Accurate image search using the contextual dissimilarity measure

Hervé Jégou 1, 2 Cordelia Schmid 1 Hedi Harzallah 1 Jakob Verbeek 1
1 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
2 TEXMEX - Multimedia content-based indexing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : This paper introduces the contextual dissimilarity measure which significantly improves the accuracy of bag-of-features based image search. Our measure takes into account the local distribution of the vectors and iteratively estimates distance update terms in the spirit of Sinkhorn's scaling algorithm, thereby modifying the neighborhood structure. Experimental results show that our approach gives significantly better results than a standard distance and outperforms the state-of-the-art in terms of accuracy on the Nister-Stewenius and Lola datasets. This paper also evaluates the impact of a large number of parameters, including the number of descriptors, the clustering method, the visual vocabulary size and the distance measure. The optimal parameter choice is shown to be quite context dependent. In particular using a large number of descriptors is interesting only when using our dissimilarity measure. We have also evaluated two novel variants, multiple assignment and rank aggregation. They are shown to further improve accuracy, at the cost of higher memory usage and lower efficiency.
Type de document :
Article dans une revue
IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2010, 32 (1), pp.2-11. 〈http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4695831〉. 〈10.1109/TPAMI.2008.285〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00439311
Contributeur : Hervé Jégou <>
Soumis le : mardi 15 mars 2011 - 13:40:39
Dernière modification le : lundi 25 septembre 2017 - 10:08:03
Document(s) archivé(s) le : samedi 3 décembre 2016 - 09:24:38

Fichiers

jegou_cdm_preprint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Hervé Jégou, Cordelia Schmid, Hedi Harzallah, Jakob Verbeek. Accurate image search using the contextual dissimilarity measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2010, 32 (1), pp.2-11. 〈http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4695831〉. 〈10.1109/TPAMI.2008.285〉. 〈inria-00439311v3〉

Partager

Métriques

Consultations de
la notice

731

Téléchargements du document

1420