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Abstra
t: The aim of this paper is to investigate from the numeri
al point ofview the possibility of 
oupling the Hamilton-Ja
obi-Bellman (HJB) approa
hand the Pontryagin's Minimum Prin
iple (PMP) to solve some 
ontrol problems.We show that an approximation of the value fun
tion 
omputed by the HJBmethod on rough grids 
an be used to obtain a good initial guess for the PMPmethod. The advantage of our approa
h over other initialization te
hniques(su
h as 
ontinuation or dire
t methods) is to provide an initial guess 
lose tothe global minimum. Numeri
al tests involving multiple minima, dis
ontinuous
ontrol, singular ar
s and state 
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Initialization of the shooting method via theHamilton-Ja
obi-Bellman approa
hRésumé : The aim of this paper is to investigate from the numeri
al point ofview the possibility of 
oupling the Hamilton-Ja
obi-Bellman (HJB) approa
hand the Pontryagin's Minimum Prin
iple (PMP) to solve some 
ontrol problems.We show that an approximation of the value fun
tion 
omputed by the HJBmethod on rough grids 
an be used to obtain a good initial guess for the PMPmethod. The advantage of our approa
h over other initialization te
hniques(su
h as 
ontinuation or dire
t methods) is to provide an initial guess 
lose tothe global minimum. Numeri
al tests involving multiple minima, dis
ontinuous
ontrol, singular ar
s and state 
onstraints are 
onsidered. The CPU time forthe proposed method is less than four minutes up to dimension four, without
ode parallelization.Mots-
lés : optimal 
ontrol problem, minimum time problem, Pontryagin'sminimum prin
iple



Coupling the PMP and HJB methods 31 Introdu
tionThe Hamilton-Ja
obi-Bellman (HJB) theory and the Pontryagin's MinimumPrin
iple (PMP) are usually 
onsidered two separate worlds although they dealwith the same kind of problems. The theoreti
al 
onne
tions between the twoapproa
hes are well known [11, 7, 8, 9℄, but 
oupled usage of the two te
hniquesis not 
ommon and not 
ompletely explored.In this paper we will deal with the following 
ontrolled dynami
s
{
ẏ(t) = f(y(t), u(t)), t > 0
y(0) = x, x ∈ R

d (1)where the 
ontrol variable u(·) ∈ U := {u : R
+ → U, u measurable} and

U ⊂ R
m (m ≥ 1). We will denote by yx(t;u) the solution of the system (1)starting from the point x with 
ontrol u. Let C ⊂ R

d be a given target. For anygiven 
ontrol u we denote by tf (x, u) the �rst time the traje
tory yx(t;u) hits
C (we set tf (x, u) = +∞ if the traje
tory never hits the target). We also de�nea 
ost fun
tional J as

J(x, u) :=

∫ tf (x,u)

0

ℓ(yx(t;u), u(t))dt. (2)The �nal goal is to�nd u∗ ∈ U su
h that J(x, u∗) = min
u∈U

J(x, u) (3)and then to 
ompute the asso
iated optimal traje
tory y∗x(t;u∗). We also de�nethe value fun
tion
T (x) := J(x, u∗) , x ∈ R

d.Choosing ℓ ≡ 1 in (2) we obtain the 
lassi
al minimum time problem.The HJB approa
h is based on the Dynami
 Programming Prin
iple [3℄. It
onsists in 
hara
terizing the value fun
tion asso
iated to the 
ontrol problemby means of a �rst-order non-linear partial di�erential equation. On
e an ap-proximation of the value fun
tion is 
omputed, we 
an easily re
onstru
t theoptimal 
ontrol u∗ in feedba
k form and, by a dire
t integration, the optimaltraje
tories for any starting point x. The method is greatly advantageous be-
ause it is able to rea
h the global minimum of the 
ost fun
tional, even if theproblem is not 
onvex. The HJB approa
h allows also to have a global overviewof the set of the optimal traje
tories and of the rea
hable set (or 
apture basin)i.e. the set of the points from whi
h it is possible to rea
h the target in a giventime.Beside all the advantages listed above, the HJB approa
h su�ers the wellknown �
urse of dimensionality�, so in general it is restri
ted to problems in lowdimension (d ≤ 3).The PMP approa
h 
onsists in �nding traje
tories that satisfy the ne
es-sary 
onditions stated by Pontryagin's Minimum Prin
iple. This is done inpra
ti
e by sear
hing a zero of a 
ertain shooting fun
tion, typi
ally with a(quasi-)Newton method. This method is well known and is used in many ap-pli
ations, see [21, 23, 12℄ and referen
es therein. The main advantages of thisapproa
h lie in its a

ura
y and its numeri
al 
omplexity. It is worth to re
allRR n° 7139



4 Cristiani & Martinonthat the dimension of the nonlinear system for the shooting method is usually
2d, where d is the state dimension. This is in pra
ti
e quite low for this kindof problem, therefore fast 
onvergen
e is expe
ted in 
ase of su

ess, espe
iallyif the initial guess is 
lose to the right value. Unfortunately, �nding a suitableinitial guess 
an be extremely di�
ult in pra
ti
e. The algorithm may eithernot 
onverge at all, or 
onverge to a lo
al minimum of the 
ost fun
tional.In this paper we 
ouple the two methods in su
h a way we 
an preserve therespe
tive advantages. The idea is to solve the problem via the HJB method ona 
oarse grid to have in short time a �rst approximation of the value fun
tionand the stru
ture of the optimal traje
tory. Then, we use this information toinitialize the PMP method and 
ompute a pre
ise approximation of the globalminimum. To our knowledge this is the �rst attempt to exploit the 
onne
tionbetween the HJB and PMP theories from the numeri
al point of view.Compared to the use of 
ontinuation te
hniques or dire
t methods to obtainan estimate of the initial 
ostate, the main advantage of the approa
h presentedhere is that the HJB method provides an initial guess 
lose to the global min-imum. The main limitation is the restri
tion with respe
t to the dimension ofthe state.We 
onsider some known 
ontrol problems with di�erent spe
i�
 di�
ulties:several lo
al minima, dis
ontinuous 
ontrol, presen
e of singular ar
s, and state
onstraints. In all these problems, we show that 
ombining PMP method withHJB approa
h leads to a very e�
ient algorithm.2 PreliminariesConsider optimal 
ontrol problems in the general Bolza form, autonomous 
ase,with a �xed or free �nal time.

(P )






min J(x, u) =
∫ tf (x,u)

0 ℓ(y(t), u(t)) dt Obje
tive
ẏ(t) = f(y(t), u(t)) Dynami
s
u(t) ∈ U for a.e. t ∈ (0, tf(x, u)) Admissible Controls
y(0) = x Initial Conditions
y(tf (x, u)) ∈ C Terminal ConditionsHere U is a 
ompa
t set of R

m and the following 
lassi
al assumptions aresatis�ed:- f : R
d ×U → R

d and ℓ : R
d ×U → R

d are 
ontinuous, and are of 
lass C1with respe
t to the �rst variable.- C is a 
losed subset of R
d for whi
h the property �a ve
tor is normal to Cat a point of C� makes sense. For instan
e, C 
an be des
ribed by a �niteset of equalities {ci(x) = 0}i or inequalities {ci(x) ≤ 0}i, with the c′isbeing of 
lass C1 and the 
lassi
al 
onstraint quali�
ation assumptions.2.1 Pontryagin's Minimum Prin
iple approa
hWe give here a brief overview of the so 
alled indire
t methods for optimal
ontrol problems [24, 6, 22℄. We introdu
e the 
ostate p, of same dimension dINRIA



Coupling the PMP and HJB methods 5as the state x, and de�ne the Hamiltonian
H(y, p, u, p0) = p0ℓ(y, u)+ < p, f(y, u) > .Under the assumptions on f and ℓ introdu
ed above, the Pontryagin's Min-imum Prin
iple states that if (y∗x, u

∗, t∗f ) is a solution of (P ) then there exists
(p0, p

∗) 6= 0 absolutely 
ontinuous su
h that
ẏ∗(t) = Hp(y

∗
x(t), p∗(t), u∗(t), p0), y∗x(0) = x, (4a)

ṗ∗(t) = −Hx(y∗x(t), p∗(t), u∗(t), p0), (4b)
p∗(t∗f ) ⊥ TC(y∗x(t∗f )), (4
)
u∗(t) = arg min

v∈U
H(y∗x(t), p∗(t), v, p0) for a.e. t ∈ [0, t∗f ], (4d)where TC(ξ) denotes the 
ontingent 
one of C at ξ. Moreover, if the �nal time

t∗f is not �xed and is an optimal time, then we have the additional 
ondition:
H(y∗x(t), p∗(t), u∗(t), p0) = 0, for t ∈ (0, t∗f ). (5)Two 
ommon 
ases are C = {yf} with p∗(t∗f ) free, and C = R

d with p(t∗f ) = 0.Now we assume that minimizing the Hamiltonian provides the 
ontrol as afun
tion γ of the state and 
ostate. For a given value of p(0), we 
an integrate
(x, p) by using the 
ontrol u = γ(x, p) on [0, tf ]. We de�ne the shooting fun
tion
S that maps the unknowns p(0) to the value of the �nal and transversality
onditions at (x(tf ), p(tf )). Finding a zero of S gives a traje
tory (x, u) thatsatis�es the ne
essary 
onditions for the problem (P ). This is typi
ally done inpra
ti
e by applying a (quasi-)Newton method.Remark 2.1 The multiplier p0 
ould be equal to 0. In that 
ase, the PMP issaid anormal, its solution (y∗, u∗, p∗) 
orresponds to a �singular� extremal whi
hdoes not depend on the 
ost fun
tion ℓ. Several works have been devoted to theexisten
e (or nonexisten
e) of su
h extremal 
urves [4, 10℄. For numeri
s, ingeneral we assume that p0 6= 0 whi
h leads to solve the PMP system with p0 = 1.In the sequel, we will always assume that we are in the normal 
ase (p0 = 1).Singular ar
s. A singular ar
 o

urs when minimizing the Hamiltonian failsto determine the optimal 
ontrol u∗ on a whole time interval. The typi
al
ontext is when H is linear with respe
t to u, with an admissible set of 
ontrolsof the form U = [ulow, uup]. In this parti
ular 
ase, the fun
tion (x, u, p) 7−→
Hu(x, u, p) does not depend on the 
ontrol variable. We de�ne the swit
hingfun
tion ψ(x, p) = Hu(x, u, p) and have the following bang-bang 
ontrol law:





if ψ(x, p) > 0 then u∗ = ulowif ψ(x, p) < 0 then u∗ = uupif ψ(x, p) = 0 then swit
hing or singular 
ontrol.A singular ar
 then 
orresponds to a time interval where the swit
hing fun
tion ψis zero. The usual way to obtain the singular 
ontrol is to di�erentiate ψ with re-spe
t to t until the 
ontrol expli
itly appears, whi
h leads to solving an equationof the form ψ(2k)(x, p) = 0, see [6℄. This step 
an be quite di�
ult in pra
ti
e,RR n° 7139



6 Cristiani & Martinondepending on the problem. Moreover, it is also required to make assumptionsabout the 
ontrol stru
ture, more pre
isely to �x the number of singular ar
s.Ea
h expe
ted singular ar
 adds two shooting unknowns (tentry, texit), withthe 
orresponding jun
tion 
onditions ψ(tentry) = ψ̇(tentry) = 0 or alternately
ψ(tentry) = ψ(texit) = 0. The problem studied in se
tion 4.3 presents su
h asingular ar
.State 
onstraints. We 
onsider a state variable inequality 
onstraint g(x(t)) ≤ 0.We denote by q the smallest order su
h that g(q) depends expli
itly on the 
on-trol u; q is 
alled the order of the 
onstraint g. The Hamiltonian is de�ned withan additional term for the 
onstraint

H(x, p, u) = ℓ(x, u)+ < p, f(x, u) > +µg(q)(x, u)with the sign 
ondition {
µ = 0 if g < 0
µ ≥ 0 if g = 0.When the 
onstraint is ina
tive we are in the same situation as for an un
on-strained problem. Over a 
onstrained ar
 where g(x) = 0, we obtain the 
ontrolfrom the equation g(q)(x, u) = 0, and µ from the equation Hu = 0. As in thesingular ar
 
ase, we need to make assumptions 
on
erning the 
ontrol stru
-ture, namely the number of 
onstrained ar
s. Ea
h expe
ted 
onstrained ar
adds two shooting unknowns (tentry, texit) with the Hamiltonian 
ontinuity as
orresponding 
onditions. We also have the so 
alled tangen
y 
ondition at theentry point

N(x(tentry)) = (g(x(tentry)), . . . , g(q−1)(x(tentry))) = 0,with the 
ostate dis
ontinuity
p(t+entry) = p(t−entry) − πNx |tentrywhere π ∈ R

q is another multiplier yielding to an additional shooting unknown.Remark 2.2 The tangen
y 
ondition 
an also be enfor
ed at the exit time, inthis 
ase the 
ostate jump o

urs at the exit time as well.2.2 Hamilton-Ja
obi-Bellman approa
hConsider the value fun
tion T : R
d → R, whi
h maps every initial 
ondition

x ∈ R
d to the minimal value of the problem (P ). It is well known (see forexample [1℄ for a 
omprehensive introdu
tion) that the value fun
tion T satis�esa Dynami
 Programming Prin
iple and the Kruºkov transform of T , de�ned by

v(x) := 1 − e−T (x)is the unique solution of the following HJB equation, in vis
osity sense [1℄:
{

v(x) + sup
u∈U

{−f(x, u) ·Dv(x) − ℓ(x, u) + (ℓ(x, u) − 1)v(x))} = 0 x ∈ R
d\C

v(x) = 0 x ∈ C. (6)INRIA



Coupling the PMP and HJB methods 7Obtaining a numeri
al approximation of the fun
tion v is a di�
ult task mainlybe
ause v is not always di�erentiable. Several numeri
al s
hemes have beenstudied in the literature. In this paper we will use a �rst-order semi-Lagrangian(SL) s
heme, we refer to [13, 14℄ for a survey on these kind of s
hemes. This
hoi
e is motivated by the fa
t that SL s
heme seems the best one in order toapproximate the gradient of the value fun
tion, this being our goal as we willsee in the next se
tion. We �x a (numeri
al) bounded domain Ω ⊃ C and weintrodu
e in it a regular grid G = {xi, i = 1, . . . , NG} where NG is the totalnumber of nodes. We denote by ṽ(x;h, k,Ω) the fully dis
rete approximation of
v, h and k being two dis
retization parameters (the �rst one 
an be interpretedas a time step to integrate along 
hara
teristi
s and the se
ond one is the usualspa
e step). We impose state 
onstraint boundary 
onditions on ∂Ω. Thedis
rete version of (6) is

{
ṽ(xi) = H̃ [ṽ](xi) xi ∈ (Ω\C) ∩G
ṽ(xi) = 0 x ∈ C ∩G

(7)where
H̃ [ṽ](xi) := min

u∈U
{P1

(
ṽ;xi + hf(xi, u)

)
+ hℓ(xi, u)(1 − ṽ(xi))} (8)and P1

(
ṽ;xi + hf(xi, u)

) denotes the value of ṽ at the point xi + hf(xi, u)obtained by linear interpolation using the known values of ṽ on G (note thatthe point xi + hf(xi, u) is not in general sitting on the grid). The numeri
als
heme 
onsists in iterating
ṽ(n+1) = H̃ [ṽ(n)] n = 1, 2, . . . (9)until 
onvergen
e, starting from ṽ(0)(xi) = 0 on C and 1 elsewhere. To a

eleratethe 
onvergen
e we use the Fast Sweeping te
hnique [27℄. The fun
tion ṽ isthen extended to the whole spa
e by linear interpolation. On
e the fun
tion ṽis 
omputed, we get easily the 
orresponding approximation T̃ of T , and thenthe optimal 
ontrol law in feedba
k form, see [13, 14℄ for details.It is useful to note that the equation (6) 
an also model a front (interfa
e)propagation problem. Following this interpretation, the boundary of the target

∂C is the front at initial time t = 0, and the level set {x : T (x) = t} representsthe front at any time t > 0.3 Coupling HJB and PMP3.1 Main 
onne
tionIt is known [7℄ that for a general 
ontrol problem with free end-point, if thevalue fun
tion is di�erentiable at some point x ∈ R
d then it is di�erentiablealong the optimal traje
tory starting at x. A
tually, the gradient of the valuefun
tion is equal to the 
ostate of the Pontryagin's prin
iple.In the 
ontext of minimum time problems (with target 
onstraint), the link be-tween the minimum time fun
tion and the Pontryagin's prin
iple has been alsoinvestigated in several papers [9, 8℄, proving the same 
onne
tion.RR n° 7139



8 Cristiani & MartinonOn
e the value fun
tion T is 
omputed by solving the HJB equation, we ap-proximate DT (x) (x being the starting point) by standard �rst-order �nitedi�eren
es, and then we use it as initial guess for p(0).In the 
ase T /∈ C1(Rd) it is proved in [8℄ that a 
onne
tion between the twoapproa
hes still exists. More pre
isely, under some additional assumptions, wehave
p∗(t) ∈ D+T (y∗x(t)) for t ∈ [0, T (x)],where D+T (x) is the superdi�erential of T at x de�ned by

D+T (x) :=

{
η ∈ R

d : lim sup
y→x

T (y) − T (x) − η · (y − x)

|y − x|
≤ 0

}
. (10)In the rest of this se
tion we assume that D+T (x) 6= ∅. It is plain that we 
annot use �nite di�eren
e approximation in order to 
ompute p(0) at the pointswhere the value fun
tion T is not di�erentiable. Rather than that, we will try toapproximate the dire
tion ξ∗ whi
h is orthogonal to the level sets of T , pointingtoward the dire
tion of maximal de
rease. This dire
tion, in the 
ase when Tis di�erentiable, is given by:

ξ∗ = −DT (x). (11)Here, we 
ompute an approximation of ξ∗ as:
ξ∗ = arg min

ξ∈B(0,1)

T (x+ δξ) − T (x)

δ
, (12)where δ > 0 is a small positive parameter, and B(0, 1) denotes the ball in R

d
entered at 0 with radius 1.Let us explain on a simple example why we 
hoose the de�nition (12). Con-sider the 
ase C = {(3, 0)} ∪ {(−3, 0)}, ℓ ≡ 1, f = u and U = B(0, 1) (eikonalequation). On the line {x = 0} the fun
tion T is not di�erentiable (see Fig.1-left). This line 
orresponds to a zone where two globally optimal traje
to-
−5 0 5
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Figure 1: two 
rossing fronts with and without superimposition. Arrows 
orre-spond to the (two) ve
tor(s) ξ∗ries are available. Following the front propagation interpretation (see end ofINRIA



Coupling the PMP and HJB methods 9se
tion 2.2) here we have two fronts whi
h hit ea
h other at the line {x = 0}.The vis
osity solution of the HJB equation sele
ts automati
ally the �rst arrivaltime so we never see the two 
rossing fronts, but we 
ould in prin
iple followthe propagations of the two fronts separately (see Fig. 1-right). Consideringthe two fronts separately, by means of (12), we 
an easily approximate the twodire
tions ξ∗1 and ξ∗2 of maximal de
rease of the fun
tion T (and then the �twogradients� −ξ∗1 and −ξ∗2 of T ) using only the value fun
tion T .In the present example, fo
using on the point (0, 0), we easily 
ompute thetwo dire
tions of maximal de
rease as (−1, 0) and (1, 0). It is easy to show thatthese two ve
tors 
oin
ide with the two �extremal� ve
tors in D+T (x), namelythe ve
tors η verifying
lim sup

y→x

T (y) − T (x) − η · (y − x)

|y − x|
= 0. (13)Although this relationship is not true for every fun
tion T su
h that D+T (x) 6=

∅, it is easy to see that it is true whenever the 
urve of non-di�erentiability isdue to the 
ollision of two or more fronts (as in Problem 1, Se
tion 4.1).In this paper, we propose to investigate numeri
ally the relevan
e of usingthe HJB approa
h to 
ompute −ξ∗ and then using it as initial guess for theinitial 
ostate p(0) in the shooting method.3.2 Convergen
e of DTMany papers (see for example [2, 26℄ in the 
ontext of di�erential games) in-vestigated the 
onvergen
e of the approximate value fun
tion ṽ(· ;h, k,Ω) tothe exa
t solution v when the parameters h, k tend to zero and Ω tends to R
d.These results were quite di�
ult to be obtained be
ause the fun
tion v is notin general di�erentiable.Let us denote by D̃ = (D̃1, . . . , D̃d) the dis
rete gradient 
omputed by 
entered�nite di�eren
es with step z > 0

D̃iT (x) :=
T (x + zei) − T (x− zei)

2z
, i = 1, . . . , dwhere {ei}i=1,...,d is the standard basis of R

d.To our purposes we have to go further proving the 
onvergen
e of T̃ (· ;h, k,Ω) =

− ln(1 − ṽ(· ;h, k,Ω)) and then the 
onvergen
e of D̃T̃ (· ;h, k,Ω) be
ause thelatter will be used by the PMP method as initial guess.Let us assume that k = C1h for some 
onstant C1. Given a generi
 estimate ofthe form
‖ṽ(· ;h,Rd) − v(·)‖L∞(Rd) ≤ Chα , C, α > 0 (14)we have the followingTheorem 3.1 Assume that T ∈ C1(Ω) and there exists Tmax > 0 su
h that

0 ≤ T (x) ≤ Tmax for all x ∈ Ω.Let us de�ne
E(x) := ‖D̃T̃ (x;h,Ω) −DT (x)‖∞.Then there exists Ω′ ⊂ Ω su
h that

‖E(·)‖L∞(Ω′) = O(hα/z) +O(z2) for h, z → 0.RR n° 7139



10 Cristiani & MartinonFor the SL s
heme we use here, an estimate of the form (14) in the parti
ular
ase ℓ ≡ 1 (under assumptions weaker than those used in Theorem 3.1) 
an befound in [26℄. The proof of the theorem is postponed in the Appendix.4 Numeri
al experimentsWe have tested the feasibility and relevan
e of 
ombining the HJB and PMPmethods on four optimal 
ontrol problems. Ea
h of these problems highlights aparti
ular di�
ulty from the 
ontrol point of view.Problem 1 (se
tion 4.1) is a simple minimum time target problem in di-mension two presenting lo
al and global minima. We will see in this examplethat the shooting method is very sensitive with respe
t to the initial guess (asusual). When initialized by using the HJB approa
h, shooting method re
oversthe optimal solution.Problem 2 (se
tion 4.2) is a 
ontrolled Van der Pol os
illator, also of dimen-sion two, with 
ontrol swit
hings.Problem 3 (se
tion 4.3) is the well-known Goddard problem with singularar
s, in the one-dimensional 
ase (total state dimension is three).Problem 4 (se
tion 4.4) is another simple minimum time target problem indimension four, with a �rst-order state 
onstraint.Details for HJB implementation. The algorithm is written in C++ andit runs on a PC with an Intel Core 2 Duo pro
essor at 2.00 GHz and 4GBRAM. Note that the 
ode is not parallelized. The indi
ated CPU time is thetime needed for the 
omputation of the value fun
tion and saving the result on�le. The time needed to re
onstru
t the optimal traje
tory is not 
onsidered (isalmost 0).The numeri
al domain Ω is dis
retized by a regular grid with N1 × . . . × Ndnodes. The set of admissible 
ontrols U is dis
retized in NC equispa
ed dis
rete
ontrols u1, . . . , uNC
. The stop 
riterion for the �xed point iterations (9) is

‖ṽ(n+1) − ṽ(n)‖L∞(Ω) < ε = 1e− 5.Details for PMP implementation. The shooting method is written in For-tran 90 and runs on a PC with an Intel Core 2 Duo pro
essor at 2.33 GHz and2GB RAM. We used the Shoot1 software whi
h implements a shooting methodwith the Hybrd [19℄ solver. For the four problems studied we set the ODE in-tegration method to a basi
 4th-order Runge-Kutta with 100 steps.4.1 Minimum time target problemThe �rst example illustrates how a lo
al solution 
an a�e
t the shooting method.We 
onsider a simple minimum time problem where we want to rea
h a 
ertainposition on the plane by 
ontrolling the angle of the speed. We 
hoose thevelo
ity in order to 
reate multiple minima of the 
ost fun
tional.1http://www.
map.polyte
hnique.fr/�martinon/
INRIA
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(P1)






min tf
ẏ1(t) = c(y1(t), y2(t)) cos(u(t))
ẏ2(t) = c(y1(t), y2(t)) sin(u(t))
u(t) ∈ [0, 2π) for a.e. t ∈ (0, tf)
y(0) = x = (−2.5, 0)
y(tf ) = (3, 0)with

c(y1, y2) =

{
1 if y2 ≤ 1
(y2 − 1)2 + 1 if y2 > 1.Due to the expression of c, we have at least two minima. The simplest one
orresponds to a straight line traje
tory (−) along the y1 axis with y2 = 0. Theother one has a 
urved traje
tory (∩) that takes advantage of the larger valuesof y2.4.1.1 PMP and shooting methodWe �rst try to solve the problem with the PMP and the shooting method.Therefore we seek a zero of the shooting fun
tion de�ned by

S1 :




tf

p1(0)
p2(0)



 7→




y1(tf ) − 3
y2(tf )

p3(tf ) − 1



 .Global and lo
al solutions. Depending on the starting point, the shootingmethod 
an 
onverge to a lo
al or global solution (Fig. 2). The more 
ommonlo
al solution is the straight line traje
tory from x to C := {(3, 0)}, with a
onstant 
ontrol u = 0 and a �nal time Tlocal = 5.5. The global solution has anar
h shaped traje
tory that bene�ts from the higher speed for in
reasing valuesof y2, with a �nal time t∗f = Tglobal = 4.868.
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1Figure 2: (P1) - Global solution (
urved traje
tory) and lo
al solution (straighttraje
tory) found by the shooting method.
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12 Cristiani & MartinonSensitiveness with respe
t to the starting point. Even for this simpleproblem, the shooting method is very sensitive to the starting point. Numeri
altests indi
ate that it 
onverges in most 
ases to lo
al solutions. We run theshooting method with a bat
h of 441 values of p(0) ∈ [−10, 10]2 on a 21 × 21grid, with di�erent starting guesses for the �nal time (Fig. 3). We observe thatfor the bat
h with the tf = 1 initialization, 11% of the shootings 
onverge tothe global solution, 60% to the straight line lo
al solution, and 24% to anotherlo
al solution with an even worse �nal time (tf = 6.06). For the bat
h withthe tf = 10 initialization, 9% of the shootings 
onverge to the global solution,and 50% and 29% to the two lo
al solutions. Obviously, just taking a randomstarting point is not a reliable way to �nd the global solution.
−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

P
1
(0)

P
2(0

)

CONVERGENCE STUDY FOR P(0) ∈  [−10,10]2 AND T = 1
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GLOBAL SOLUTION (T=4.868): 38 [9%]
LOCAL SOLUTION (T=5.5): 222 [50%]
LOCAL SOLUTION (T=6.06): 127 [29%]

Figure 3: (P1) - Convergen
e to the global solution from a random initializationis hazardous due to the presen
e of a lo
al solution.4.1.2 Solving the problem with the HJB approa
hIn Fig. 4, we show the level sets of the minimum time fun
tion T asso
iated tothe 
ontrol problem (P1). These level sets are obtained by solving numeri
allythe HJB equation. As it 
an be easily seen in Fig. 4, the minimum time fun
tionis not di�erentiable everywhere. The 
urve of the dis
ontinuity of the gradientrepresents here the set of the initial points asso
iated to two optimal traje
tories.4.1.3 Coupling the HJB and PMP approa
hesWe now use the data provided by the HJB approa
h to obtain a starting point
lose to the global solution. The HJB solution provides an estimate of the �naltime, and also an approximation of the 
ostate p(0) by 
omputing a dire
tionof maximal de
rease of the minimum time fun
tion at y(0) = x. In Table 1, wesummarize the results obtained by solving the HJB equation on several grids,and give the obtained minimal time to rea
h the target starting from the position
x = (−2.5, 0). As we 
an see, even on a 
oarse grid (25 × 25 nodes), we obtaina good approximation of p(0) in a very short time (the CPU times in Table1 in
lude the numeri
al resolution of the HJB equation and the 
omputationof p(0)). As we expe
ted, the shooting method immediately 
onverges to theglobal solution when using the starting point obtained from the HJB method(Table 2). INRIA
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Figure 4: (P1) - Level sets of the minimum time fun
tion T , the optimal tra-je
tory starting from (−2.5, 0) and the two optimal traje
tories starting from
(−1.835, 0).nodes NC −ξ∗ t∗f CPU time (se
)

25 × 25 16 (-0.049, -1.000) 4.895 0.08
50 × 50 16 (-0.048, -1.000) 4.895 0.37

200 × 200 32 (-0.051, -1.000) 4.878 20.25Table 1: (P1) - HJB approa
h: the optimal minimal time starting from x =
(−2.5, 0), and the approximation −ξ∗ of the initial 
ostate asso
iated to theoptimal traje
toryInitialization from HJB t∗f = 4.89 −ξ∗ = (−0.05,−1)Solution by PMP t∗f = 4.868 p(0) = (−5.552 × 10−2,−9.985× 10−1)Table 2: (P1) - Initialization from HJB and solution from PMP.We 
an 
he
k that the 
onvergen
e of the shooting method is mu
h better ina neighbourhood of the HJB initialization. Compared to the previous grid with
p(0) ∈ [−10, 10]2, we test initial points with p(0) ∈ [−0.1, 0] × [−2, 0], whi
h
orresponds to a 100% range around the HJB initialization −ξ∗ = (−0.05,−1);we also set tf = 4.89. This time the shooting method �nds the global solutionfor 76% of the points, and only 12% and 9% for the lo
al solutions (Fig. 5).In Table 3 (see also Fig. 4), we 
onsider the 
ase of a starting point very
lose to the 
urve where the minimal time fun
tion is not di�erentiable: x =
(−1.835, 0). Here the 
omputation of p(0) by HJB gives the two dire
tions
p(0) = (−0.05,−1.00) and p(0) = (−0.99, 0.00). Using these two values toinitialize the shooting method, we obtain the two distin
t solutions with the�
ap� and �straight� traje
tories (Table 4). For this problem, the starting pointswhere the minimal time fun
tion is not di�erentiable 
orrespond to the 
aseRR n° 7139



14 Cristiani & Martinon
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GLOBAL SOLUTION (T=4.868): 337 [76%]
LOCAL SOLUTION (T=5.5): 53 [12%]
LOCAL SOLUTION (T=6.06): 39 [9%]Figure 5: (P1) - Convergen
e to the global solution is mu
h easier near the HJBinitialization.where the lo
al (�straight�) solution be
omes global and has the same minimaltime as the global (�
ap�) solution. Noti
e that here the minimal time fun
tionremains di�erentiable along ea
h traje
tory. We will see in se
tion 4.2 a di�erent
ase of non di�erentiability for the value fun
tion.nodes NC −ξ∗ t∗f CPU time (se
)

300 × 300 32 (-0.05,-1.00) and (-0.99,0.00) 4.84 39.98Table 3: (P1) - HJB approa
h for an initial position x = (−1.835, 0).
t∗f p(0)HJB 4.84 (−0.05,−1) and (−0.99, 0)PMP (∩) 4.8246 (−7.67 × 10−2,−9.97× 10−1)PMP (−) 4.835 (−1,−6.2137× 10−16)Table 4: (P1) - Lo
al solution be
omes global for a starting point where theminimal time fun
tion is not di�erentiable.4.2 Van der Pol os
illatorThe se
ond test problem is a 
ontrolled Van der Pol os
illator. Here we want torea
h the steady state (y1, y2) = (0, 0) in minimum time. It is well known thatthe optimal traje
tories, for this problem, are asso
iated to bang-bang 
ontrol

INRIA



Coupling the PMP and HJB methods 15variables.
(P2)






min tf
ẏ1(t) = y2(t)
ẏ2(t) = −y1(t) + y2(t)(1 − y1(t)

2) + u(t)
u(t) ∈ [−1, 1]
y(0) = x = (1,−0.8)
y(tf ) = (0, 0)4.2.1 PMP and shooting methodHere, the Hamiltonian is linear with respe
t to u, therefore we have a bang-bang
ontrol with the swit
hing fun
tion ψ(x, p) = Hu(x, p, u) = p2.The shooting fun
tion is de�ned by
S2 :




tf
p1(0)
p2(0)


 7→




y1(tf )
y2(tf )

p3(tf ) − 1


 .We test the shooting method with the same initial points as for problem (P1).The 
onvergen
e results are even worse in this 
ase: for the tf = 1 initialization,only 9% of the shootings 
onverge to the global solution, and 0.5% for the tf = 10initialization.4.2.2 Solving the problem with the HJB approa
hHere we use the HJB approa
h to 
ompute the minimal time fun
tion. In Fig.6, we show the numeri
al solution obtained by 
arrying out 
omputations on a

200 × 200 grid and NC = 2.
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Figure 6: (P2) - Level sets of fun
tion T and the optimal traje
tory startingfrom (1,−0.8)T.4.2.3 Coupling the HJB and PMP approa
hesThe numeri
al solution of the HJB equation provides some useful data, namelyan approximation of the �nal time tf and an initial 
ostate p(0). This infor-mation is used here to start the shooting algorithm. On
e again, the HJBRR n° 7139



16 Cristiani & Martinoninitialization gives an immediate a

urate 
onvergen
e to the optimal solution,see Table 5 and Fig. 7. In this example, the 
ontrol dis
ontinuities hinder theInitialization from HJB t∗f = 4.2 −ξ∗ = (1.2,−4.2)Solution from PMP t∗f = 3.837 p(0) = (1.249,−3.787)Table 5: (P2) - Initialization from HJB and solution from PMP.
onvergen
e by testing di�erent integration s
hemes for the state and 
ostatepair (x, p). Using a �xed step integrator (4th order Runge-Kutta) without anypre
autions gives a very poor 
onvergen
e with a norm of ≈ 10−3 for the shoot-ing fun
tion. Using either a variable step integrator (Dopri, see [17℄) or aswit
hing dete
tion method for the �xed step integrator (see [15℄) we get mu
hbetter results (≈ 10−11 for the shooting fun
tion norm).
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2Figure 7: (P2) - Solution with one swit
h for the Van der Pol os
illator (shootingmethod).We now test two starting points for whi
h the minimal time fun
tion is notdi�erentiable. In the previous problem the non di�erentiability was 
aused by alo
al solution be
oming global (following the front propagation interpretation,two fronts are hitting). Here the non di�erentiability has a di�erent nature. It
an not be seen as the 
urve of 
ollision between fronts, and 
orresponds to thepoints where the 
ontrol swit
hes between −1 and +1. Taking su
h a startingpoint we have a solution with a 
onstant 
ontrol u = ±1 and no swit
hes. Wetest the two starting points x = (1.5,−0.67) and x = (1,−0.57) that are 
loseto the non di�erentiable 
urve (see Fig. 6). Computation of ξ∗ is performed asbefore in the 
ase T is not di�erentiable. We observe that the shooting method�nds solutions with a swit
h immediately after the initial time or just beforethe �nal time. Here the HJB initialization is not as 
lose to the initial 
ostate
p(0), but is su�
ient to obtain 
onvergen
e. Also, the minimum times given byHJB are still 
lose to the exa
t ones (Table 6).4.3 Goddard problemThe third example is the well-known Goddard problem (see for instan
e [16,18, 20, 28, 25, 5℄), to illustrate the 
ase of singular ar
s. This problem modelsthe as
ent of a ro
ket through the atmosphere, and we restri
t here ourselvesto verti
al (monodimensional) traje
tories. The state variables are the altitude,speed and mass of the ro
ket during the �ight, for a total dimension of 3. TheINRIA
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x method p(0) tf

(1.5,−0.67) HJB (1.62,−0.87) 2.96PMP (1.487, 2.309× 10−3) 2.9594
(1,−0.57) HJB (1.96,−0.10) 2.2PMP (1.715, 1.111× 10−2) 2.1351Table 6: (P2) - Solutions with no swit
hes for starting point where the valuefun
tion is not di�erentiable.ro
ket is subje
t to gravity, thrust and drag for
es. The �nal time is free, andthe obje
tive is to rea
h a 
ertain altitude with a minimal fuel 
onsumption.

(P3)






min J(u) =
∫ tf

0 bTmaxu
ṙ = v
v̇ = − 1

r2 + 1
m

(Tmaxu−D(r, v))
ṁ = −bTmaxu
u(t) ∈ [0, 1]
r(0) = 1, v(0) = 0,m(0) = 1,
r(tf ) ≥ 1.01with the parameters used for instan
e in [20℄: b = 7, Tmax = 3.5 and drag

D(r, v) = 310v2e−500(r−1).4.3.1 PMP and shooting methodAs for (P2), the Hamiltonian is linear with respe
t to u, and we have a bang-bang 
ontrol with possible swit
hings or singular ar
s. The swit
hing fun
tionis ψ(x, p) = Hu(x, p, u) = Tmax((1−pm)b+ pv

m
), and the singular 
ontrol 
an beobtained by formally solving ψ̈ = 0. The main di�
ulty, however, is to deter-mine the stru
ture of the optimal 
ontrol, namely the number and approximatelo
ation of singular ar
s. The HJB approa
h is able to provide su
h informa-tion, in addition to the initial 
ostate p(0). Assuming for instan
e one interiorsingular ar
, the shooting fun
tion is de�ned by

S3 :




tf , p1(0), p2(0), p3(0)

tentry

texit



 7→




r(tf ) − 1.01, p2(tf ), p3(tf ), p4(tf )

ψ(x(tentry), p(tentry))

ψ̇(x(tentry , p(tentry))



 .4.3.2 Solving the problem with the HJB approa
hGoddard problem is also hard to solve with the HJB approa
h, spe
ially be
ausethe 
omputation of the value fun
tion needs a huge number of iterations to
onverge and the solution is quite sensible to the 
hoi
e of the numeri
al box Ωin whi
h the value fun
tion is 
omputed. In Fig. 8,we show the optimal traje
tory and the optimal 
ontrol 
omputed by HJBon a rough grid. As we 
an see, the HJB approa
h does not give a good approx-imation of the optimal 
ontrol (verti
al lines 
orrespond to strong os
illationsof the solution). The HJB formulation 
an suggest not only the values for p(0)and tf , but also the lo
ation of the singular ar
.RR n° 7139
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uFigure 8: (P3) - Goddard problem, solution by HJB approa
h (�rst line: altitudeand velo
ity. Se
ond line: mass and 
ontrol).4.3.3 Coupling the HJB and PMP approa
hesWe now try to initialize the shooting method dire
tly from the results of theHJB approa
h. As for problems (P1) and (P2), the HJB solution provides anestimate of the �nal time t∗f and initial 
ostate p(0). Moreover, examining thestate variables on the HJB solution also gives a good idea of the stru
ture ofthe 
ontrol: the 
hange of slope on the speed 
learly visible in Fig. 8 indi
atesan interior singular ar
 at (tentry , texit) ≈ (0.02, 0.06). On
e again we obtain aqui
k 
onvergen
e to the 
orre
t solution with the expe
ted singular ar
 (Table7 and Fig. 9)).
t∗
f

(tentry , texit) −ξ∗ and p(0)Initialization from HJB 0.17 (0.02, 0.06) (−7.79,−0.31, 0.04)Solution from PMP 0.1741 (0.02351, 0.06685) (−7.275,−0.2773, 0.04382)Table 7: (P3) - Initialization from HJB and solution from PMP.4.4 Minimum time target problem with a state 
onstraintThis fourth example aims to illustrate the 
ase of a state 
onstraint, as well asa four-dimensional problem for the HJB approa
h. We 
hose a simple problemwhere we want to move a point on the plane, from a steady initial position to atarget position, with a null initial and �nal speed. The 
ontrol is the dire
tionof a

eleration, and the obje
tive is to minimize the �nal time. We add a state
onstraint whi
h limits the velo
ity of the point along the x-axis.
INRIA
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(P4)





min J(x, u) = tf
ẏ1 = y3
ẏ2 = y4
ẏ3 = cos(u)
ẏ4 = sin(u)
u(t) ∈ [0, 2π)
y(0) = x = (−3,−4, 0, 0)
y(tf ) = (3, 4, 0, 0)
y3(t) ≤ 1 t ∈ (0, tf )Let us write the state 
onstraints as g(y(t)) ≤ 0, with g de�ned by g(y) =

y3 − 1. The 
ontrol appears expli
itly in the �rst time derivative of g, so the
onstraint is of order 1, and we have:
ġ(y(t)) = cos(u(t)), gy(y) = (0, 0, 1, 0).When the 
onstraint is not a
tive, minimizing the Hamiltonian gives the optimal
ontrol u∗ via

(cos(u∗), sin(u∗)) = −
(p3, p4)√
p2
3 + p2

4

.Over a 
onstrained ar
 where g(x) = 0, the equation ġ(x, u) = 0 and minimizingthe Hamiltonian H leads to
u∗ = −sign(p4)

π

2
.Then the 
onditionHu = 0 gives the value for the 
onstraint multiplier µ = −p3.At the entry point we have a jump 
ondition for the 
ostate:

p(t+entry) = p(t−entry) − πentry gx,with πentry ∈ R an additional shooting unknown. Compared to the un
on-strained problem, we have three more unknowns tentry, texit and πentry . The 
or-responding equations are the Hamiltonian 
ontinuity at tentry and texit (whi
hRR n° 7139



20 Cristiani & Martinonboils down to p3 = 0), and the tangential entry 
ondition g(x(tentry)) = 0. Theshooting fun
tion is de�ned by
S4 :




tf
p1...4(0)

tentry , texit, πentry


 7→




p5(tf ) − 1
y1...4(tf ) − (−3,−4, 0, 0)

p3(tentry), p4(tentry), g(y(tentry))


 .
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VyFigure 10: (P4) - Solution with a 
onstrained ar
 by the HJB approa
h.In �g. 10, we show the numeri
al solution obtained by using the HJB ap-proa
h. This approa
h provides also approximations of the optimal �nal timeand the initial 
ostate. Examining the HJB solution also gives an estimate of thebounds for the 
onstrained ar
 where y3 = 1. The only shooting unknown forwhi
h we were not able to obtain relevant information is the multiplier πentry forthe 
ostate jump at tentry . Therefore we used πentry = 0.1 as a starting guess,whi
h turned out to be su�
ient for the shooting method to 
onverge prop-erly (Table 8). Fig. 11 shows the 
orresponding solution, mu
h 
leaner thanthe HJB solution but with the same stru
ture. We 
he
ked that the 
ondition
µ ≥ 0 was satis�ed over the boundary ar
 as p3 is negative, and p3 = 0 at bothentry and exit of the ar
 as requested by the Hamiltonian 
ontinuity 
onditions.The a
tual value of the multiplier for the jump on p3 is πentry = 4.1294.

t∗f (tentry , texit) −ξ∗ and p(0)Initialization from HJB 7.5 (1.35, 5.6) (−0.51,−0.24,−0.89,−0.61)Solution from PMP 7.0356 (1.1370, 5.8986) (−0.8672,−0.0474, −0.9860,−0.1667)Table 8: (P4) - Initialization from HJB and solution from PMP.CPU times. In Table 9 we �nally summarize the CPU times needed for
omputations.
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1Figure 11: (P4) - Solution with a 
onstrained ar
 by PMP approa
h.Problem 1 Problem 2 Problem 3 Problem 4HJB approa
h with rough dis
retization 8 × 10−2 2.98 211 182PMP approa
h with HJB initialization 3 × 10−3 7 × 10−3 3 × 10−2 2 × 10−2Shooting fun
tion norm for PMP 2.82 × 10−16 8.14 × 10−11 1.12 × 10−7 6.68 × 10−11Table 9: Summary of CPU times for numeri
al experiments (se
onds) and shoot-ing fun
tion norm5 Con
lusionsThe known relation between the gradient of the value fun
tion in the HJBapproa
h and the 
ostate in the PMP approa
h makes it possible to use theHJB results to initialize a shooting method. With this 
ombined method, one
an hope to bene�t from the optimality of HJB and the high pre
ision of PMP.The main limitation is on the state dimension imposed by HJB.We have tested this approa
h on four 
ontrol problems presenting somespe
i�
 di�
ulties: lo
al and global solutions (Problem 1), dis
ontinuous bang-bang 
ontrol (Problem 2), singular ar
s (Problem 3), state 
onstraint (Problem4). The numeri
al tests also in
luded two 
ases where the value fun
tion wasnot di�erentiable.For these four problems, the HJB approa
h provides an approximate solutionwith some additional information, su
h as an estimate of the initial 
ostate p(0),optimal �nal time tf , stru
ture of the optimal solution with respe
t to singularor 
onstrained subar
s. In ea
h 
ase this information allowed us to su

essfullyinitialize the shooting method. The fa
t that the optimal 
ontrol re
onstru
tedby HJB was sometimes far from the exa
t 
ontrol did not seem to be problemati
for the shooting method initialization. The total 
omputational time for the
ombined HJB-PMP approa
h did not ex
eed four minutes, up to dimensionfour.
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22 Cristiani & MartinonAppendixProof of Theorem 3.1. Given the numeri
al domain Ω we de�ne the set Ω′ as
Ω′ := {x ∈ R

d : ṽ(x;h,Ω) ≤ min
x′∈∂Ω

ṽ(x′;h,Ω)}.The set Ω is the box in whi
h the approximate solution is a
tually 
omputedand Ω′ represents the subset of Ω in whi
h the solution is not a�e
ted by the�
titious boundary 
onditions we need to impose at ∂Ω to make 
omputation.From the front propagation point of view, ∂Ω′ represents the front at the timeit tou
hes ∂Ω for the very �rst time.Let us de�ne vmax := (1 − e−Tmax) and �x x ∈ Ω′. We have
T (x) ≤ Tmax < +∞ and v(x) ≤ vmax < 1.By (14) we have

ṽ(x;h) ≤ v(x) + Chα ≤ vmax + Chα.Sin
e vmax < 1 there exists h0 > 0 su
h that
vmax + Chα < 1 for all 0 < h ≤ h0then we 
an de�ne

ṽmax := vmax + Chα
0 < 1and we have

v(x) ≤ vmax ≤ ṽmax and ṽ(x;h) ≤ ṽmax for all x ∈ Ω′ , 0 < h ≤ h0.For any �xed x ∈ Ω′, it exists ξx ∈ [min{v(x), ṽ(x;h)},max{v(x), ṽ(x;h)}] su
hthat
|T̃ (x) − T (x)| =

∣∣∣ ln
(
1 − v(x)

)
− ln

(
1 − ṽ(x;h)

)∣∣∣ =

∣∣∣∣
1

1 − ξx

∣∣∣∣ |v(x) − ṽ(x;h)|.Sin
e ξx ≤ ṽmax, we have
|T̃ (x) − T (x)| ≤

Chα

1 − ṽmax

for all x ∈ Ω′ and 0 < h ≤ h0and then it exists a positive 
onstant C2 whi
h depends by the problem's dataand on Ω su
h that
‖T̃ − T ‖L∞(Ω′) ≤ C2h

α for all 0 < h ≤ h0. (15)We are now ready to re
over an estimate on the gradient of the approximatesolution T̃ . By (15) we know that, for any i = 1, . . . , d

T̃ (x+ zei) = T (x+ zei) + E1 with |E1| ≤ C2h
αand

T̃ (x− zei) = T (x− zei) + E2 with |E2| ≤ C2h
α.So we have

D̃iT̃ (x) =
T (x+ zei) + E1 − (T (x − zei) + E2))

2z
= D̃iT (x) +

E1 − E2

2z INRIA



Coupling the PMP and HJB methods 23so that
|D̃iT̃ (x) − D̃iT (x)| ≤

∣∣∣∣
E1 − E2

2z

∣∣∣∣ ≤ C2
hα

zand then
‖D̃T̃ (x) − D̃T (x)‖∞ ≤ C2

hα

z
.We �nally obtain, for x ∈ Ω′ and 0 < h ≤ h0,

‖D̃T̃ (x)−DT (x)‖∞ ≤ ‖D̃T̃ (x)−D̃T (x)‖∞+‖D̃T (x)−DT (x)‖∞ = O

(
hα

z

)
+O(z2)and the 
on
lusion follows. �Referen
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