled from one of the blobs that have been used
before, with probabilityNk =(n � 1 + � ) whereNk is the
number of samples associated with blobk, andn is the num-
ber of samples including the current one. Alternatively, the
patch can be sampled from a new blob with a probability
�= (n � 1 + � ). DPs exhibit a so-called clustering prop-
erty: the more often a given value has been sampled in the
past, the more likely it is to be sampled again. The cluster-
ing property is desirable as it will reduces the likelihood to
assign patches to classes that are rare in the image: if a patch
observation leaves ambiguity on the corresponding category
the most frequent class throughout the image is preferred.
Below, we usepDir to denote the probability of the patch-
to-blob assignment.

With each blobBk we associate a set of parameters� k =
f � k ; � k ; Ck ; lk g. The density over the spatial positionsX i

of associated patches is given by a Gaussian distribution

p(X i j� k ) = N (X i ; � k ; � k ). The category associated with
the blob is denotedlk , andCk denotes the parameters of
a mixture of Gaussian (MoG) model over the color vectors
rgbi of the associated patches. The background is de�ned
by a color distributionCbg and its spatial model is de�ned
as uniform over the image area.

In addition to the featuresPi = f wsif t
i ; wcolor

i ; rgbi ; X i g
we associate two random variables,bi and ci , with each
patch. The index of the blob that generated the patch is de-
noted bybi , andci denotes the generating component in the
corresponding MoG over RGB values.

Given the index of the blob that generated a patchPi the
features are assumed to be independent, and we have

p(Pi jbi = k) = p(wsif t
i j� k )p(wcolor

i j� k )

� p(rgbi j� k )p(X i j� k ): (1)

The color models, as in [29], capture color distributions
of speci�c object instances and the background. This helps
us to achieve coherent object instance level segmentation,
even if locally recognition is ambiguous. Note that this color
model plays a different role than the model over the color
wordswcolor

i , which model category-level color information
and have some degree of invariance to lighting conditions.

The probability of visual words associated with color
and SIFT descriptors are modeled by multinomials asso-
ciated with the category of the blob,i.e. p(wsif t

i j� k ) =
p(wsif t

i jlk ) andp(wcolor
i j� k ) = p(wcolor

i jlk ). These distri-
butions encode category-level appearance information, and
form the recognition component of our model. The category
models are the only source of information which is shared
across images, and they are learned from annotated training
images. The maximum likelihood estimates of these distri-
butions are found by simply normalizing the counts of how
often visual words appear in each class and in the back-
ground, for all training images.

3.3 A random �eld over patch-to-blob assignments

Given the categories associated with the blobs, the patch-to-
blob assignmentb = f b1; : : : ; bn g determines the segmen-
tation of an image. To enforce local spatial contiguity in the
above model we add an RF prior over blob assignments. By
using the image boundary map to de�ne the RF potentials,
label changes will be aligned with low-level image bound-
aries. The RF is de�ned over the rectangular grid of patches
using an 8-neighbor connectivity.

Above we de�ned a model over the patch-to-blob as-
signments and patch featuresp(P; bj� ) = p(b)p(Pjb; � ),
wherep(b) was modeled using a Dirichlet process prior. We
include the RF in the modelp(b) by de�ning our new model
as the product of a RF model and the Dirichlet process:

p(P; bj� ) / pDir (b)pRF (bj� )p(Pjb; � ): (2)
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To simplify the formulation of the RF, we drop� from the
notation, and rewrite the joint probability asp(P; bj� ) /
exp(� E (P; b)) and de�ne the energy function as

E(P; b) = U(P; b) + 
X

i;j 2C

Vi;j (bi ; bj ); (3)

whereC represents the set of neighbors (or cliques) in the
eight-connected patch grid, is a parameter that balances
the two terms, andU encompasses the Dirichlet process:

U(P; b) = � log(p(Pjb; � )pDir (b)) : (4)

The second term in Equation (3) representspRF , and its
pair-wise potentials are de�ned as

Vi;j (bi ; bj ) = [ lbi 6= lbj ] exp(� �� i;j ); (5)

where[:] is the indicator function. This potential enforces
local coherence of the patch labelsbi , and encourages la-
bel changes to be located with high values in the boundary
mapG, similar to the approach in [29,30,36]. The maximum
value in the boundary map between the centers of patchesPi

andPj is denoted� i;j , and� is the inverse of the average
of the � i;j over the image. Thus,Vi;j = 0 for neighbor-
ing patches that are assigned to the same blob, otherwise a
penalty is incurred that decreases when the probability of
having a boundary between the patches increases, according
to G. See Figure3 for an illustration.

We note that the de�nition of Equation (2) may seem
problematic due to the fact thatpDir distributes over an in-
�nite state space, whereaspRF will be de�ned over a �nite
state space. However, in practice we can clippDir to assign
zero probability to using more blobs than image patches, and
re-normalizing the distribution over the remaining con�gu-
rations. Since we will use a Gibbs sampler for inference we
do not actually need to include the normalization term, and
we omitted the clipping term forpDir in Equation (2).

3.4 Approximate inference using Gibbs sampling

In this section we consider how to use the model to infer
the patch-to-blob assignmentb for an image, together with
the blob-to-category assignmentslk . Exact inference in our
model is intractable, and we thus have to resort to approxi-
mate inference techniques. We have chosen to use a Gibbs
sampler, motivated by its conceptual and practical simplic-
ity, and not aiming to use the most ef�cient possible tech-
nique for approximate inference in our model. The Gibbs
sampler samples in turn the blob parameters� k , and the
patch level variablesbi andci .

Given a �xed patch-to-blob assignmentb, the blob pa-
rameters� k = f � k ; � k ; Ck ; lk g are distributed indepen-
dently. We assume uninformative priors over� k , and we
use the shorthandBk = f i : bi = kg to compactly write

the posteriors over the parameters. For the parameters gov-
erning the spatial extent of the blob,� k and� k , we �nd:

� k � N (Meanf X i : i 2 Bk g;
1

Nk
Covf X i : i 2 Bk g); (6)

� k � W (Covf X i : i 2 Bk g; Nk � 1); (7)

where we useN to denote a normal distribution andW
to denote a Wishart distribution. The parametersCk of the
blob-speci�c color MoG are estimated using stochastic EM,
using samples rather than expectations in the E-step. Finally,
the multinomial from which we sample the category labels
lk are given by:

p(lk jb) /
Y

i 2B k

p(wsif t
i jlk )p(wcolor

i jlk ): (8)

Given the patch-to-blob assignments, theci variables that
denote the component of the color MoG used for each patch,
are straightforwardly sampled from the posterior over mix-
ture components in the corresponding MoG.

The patch-to-blob assignmentsbi are sampled sequen-
tially, given the blob parameters� k and all other patch-
to-blob assignmentsb� i = b n f bi g. We distinguish two
cases: sampling an assignment to a blob also assigned to
other patches, and assigning the patch to a new blob:

p(bi jb� i ; �; P) /

8
>>><

>>>:

p(Pi jbi )
N bi

n � 1+ � exp(� 
P

i;j 2C Vi;j )
existing blob

p(Pi jbi ) �
n � 1+ � exp(� 

P
i;j 2C Vi;j )

new blob

(9)

To calculate Equation (9) for a new blob, we sample pa-
rameters for the blob as follows. The category labellk is
sampled uniformly among the available categories, the blob
center� k is sampled uniformly over the image area, and� k

is taken isotropic with standard deviation corresponding to
half the smallest side of the image. The parameters of the
color MoG, Ck , are set to the mean and covariance of all
pixels in the image.

3.5 Towards a pixel-level segmentation

The model presented above works at the patch level, but our
goal is to produce a precise pixel level segmentation. By
using overlapping patches we can ensure precision of the
segmentation using a simple post-processing method. The
Gibbs sampler gives us estimates of the posterior probabili-
ties of the blob assignment of each patch, and a probability
of the category label of each blob. From those, we can es-
timate the class label probability for a patch by summing
the blob-class probabilities, weighted by the probability that
the patch belongs to each blob. The probability for pixelpx

to belong to a category or to the background is computed
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Fig. 3 The model captures spatial regularity by (i) a contrast sensitive pairwise potential, and (ii) the Gaussian and uniform spatial models
associated with the object blobs and background, left panel. The right panel shows the graphical representation of the model.

by accumulating the probabilities of all patches containing
this pixel. We do this with a weighted sum of the patch-level
probabilities, where the weights depend on the distance be-
tween the pixel and the center of a patch. A crisp segmen-
tation mask can then be obtained by assigning each pixel to
the most probable class.

4 Decision trees as discriminant vocabularies

Our segmentation model relies on a visual vocabulary to
represent image patches. It has recently been shown [25],
in the context of image categorization, that decision trees
are an ef�cient alternative to clustering for vocabulary con-
struction that lead to more discriminative vocabularies. Mo-
tivated by this success, we consider them here in the context
of segmentation. Decision trees have been used by others
as a quantization method for segmentation [31], but a direct
comparison to using clustering was not presented.

Note that the reason for quantizing the descriptor space
is to facilitate the modeling of highly multi-modal class con-
ditional distributions in the form of multinomials over a dis-
crete vocabulary. The usual manner to create visual vocab-
ularies, using simple clustering algorithms like k-means, is
computationally expensive; both to create the visual vocab-
ulary, and to assign descriptors to words. Furthermore, there
is no guarantee that a vocabulary obtained by clustering is
good at discriminating the appearance of object classes.

Decision trees are binary trees with a test embedded in
each non-leaf node. They are constructed for optimal pre-
diction of an output, here category label, given an input, the
patch descriptor here. As in [25], we use binary tests that
compare one of the descriptor components with a threshold.
Depending on the result of this test, the patch descends to
the left or right child node. Note that decision trees partition
the descriptor space, just like clustering methods.

Using multiple randomly constructed decision trees con-
currently is important for two reasons [4,12]. First, the opti-
mal decision trees have a high variance as a function of the

training data,i.e. maximum likelihood estimation is not ro-
bust. Second, for most practical problems it is intractable to
�nd the best decision trees for a given training set. In prac-
tice very good results are obtained by randomly constructing
near-optimal trees and averaging over their predictions, sim-
ilar to Bayesian model averaging. The randomized construc-
tion starts at the root node, and adds nodes one-by-one, for
each node the best among several randomly generated can-
didate splits is used. The ensemble of multiple trees is often
referred to as a `forest'. The forest is characterized by (i) the
number of trees, (ii) the number of leaves in the trees, and
(iii) the number of candidate splits used during construction.
We study the effect of these parameters in our experiments.

Recall that in our original model we used two visual vo-
cabularies, one for the SIFT descriptors and one for the color
descriptors. When using a forest of decision trees for multi-
ple descriptors we proceed in a similar way: each patch hav-
ing as many visual words as we have trees. Recall that each
patchPi is represented using a RGB valuergbi , and its 2d
image coordinateX i , and multiple visual words which we
now denotewj

i ; j 2 f 1; : : : ; J g. Equation (1) which gives
the probability of the patch characteristics given the blob as-
signment now becomes

p(Pi jbi = k) = p(rgbi j� k )p(X i j� k )
JY

j =1

p(wj
i j� k ): (10)

The Gibbs sampler of blob parameters changes only forlk ,
which are now sampled from

p(lk jb) /
Y

i 2B k

JY

j =1

p(wj
i jlk ): (11)

This formulation with multiple vocabularies can be used for
any type of vocabulary (clustering or tree based).

5 Experimental results

In this section we present our experimental results. First we
describe the data sets in Section5.1. Then, in Section5.2we
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Fig. 4 Example images from PASCAL VOC 2006 for categoriescat (top) andpeople(bottom).

study the in�uence of the features used in our model, and
show that all contribute to the �nal segmentation. We also
compare vocabulary construction methods, and demonstrate
the effectiveness of tree-based vocabularies.

In Section5.3 we present qualitative segmentation re-
sults; quantitative results follow in Section5.4. First, we as-
sess performance in comparison to the state-of-the-art re-
sults, and obtain comparable results. Then we show how we
successfully combine a small set of annotated images with
a larger set of weakly labeled images. We also study the in-
�uence of the initialization of our algorithm, and show that
this has a big impact on results.

Finally, in Section5.5we consider how the modeling of
individual instances of an object class can help the segmen-
tation at the category level. We show images where it helps
as well as typical failures; in particular we present cases
where the number of modeled instances does not correspond
to the real number of instances in the image.

5.1 Object category data sets

In our experiments, we consider four challenging data sets
for object segmentation: the TU Graz-02 data set, the PAS-
CAL VOC 2006 and 2007 data sets, and the MSRC data set.1

All four contain large intra-class appearance variations in-
cluding scale, illumination, and viewpoint changes, as well
as occlusions and complex backgrounds. In Figure4 we il-
lustrate two categories of the PASCAL VOC'06 data set.

The TU Graz-02 set contains images of the categoriesbi-
cycle, car, andperson. The availability of ground-truth seg-
mentation masks makes this database interesting for quanti-
tative evaluation of segmentation methods, and for paramet-
ric studies. This set is composed of 404 bicycle images, 420
car images, 311 images with people, and 380 background

1 These data sets are publicly available at the following URLs
http://www.emt.tugraz.at/ � pinz/data ,
http://www.pascal-network.org/challenges/VOC ,
http://research.microsoft.com/vision/
cambridge/recognition .

images. There are 300 images of each object class with a
precise ground truth segmentation mask, and we only con-
sider this subset in our experiments.

The PASCAL VOC'06 data set contains examples of ten
categories:bicycles, buses, cats, cars, cows, dogs, horses,
motorbikes, people, andsheep. The data set is composed of
5304 images which are divided in 1277 images for training,
1341 images for validation, and 2686 images for testing. As
segmentation masks are not available for these images, they
only interest us for qualitative experiments.

The PASCAL VOC'07 data set contains ten categories
in addition to those of PASCAL VOC'06:birds, boats, bot-
tles, chairs, planes, potted plants, sofa, tables, trains,and
monitors. The data set contains 2501 training images, 2510
validation images, and 4952 test images. Within the train-
ing and validation sets, for a subset of 422 images, object
instances are segmented at pixel level, in the other images
object instances are marked by bounding boxes.

We also present results on the MSRC data set, which
consists of 591 images which are manually segmented in 21
categories. Each image typically contains two to �ve cat-
egories, but the manual segmentation does not distinguish
different object instances. Furthermore, several non-object
categories are included, such assky, grass,androad.

For all data sets the same settings have been used to ex-
tract patches. Between 2000 and 4000 patches of25 � 25
pixels are extracted per image, and the5 � 5 pixel center is
used to compute the RGB patch value.

5.2 Evaluation of features and vocabulary construction

Here we evaluate different feature sets and vocabulary con-
struction methods for our method using the TU-Graz02 data
set. Images in this set contain only one object category, so
the segmentation task can be seen as a binary classi�cation
problem. Thus the accuracy can be measured by precision-
recall curves that show how many pixels from the object cat-
egory (all images of a class merged) are correctly classi�ed.
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For each class, we use half of the 300 images to learn the
model, while the second half is used for testing.

We found that the effect of low-level features is indepen-
dent of the vocabulary construction method. Therefore, we
evaluate them only for k-means vocabularies.

5.2.1 Effect of different feature sets

For each patch we compute a SIFT descriptor, a hue descrip-
tor, the average RGB values, and the 2d image coordinates.
Here we evaluate the relative importance of these features
for the segmentation result. We compare the full model, de-
notedwsif t + wcolor + rgb+ X , which is the one using all the
features, with different models using only a subset of these
features. We used the random �eld (RF) component of our
model in experiments that use the spatial image coordinates
X , in other experiments we did not. Visual vocabularies of
5000 words are created for the SIFT descriptors, and of 100
words for the hue descriptors. They are obtained by cluster-
ing the descriptors of training images with k-means.

The results of this parametric study are reported in Fig-
ure 5. We observe that the two visual vocabularieswsif t ,
wcolor are essential. If one of them is missing the perfor-
mance decreases signi�cantly, however the SIFT descriptor
is more critical than the hue descriptor. These results show
that we need indeed strong category level recognition cues to
guide the segmentation process. Spatial regularization using
the RF and the blob model, improves the results consider-
ably, as the comparison of the red (all features) and magenta
(without spatial information) curves shows.

Thergbcolor feature, used at the instance level, gives an
improvement for two categories out of three. When an ob-
ject is correctly localized, we observed that this color com-
ponent improves considerably the segmentation accuracy. In
this case, non class-discriminative patches can be assigned
to object or background depending on their color, as shown
in Figure6. In the same �gure, we also illustrate the role of
the different components of our model by showing the seg-
mentation of an image obtained using a) a simple patch clas-
si�er (each visual word predicts its category), b) the Dirich-
let process mixture model, and c) the full model including
the RF.

5.2.2 Comparison between k-means and trees

Next, we compare the quality of the segmentation when us-
ing k-means vocabularies and ones obtained using decision
trees. For simplicity, we consider here only the SIFT de-
scriptor to code the category level information. To achieve a
fair comparison with the forest, we run several times the k-
means algorithm and combined statistics obtained by these
multiple-vocabularies in the same way trees are combined.

The left part of Figure7shows the comparison of the two vo-
cabulary types for the bike category of the Graz data set, for
combination of 5 vocabularies. The models include in both
cases: SIFT descriptors converted into visual words, RGB
components and patch positions. Each k-means vocabulary
has 5000 visual words, while the tree based vocabulary has
5000 leaves per tree (for these experiments we tried 50 tests
per node). The results show that for this setting, tree-based
vocabularies outperform those obtained using k-means clus-
tering. The right part of Figure7 shows that varying the
number of k-means clusterings considered does not signi�-
cantly change the segmentation results.

The random trees approach is relying on different pa-
rameters. It is therefore interesting to evaluate their in�uence
on the segmentation results. First, the number of leaves per
tree is an important parameter. The results in the left panel
of Figure8 show that the average precision improves when
increasing the number of leaves, at least up to 5000, while
keeping the number of trees �xed to 3. The right part of the
same �gure shows the in�uence of the number of trees (for
5000 leaves); having more trees slightly improves the aver-
age precision, but the results are less dependent on the num-
ber of trees than on the number of leaves, which is coherent
with previous �ndings [25].

Another key parameter is the number of split conditions
evaluated for choosing the best split for each node. This pa-
rameter controls the amount of randomness while also hav-
ing an impact on the time needed to build the trees. The left
panel of Figure9 shows precision-recall curves obtained for
different values of this parameter, between one (fully ran-
dom tree) and 100 trials per node, while keeping the number
of trees �xed to 3. The improvement is signi�cant from fully
random to 10 tests per nodes; larger values (above 100) do
not lead to signi�cant improvements in accuracy. The time
needed to build the trees increases with the number of tri-
als. The right panel of Figure9 shows the corresponding
processing times. Note that the training time, even with 100
trials, is much lower than running k-means once. The gain
in ef�ciency is also visible during the test stage, where patch
descriptors have to be assign to visual words: assigning a de-
scriptor to a k-means word takes 1030�s , while assigning
this descriptor to a leaf takes 4.53�s . In the �rst case one
Euclidean distance per visual word has to be computed in a
high dimensional space, while in the second case we only
compare a few descriptor dimensions to thresholds. Nev-
ertheless, converting patch descriptors into visual words is
only a small part of the total processing time; computing the
features takes about 30 seconds for a dense extraction of an
image (3000 descriptors), and parameter estimation with the
Gibbs sampler takes about 1 minute.
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Fig. 5 Performance using different feature subsets from: SIFT vocabulary (wsif t ), color vocabulary (wcolor ), color components (rgb) and spatial
coordinates (X ). The MRF component is used in experiments when the image coordinatesX are used.

Fig. 6 Left: our model, with (a) and without (b) the instance speci�c RGB color model. Right: image, boundary map, and segmentation produced
using a) simple patch based classi�er (wSIF T + whue ), b) using the Dirichlet process mixture model, and c) the full model.

5.3 Qualitative results

In this section, we discuss some segmentation masks com-
puted on Graz02, MSRC and PASCAL VOC 2006 databases,
presented Figure10. For each class, images are segmented
into objects of interest and background regions. For the Graz
and MSRC data sets, the object model is trained using the
available segmentation masks. On the PASCAL 2006 data
set object category models are trained from bounding box
annotations only. It should be noted that this data set is used
in a binary classi�cation framework, object vs background,
which reduces the complexity of the task. Accurate segmen-
tation are produced despite the very strong appearance vari-
ations of these categories. We will see in Section5.4that on
the PASCAL 2007 data set, the 20 object classes competing
at the same time makes the problem much harder.

More segmentation results are shown Figure1 and Fig-
ure 13. Our algorithm automatically detects and segments
objects accurately despite large intra-class appearance vari-
ations, even with weak supervision (training with bounding
boxes only). Even in a multi-class framework, MSRC im-
ages are accurately segmented, however, the variation of ob-
ject appearance is less signi�cant that for the PASCAL 2006
data set. Indeed, we observed that the simple pure patch-
based classi�cation already performs well for these images.

5.4 Quantitative results

Here, we �rst brie�y present results on the MSRC data set,
before turning to the PASCAL VOC 2007 data set.

Due to its popularity we compared our method with re-
sults recently published on the MSRC data set. Note that the
task is here different because the background is divided into
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Fig. 10 Examples of segmentation obtained by our method on the Graz-02, PASCAL VOC 2006, and MSRC data sets (best viewed in color). For
the last a color coding is used for the classes: building (B), car (C), grass (G), road (R), sky (S), and tree (T). For some classes (e.g.cats) category
models are learned from bounding boxes only. We observe that even with complex backgrounds, the amount of confusion is limited.
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TextonBoost [30] 58 50 60 74 63 75 35 19 15 54 19 62 7

MFAM [ 35] 73 84 88 70 68 74 33 19 34 46 49 54 31
Our Method 84 81 66 78 50 62 36 22 16 43 52 30 9

Table 1 Pixel-level classi�cation accuracies for the 13 object categories of the MSRC data set,i.e. percentage of pixels correctly recognized.

several classes (grass, building, trees, etc.) so the goal is not
�gure/ground segmentation but full segmentation of images.
As our method models instances as geometrical clusters of
patches, it is not designed to deal with large background re-
gions (stuff) surrounding these objects. That is why here we
consider only objects (things) themselves in Table1. It gives
the classi�cation accuracies of our algorithm on the 13 ob-
ject categories of the data set. More precisely, for each class
is computed the number of pixels correctly labeled for this
class divided by the total number of pixels belonging to this
class. We compared with the TextonBoost results [30], and
with the Markov Field Aspect Model (MFAM) [35]. Our
method gives comparable results, although it is not designed
explicitly for this kind of task.

In its past three editions the PASCAL Visual Object Classes
(VOC) challenge has evolved to be a major platform for
comparison of current state-of-the-art methods for image
categorization, object detection, and segmentation. We use
this data set to evaluate our category level segmentation al-

gorithm and compare it to state-of-the-art results. The seg-
mentation challenge considers generating pixel-wise segmen-
tation i.e. the label of each pixel has to be predicted as be-
ing an object class or the background, which is exactly the
task we consider in this paper. The experiments have been
done according to the Pascal VOC 2007 protocol. We com-
pute the average segmentation accuracy across the twenty
classes and the background class. The segmentation accu-
racy, for each class, is the number of correctly labeled pixels
of that class divided by the true total number of pixels of that
class [9].

To estimate the model parameters we use all annotations;
both segmentation masks and bounding boxes. The training
is done in two steps. First a rough initial model of object cat-
egories is learned from the segmented training images only.
We then use the remaining training images to re�ne the ini-
tial model. To this end, we use our initial model to segment
the images for which only the bounding box is given. This
is done by running our segmentation algorithm, while rep-
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resenting each object bounding box by a single blob in our
model; �xing the blob's spatial model and category label
to values given by the bounding box. We only estimate the
patch labels and color models given these constraints. This
gives us new series of more accurate annotations, which we
use to re-estimate the category level appearance models. We
experimentally con�rmed that these automatically produced
annotations are reliable; examples of produced segmentation
masks are illustrated in Figure11.

When processing test images, the number and classes
of objects present in an image is not known. With the rela-
tively large number of possible classes, we observed (results
are given below) that initializing the algorithm with local
patch predictor, as we have done before, is not enough to ob-
tain good results. We then tried to use a template matching
based detector, and noticed that this signi�cantly improved
the segmentation accuracy. More precisely, we used the IN-
RIA PlusClass detector [9] to initialize the blob positions
and labels. This is a detector based on a sliding window ap-
proach including a linear SVM classi�er and image descrip-
tors based on histograms of oriented gradients [8]. When re-
porting our results, we use `DI' to denote the use of this De-
tector for the Initialization. The Naive Initialization, based
on patch predictions is denoted `NI'.

In addition to these two types of initialization, we also
evaluated how much the segmentation of unsegmented train-
ing images helps to segment test images. We compare our
method trained with only the 422 segmented training im-
ages, denoted `ST', and trained with the full training set of
more than 5000 images including additional segmentation
masks generated by our algorithm, denoted `FT'.

Thus, we have four possible combinations, that have been
evaluated; results obtained on the 20 classes of the VOC
2007 are given Table2. We also report the best segmentation
result submitted to the VOC 2007 competition, as well as
the best result obtained using detection algorithms, in which
case the segmentation is simply given by the predicted ob-
ject bounding box. Finally we report results obtained by
three methods proposed since the challenge [7,28,31].

From these results, we can draw several conclusions.
First, we see that for nearly all classes including training im-
ages with bounding box annotations (FT) brings a clear im-
provement. Second, the results demonstrate the importance
of good initializations using the detector results (DI). Us-
ing the detector gives an overall improvement of about 20%
mean accuracy. This can be explained by the large number
of classes involved in the segmentation task. The detection
algorithm proposes relevant candidates, which are then val-
idated and re�ned by the segmentation algorithm. For some
classes, liketableor dog, the results are better with the naive
initialization; for these classes the detector often fails. This
behavior was also observed in [31], where the use of a de-
tector also improved the accuracy of their method by 20%.

They used the TKK detector [9] which outperformed our
INRIA PlusClass detector and thus obtained slightly better
segmentation results. Third, we clearly outperform the best
methods that entered in the challenge and have comparable
or better results than the one proposed after the challenge
[7,28,31]. We note that [7] uses a global image classi�er
which also guides the segmentation algorithm, this follows
the same intuition than using the object detector.

In order to better understand the role of the detector, Fig-
ure12 illustrates the behavior of the model on some images.
Starting from the initial detections (�rst column), the seg-
mentation method validates the object hypotheses and re-
�nes the object boundaries in most of the cases (segmenta-
tion results shown in the third column). This can be com-
pared to the results obtained using local patch predictor ini-
tialization (last column). For the third image, we can clearly
see both abicycle and amotorbikedetection. From these
competing hypotheses the segmentation selects the bicycle.
We can also see that some obvious false detections, like the
person in the third image, are mostly discarded.

5.5 Instance based segmentation and limits of the method

Most evaluation campaigns only consider category level seg-
mentation; instance based segmentation is usually not con-
sidered. The strength of our model lies in its ability to iden-
tify single object instances. Modeling different instances of
the same category individually is of particular interest be-
cause it allows to �t an appearance model to each instance
and make its description even more precise. This is illus-
trated on the �rst column of Figure13, where two different
car instances, with different colors, can each bene�t from
an accurate color appearance model. In this example, the
Dirichlet process prior favors the creation of a second blob.

However, when objects are too close, the estimation of
the number of instances fails, and multiple objects which are
close to each other, or which are too similar to each other
are considered as a single instance. See for example the two
cows presented Figure1 which are grouped in a single ob-
ject. This behavior of our model can be explained by the
fact that the Dirichlet process prior tends to limit the num-
ber of regions per image; unless there is enough evidence
due to different appearances that are spatially coherent. In
these situations an external object detector can be valuable
to initialize our model with good estimate of the number of
instances per category. See for example the second columns
of Figure13, in this image the detector returned multiple in-
stances allowing the segmentation of the correct number of
people. As a comparison, we considered for each class of the
PASCAL VOC 2007 data set, images containing at least an
instance of this category and computed the average number
of instances per image, within this subset. Our model pro-
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Fig. 11 Examples of additional annotations (segmentation masks) automatically produced for the unsegmented training images, obtained by
applying our algorithm on the provided bounding boxes (best viewed in color, with color coding shown in Figure13).

backgrd plane bicycle bird boat bottle bus car plant sheep sofa

FT+DI 49.4 20.5 70.4 23.5 16.5 28.7 22.7 58.4 22.0 23.7 27.9
ST+DI 57.2 13.6 35.1 19.6 10.6 23.8 16.8 56.8 14.4 17.8 24.1
FT+NI 15.0 17.7 9.4 1.6 15.9 4.8 10.2 25.1 38.0 8.9 4.2
ST+NI 21.0 11.7 10.0 3.6 15.5 8.7 10.7 17.4 3.4 8.5 8.7
Brookes 77.7 5.5 0.0 0.4 0.4 0.0 8.6 5.2 2.3 2.3 0.3
TKK 22.9 18.8 20.7 5.2 16.1 3.1 1.2 78.3 64.7 30.2 34.6
Texton Forests [31] DI 22 77 45 45 19 14 45 48 40 42 10
Texton Forests [31] NI 33 46 5 14 11 14 34 8 19 19 8
Multiple Segmentation [28] 59 27 1 8 2 1 32 14 11 26 1

cat chair cow table dog horse moto person train monitor mean

FT+DI 65.5 28.2 10.4 0.9 3.7 65.4 51.8 60.1 65.2 65.5 37.2
ST+DI 63.1 25.0 10.6 0.6 4.0 41.2 55.3 64.1 46.2 59.7 31.4
FT+NI 15.2 23.8 7.5 10.6 20.7 15.7 21.9 27.6 4.9 17.5 15.1
ST+NI 7.4 21.2 7.8 5.8 15.7 14.3 11.3 40.5 3.9 18.1 12.6
Brookes 9.6 1.4 1.7 10.6 0.3 5.9 6.1 28.8 10.6 0.7 8.5
TKK 1.1 2.5 0.8 23.4 69.4 44.4 42.1 0.0 89.3 70.6 30.4
Texton Forests [31] DI 29 26 20 59 45 54 63 37 68 72 42
Texton Forests [31] NI 6 3 10 39 40 28 23 32 24 9 20
Multiple Segmentation[28] 14 4 8 32 9 24 15 81 28 17 20

Table 2 Segmentation accuracy (i.e. pixel-level classi�cation accuracy) on the PASCAL VOC 2007 data set. The �rst four rows give the results
obtained with our method using the full training set (FT), the small training set (ST), detector based initialization (DI), and naive initialization (NI).
The two following rows, give best results among the submitted segmentation and detection methods respectively. The remaining rows correspond
to methods proposed since the challenge. In [7] only the performance averaged over all classes is reported at 39.8.

duces an average of 1.73 while the ground truth shows an
average of 1.63 instances per image.

We have seen in Figure12that mistakes made by the de-
tector can be recovered by the segmentation algorithm. This
is not always possible, c.f. the second column of Figure13,
where a person in the crowd was detected as a cat, or on the
second line of Figure12 where a dog was confused with a
cat. As a last example, the third column of Figure13 shows
a sofa which is detected as car, this hypothesis being more
consistent with its context. Another problem for most detec-
tion methods, is the detection of multiple instances where
in reality there is only one. In particular it happens for un-
usually big objects, and the segmentation method does not
always recover from such initializations. This is the case in
the last row of Figure13.

6 Discussion and conclusions

We conclude this paper with a discussion of our model, and
indicate extensions to overcome some of its limitations.

Segmentation is commonly considered as an isolated prob-
lem: a given image has to be segmented in some `meaning-
ful' manner, without any supplementary information. Where
`meaningful' is often understood as segmenting at the level
of objects, or their constituent parts. Much early work on
segmentation tried to solve the task at a local level; clearly
such methods can not resolve ambiguities in the local image
features. Semantic grouping is required within the segmen-
tation process, and category-level recognition can provide
the necessary cues for this. Similarly, recognition requires
accurate segmentation to avoid distraction from background
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Fig. 12 Three example images from PASCAL VOC 2007. From left to right: (i) the original image with the detector results superimposed, (ii)
category assignments after a few iterations, (iii) the �nal segmentation result produced from this initialization, (iv) class labels from patch-level
initialization, and (v) the �nal result obtained using this initialization (best viewed in color, with color coding shown in Figure13).

Fig. 13 Illustration of instance based segmentation. The role of the Dirichlet process prior and the detector, together with explanation of failures
are described in the text. Ellipses represent blobs, and the color coding used in three of the images is shown on the right.

clutter and occluding objects. Our model couples these two
processes, and the parameters of its category appearance
models are estimated from manually segmented images. The
estimate category models can then be applied to segment
new instances of the same categories in other images.

Robust category-level recognition requires dealing with
intra-class variations and imaging conditions such as occlu-
sions, illumination changes, view point and scale variations.
Our choice of patch descriptors ensures some level of invari-
ance to illumination changes. Where some methods rely on
rigid shape models for recognition, ours relies on a bag-of-
words representations which are intrinsically robust to oc-
clusions and non-rigid deformations. Our blob model does
not impose hard constraints between object parts, but does
implement accumulation of evidence on the object position
and size to guide the assignment from patches to objects.

The Dirichlet process over patch-to-blob assignments in our
model is interesting because it introduces dependencies at an
automatically adapted scale, which is determined by the size
and number of the blobs. We can imagine using multi-scale
patches which would probably improve the recognition abil-
ity of the model but increase its complexity.

Our experiments show the bene�t of using a supplemen-
tary object category detector, which operates at a level of
bounding boxes, to improve results when segmenting many
object categories simultaneously. Note that the segmentation
that our model returns is richer than what could be obtained
using a simple combination between a detector and a color-
based segmentation method, as our model separates differ-
ent object instances and handles multiple categories per im-
age. Note that even if the �nal goal is to predict a class label
per pixel, and not to identify all different instances of each
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category, it can be bene�cial to separately model the dif-
ferent instances. This is because it allows the modeling of
instance speci�c appearance models, for color in our case,
which can improve the segmentation accuracy. Furthermore,
we experimentally �nd that we can successfully combine an-
notations in the form of pixel-level segmentation and bound-
ing boxes, the latter being much easier to produce. Adding
images annotated with bounding boxes leads to improved
segmentation results.

In future work we want to further study the interplay be-
tween the instance speci�c and category level appearance
models. In the current work low-level image cues are used
by either the instance level or category level model, whereas
in principle the features used by both models do not need
to be disjoint. In particular it is interesting whether we could
learn which features are useful at the instance level and which
are useful at the category level. Furthermore, it is worth-
while to improve the capacity of the model to distinguish
multiple instances of the same category which are very close
to each other. Some form of geometric information should
be included in the category level appearance models to re-
solve such ambiguities and improve segmentation results.
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