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Initialization of the shooting method via the
Hamilton-Jacobi-Bellman approach

Résumé : The aim of this paper is to investigate from the numerical point of
view the possibility of coupling the Hamilton-Jacobi-Bellman (HJB) approach
and the Pontryagin’s Minimum Principle (PMP) to solve some control problems.
We show that an approximation of the value function computed by the HJB
method on rough grids can be used to obtain a good initial guess for the PMP
method. The advantage of our approach over other initialization techniques
(such as continuation or direct methods) is to provide an initial guess close to
the global minimum. Numerical tests involving multiple minima, discontinuous
control, singular arcs and state constraints are considered. The CPU time for
the proposed method is less than four minutes up to dimension four, without
code parallelization.

Mots-clés : optimal control problem, minimum time problem, Pontryagin’s
minimum principle



Coupling the PMP and HJB methods 3

1 Introduction

The Hamilton-Jacobi-Bellman (HJB) theory and the Pontryagin’s Minimum
Principle (PMP) are usually considered two separate worlds although they deal
with the same kind of problems. The theoretical connections between the two
approaches are well known [T, [7, 8, @], but coupled usage of the two techniques
is not common and not completely explored.

In this paper we will deal with the following controlled dynamics

{ i(t) = F((t),u(t), >0 M)

y(0) =z, r€R?

where the control variable u(-) € U = {u : Rt — U, u measurable} and
U CR™ (m >1). We will denote by y,(¢;u) the solution of the system ([
starting from the point = with control u. Let C C R? be a given target. For any
given control u we denote by t;(z,u) the first time the trajectory y,(¢;u) hits
C (we set ty(z,u) = +oo if the trajectory never hits the target). We also define
a cost functional J as

ty(x,u)
Heowi= [ (), ut)de. 2)
0
The final goal is to

find u* € U such that J(z,u*) = mi{{l J(x,u) (3)
ue
and then to compute the associated optimal trajectory y*(¢; u*). We also define

the value function
T(x) = J(z,u*), xcR%

Choosing ¢ = 1 in (@) we obtain the classical minimum time problem.

The HJB approach is based on the Dynamic Programming Principle [3]. It
consists in characterizing the value function associated to the control problem
by means of a first-order non-linear partial differential equation. Once an ap-
proximation of the value function is computed, we can easily reconstruct the
optimal control v* in feedback form and, by a direct integration, the optimal
trajectories for any starting point x. The method is greatly advantageous be-
cause it is able to reach the global minimum of the cost functional, even if the
problem is not convex. The HJB approach allows also to have a global overview
of the set of the optimal trajectories and of the reachable set (or capture basin)
i.e. the set of the points from which it is possible to reach the target in a given
time.

Beside all the advantages listed above, the HJB approach suffers the well
known "curse of dimensionality”, so in general it is restricted to problems in low
dimension (d < 3).

The PMP approach consists in finding trajectories that satisfy the neces-
sary conditions stated by Pontryagin’s Minimum Principle. This is done in
practice by searching a zero of a certain shooting function, typically with a
(quasi-)Newton method. This method is well known and is used in many ap-
plications, see |21}, 23, 2] and references therein. The main advantages of this
approach lie in its accuracy and its numerical complexity. It is worth to recall
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4 Cristiani €& Martinon

that the dimension of the nonlinear system for the shooting method is usually
2d, where d is the state dimension. This is in practice quite low for this kind
of problem, therefore fast convergence is expected in case of success, especially
if the initial guess is close to the right value. Unfortunately, finding a suitable
initial guess can be extremely difficult in practice. The algorithm may either
not converge at all, or converge to a local minimum of the cost functional.

In this paper we couple the two methods in such a way we can preserve the
respective advantages. The idea is to solve the problem via the HJB method on
a coarse grid to have in short time a first approximation of the value function
and the structure of the optimal trajectory. Then, we use this information to
initialize the PMP method and compute a precise approximation of the global
minimum. To our knowledge this is the first attempt to exploit the connection
between the HJB and PMP theories from the numerical point of view.

Compared to the use of continuation techniques or direct methods to obtain
an estimate of the initial costate, the main advantage of the approach presented
here is that the HJB method provides an initial guess close to the global min-
imum. The main limitation is the restriction with respect to the dimension of
the state.

We consider some known control problems with different specific difficulties:
several local minima, discontinuous control, presence of singular arcs, and state
constraints. In all these problems, we show that combining PMP method with
HJB approach leads to a very efficient algorithm.

2 Preliminaries

Consider optimal control problems in the general Bolza form, autonomous case,
with a fixed or free final time.

min J(z,u) = fotf(z’u) O(y(t),u(t)) dt Objective
9() = (1), u() Dynamics
(P)q u(t) €U forae. te(0,t(r,u)) Admissible Controls
y(0) = Initial Conditions
y(ts(z, )) ec Terminal Conditions

Here U is a compact set of R™ and the following classical assumptions are
satisfied:

- fiR¥xU — R?and ¢: R? x U — R? are continuous, and are of class C!
with respect to the first variable.

- Cis a closed subset of R? for which the property “a vector is normal to C
at a point of C” makes sense. For instance, C can be described by a finite
set of equalities {¢;(x) = 0}; or inequalities {c¢;(z) < 0};, with the /s
being of class C' and the classical constraint qualification assumptions.

2.1 Pontryagin’s Minimum Principle approach

We give here a brief overview of the so called indirect methods for optimal
control problems [24}, |6, 22]. We introduce the costate p, of same dimension d

INRIA



Coupling the PMP and HJB methods 5

as the state z, and define the Hamiltonian

H(y,p,u,po) = pol(y,u)+ < p, f(y,u) >

Under the assumptions on f and ¢ introduced above, the Pontryagin’s Min-
imum Principle states that if (y;,u",t}) is a solution of (P) then there exists
(po, p™) # 0 absolutely continuous such that

Y (t) = Hp(yz(t),p" (1), u*(t),p0), y2(0) =z, (4a)
pr(t) = —Ha(y (t),P*(t)’U*( ) (4b)
pr(ty) L Tc(yz( 7)) (4c)
u*(t) = rg‘mm H(yy(t),p"(t),v,po) for a.e. t € [0,t}], (4d)

where T¢(€) denotes the contingent cone of C at €. Moreover, if the final time
t% is not fixed and is an optimal time, then we have the additional condition:

H(y; (1), p"(t),u"(t),po) = 0, fort € (0,t}). (5)
Two common cases are C = {ys} with p*(t}) free, and C = R? with p(t}) = 0.

Now we assume that minimizing the Hamiltonian provides the control as a
function « of the state and costate. For a given value of p(0), we can integrate
(x,p) by using the control u = (z, p) on [0,ts]. We define the shooting function
S that maps the unknowns p(0) to the value of the final and transversality
conditions at (z(ty),p(tr)). Finding a zero of S gives a trajectory (z,u) that
satisfies the necessary conditions for the problem (P). This is typically done in
practice by applying a (quasi-)Newton method.

Remark 2.1 The multiplier py could be equal to 0. In that case, the PMP is
said anormal, its solution (y*,u*, p*) corresponds to a “singular” extremal which
does not depend on the cost function £. Several works have been devoted to the
existence (or nonexistence) of such extremal curves [4, [If)]. For numerics, in
general we assume that py # 0 which leads to solve the PMP system with po = 1.
In the sequel, we will always assume that we are in the normal case (pg = 1).

Singular arcs. A singular arc occurs when minimizing the Hamiltonian fails
to determine the optimal control u* on a whole time interval. The typical
context is when H is linear with respect to u, with an admissible set of controls
of the form U = [wjow, Uup). In this particular case, the function (x,u,p) —
H,(z,u,p) does not depend on the control variable. We define the switching
function ¢ (z,p) = H,(z,u,p) and have the following bang-bang control law:

if (x,p) >0 then u* = ujppw
if ¥(z,p) <0 then u* = uy,
if ¢(z,p) =0 then switching or singular control.

A singular arc then corresponds to a time interval where the switching function
is zero. The usual way to obtain the singular control is to differentiate 1) with re-
spect to ¢ until the control explicitly appears, which leads to solving an equation
of the form ¢(¥) (x, p) = 0, see [6]. This step can be quite difficult in practice,
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6 Cristiani €& Martinon

depending on the problem. Moreover, it is also required to make assumptions
about the control structure, more precisely to fix the number of singular arcs.
Each expected singular arc adds two shooting unknowns (teniry, tesit), with
the corresponding junction conditions ¥ (tentry) = z/}(tem,«y) = 0 or alternately
V(tentry) = Y(tezit) = 0. The problem studied in section presents such a

singular arc.

State constraints. We consider a state variable inequality constraint g(z(t)) < 0.
We denote by ¢ the smallest order such that ¢(? depends explicitly on the con-
trol u; ¢ is called the order of the constraint g. The Hamiltonian is defined with

an additional term for the constraint

H(z,p,u) = l(z,u)+ < p, f(z,u) > +pg' (z,u)

with the sign condition
w=0 ifg<0

{uzo if g=0.
When the constraint is inactive we are in the same situation as for an uncon-
strained problem. Over a constrained arc where g(x) = 0, we obtain the control
from the equation ¢(?(x,u) = 0, and u from the equation H, = 0. As in the
singular arc case, we need to make assumptions concerning the control struc-
ture, namely the number of constrained arcs. Each expected constrained arc
adds two shooting unknowns (fentry, tesir) with the Hamiltonian continuity as
corresponding conditions. We also have the so called tangency condition at the
entry point

N(z(tentry)) = (g(z(tentry)), - - - ag(qil)(x(tentry))) =0,

with the costate discontinuity

p(t:ntry) = p(te_ntry) - T‘-NI [tentry
where m € R? is another multiplier yielding to an additional shooting unknown.

Remark 2.2 The tangency condition can also be enforced at the exit time, in
this case the costate jump occurs at the exit time as well.

2.2 Hamilton-Jacobi-Bellman approach

Consider the value function 7 : R? — R, which maps every initial condition
r € R? to the minimal value of the problem (P). It is well known (see for
example [I] for a comprehensive introduction) that the value function 7 satisfies
a Dynamic Programming Principle and the Kruzkov transform of 7, defined by

v(z) =1—e 7@

is the unique solution of the following HJB equation, in viscosity sense [IJ:

uelU
v(z) =0 xzeC.

(6)

{ v(x) + sup{—f(x,u) - Dv(z) — l(z,u) + ({(z,u) — Dv(z))} =0 =z € RINC

INRIA



Coupling the PMP and HJB methods 7

Obtaining a numerical approximation of the function v is a difficult task mainly
because v is not always differentiable. Several numerical schemes have been
studied in the literature. In this paper we will use a first-order semi-Lagrangian
(SL) scheme, we refer to [I3| 4] for a survey on these kind of schemes. This
choice is motivated by the fact that SL scheme seems the best one in order to
approximate the gradient of the value function, this being our goal as we will
see in the next section. We fix a (numerical) bounded domain Q D C and we
introduce in it a regular grid G = {z;,4 = 1,..., Ng} where N is the total
number of nodes. We denote by v(x; h, k, Q) the fully discrete approximation of
v, h and k being two discretization parameters (the first one can be interpreted
as a time step to integrate along characteristics and the second one is the usual
space step). We impose state constraint boundary conditions on 9. The
discrete version of (@) is

{ O(zi) = HO)(z:) 2 € (Q\C)NG 1)
v(x;) =0 relCNG
where

H[D)(x;) = min{Py (05 i + hf (zi, ) + Rl(xq, u)(1 —0(2))} (8)

and Py (0;2; + hf(z;,u)) denotes the value of ¥ at the point x; + hf(z;,u)
obtained by linear interpolation using the known values of ¥ on G (note that
the point z; + hf(x;,u) is not in general sitting on the grid). The numerical
scheme consists in iterating

until convergence, starting from 7(®) (z;) = 0 on C and 1 elsewhere. To accelerate
the convergence we use the Fast Sweeping technique [Z7]. The function ¥ is
then extended to the whole space by linear interpolation. Once the function v
is computed, we get easily the corresponding approximation 7 of 7, and then
the optimal control law in feedback form, see |3l 4] for details.

It is useful to note that the equation (@) can also model a front (interface)
propagation problem. Following this interpretation, the boundary of the target
OC is the front at initial time ¢t = 0, and the level set {x : 7 (x) = t} represents
the front at any time ¢ > 0.

3 Coupling HJB and PMP

3.1 Main connection

It is known [7] that for a general control problem with free end-point, if the
value function is differentiable at some point z € R? then it is differentiable
along the optimal trajectory starting at x. Actually, the gradient of the value
function is equal to the costate of the Pontryagin’s principle.

In the context of minimum time problems (with target constraint), the link be-
tween the minimum time function and the Pontryagin’s principle has been also
investigated in several papers [9, §], proving the same connection.

RR n°® 7139



8 Cristiani €& Martinon

Once the value function 7 is computed by solving the HJB equation, we ap-
proximate D7 (x) (z being the starting point) by standard first-order finite
differences, and then we use it as initial guess for p(0).

In the case 7 ¢ C*(RY) it is proved in [§] that a connection between the two
approaches still exists. More precisely, under some additional assumptions, we
have

p*(t) € DT (y;(t) for t € 0,7 (x)],
where D7 (z) is the superdifferential of T at x defined by

DT (z) := {77 cR?: li?jsp Tly) = T|(?;C)—$|n =) < 0} . (10)

In the rest of this section we assume that DT7 (x) # (). It is plain that we can
not use finite difference approximation in order to compute p(0) at the points
where the value function 7 is not differentiable. Rather than that, we will try to
approximate the direction £* which is orthogonal to the level sets of 7, pointing
toward the direction of maximal decrease. This direction, in the case when 7
is differentiable, is given by:

& =—-DT(x). (11)
Here, we compute an approximation of £* as:

! L T +68) —T(x)
= 12
13 arggerg%g,l) 5 ) (12)

where § > 0 is a small positive parameter, and B(0,1) denotes the ball in R?
centered at 0 with radius 1.

Let us explain on a simple example why we choose the definition (). Con-
sider the case C = {(3,0)} U{(-3,0)}, £ =1, f = u and U = B(0,1) (eikonal
equation). On the line {z = 0} the function 7 is not differentiable (see Fig.
[MHeft). This line corresponds to a zone where two globally optimal trajecto-

G A N Pk O kN w & @

,, ml

Figure 1: two crossing fronts with and without superimposition. Arrows corre-
spond to the (two) vector(s) &*

ries are available. Following the front propagation interpretation (see end of

INRIA



Coupling the PMP and HJB methods 9

section Z2) here we have two fronts which hit each other at the line {z = 0}.
The viscosity solution of the HJB equation selects automatically the first arrival
time so we never see the two crossing fronts, but we could in principle follow
the propagations of the two fronts separately (see Fig. [Mright). Considering
the two fronts separately, by means of (), we can easily approximate the two
directions & and & of maximal decrease of the function 7 (and then the “two
gradients” —&; and —&; of 7) using only the value function 7.

In the present example, focusing on the point (0,0), we easily compute the
two directions of maximal decrease as (—1,0) and (1,0). It is easy to show that
these two vectors coincide with the two "extremal” vectors in D7 (x), namely
the vectors n verifying

Jimn sup T(y) —T(x)—n-(y—2)
y—a ly — |

Although this relationship is not true for every function 7" such that DT7 (z) #
(), it is easy to see that it is true whenever the curve of non-differentiability is
due to the collision of two or more fronts (as in Problem 1, Section ETJ).

In this paper, we propose to investigate numerically the relevance of using
the HJB approach to compute —&* and then using it as initial guess for the
initial costate p(0) in the shooting method.

—0. (13)

3.2 Convergence of DT

Many papers (see for example [2, 26] in the context of differential games) in-
vestigated the convergence of the approximate value function o(- ;h,k,Q) to
the exact solution v when the parameters h, k tend to zero and Q tends to Re.
These results were quite difficult to be obtained because the function v is not
in general differentiable. _

Let us denote by D = (Ds, ..., Dg) the discrete gradient computed by centered
finite differences with step z > 0

T(x+ ze;) —T(x — ze;)
2z ’

where {e;}i=1,.. a is the standard basis of RZ.

To our purposes we have to go further proving the convergence of ’Zt( sh k,Q) =

—In(1 — ¥(- ;h, k,Q)) and then the convergence of DT (-:h,k,<2) because the

latter will be used by the PMP method as initial guess.

Let us assume that k = C1h for some constant C7. Given a generic estimate of
the form

DT (z) = i=1,...,d

[9(-; 7, RY) = v(-)|| g ey < Ch®,  C,a >0 (14)
we have the following
Theorem 3.1 Assume that T € CY(Q) and there exists T4 > 0 such that
0 <7 (x) < Tmax for all x € Q.

Let us define .
E(z) := ||DT (z;h, Q) — DT (2)||0o-

Then there exists Q' C Q such that
IEO =) = O(h*/2) + O(?) for bz —0.
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10 Cristiani €& Martinon

For the SL scheme we use here, an estimate of the form (Id) in the particular
case £ = 1 (under assumptions weaker than those used in Theorem Bl can be
found in [26]. The proof of the theorem is postponed in the Appendix.

4 Numerical experiments

We have tested the feasibility and relevance of combining the HJB and PMP
methods on four optimal control problems. Each of these problems highlights a
particular difficulty from the control point of view.

Problem 1 (section El) is a simple minimum time target problem in di-
mension two presenting local and global minima. We will see in this example
that the shooting method is very sensitive with respect to the initial guess (as
usual). When initialized by using the HJB approach, shooting method recovers
the optimal solution.

Problem 2 (section EE2) is a controlled Van der Pol oscillator, also of dimen-
sion two, with control switchings.

Problem 3 (section E3) is the well-known Goddard problem with singular
arcs, in the one-dimensional case (total state dimension is three).

Problem 4 (section EE) is another simple minimum time target problem in
dimension four, with a first-order state constraint.

Details for HIB implementation. The algorithm is written in C++ and
it runs on a PC with an Intel Core 2 Duo processor at 2.00 GHz and 4GB
RAM. Note that the code is not parallelized. The indicated CPU time is the
time needed for the computation of the value function and saving the result on
file. The time needed to reconstruct the optimal trajectory is not considered (is
almost 0).

The numerical domain €2 is discretized by a regular grid with Ny x ... X Ny
nodes. The set of admissible controls U is discretized in N¢ equispaced discrete
controls uy,...,un,. The stop criterion for the fixed point iterations (@) is
||5(n+1) — 5(n)||Loc(Q) <e=1le—-5.

Details for PMP implementation. The shooting method is written in For-
tran 90 and runs on a PC with an Intel Core 2 Duo processor at 2.33 GHz and
2GB RAM. We used the SHOOT software which implements a shooting method
with the HYBRD [19] solver. For the four problems studied we set the ODE in-
tegration method to a basic 4th-order Runge-Kutta with 100 steps.

4.1 Minimum time target problem

The first example illustrates how a local solution can affect the shooting method.
We consider a simple minimum time problem where we want to reach a certain
position on the plane by controlling the angle of the speed. We choose the
velocity in order to create multiple minima of the cost functional.

Thttp://www.cmap.polytechnique.fr/ martinon/

INRIA



Coupling the PMP and HJB methods 11

min tf
J1(t) = c(y1(t), y2(t)) cos(u(t))
P 92(t) = c(y1(t), y2(t)) sin(u(t))
! u(t) € [0,2m) for a.e. t € (0,ty)
y(0) =z =(-2.5,0)
y(ty) = (3,0)
with ) ; )
if yo <
clyry2) = { (y2 —1)>+1 if 52 > 1.

Due to the expression of ¢, we have at least two minima. The simplest one
corresponds to a straight line trajectory (—) along the y; axis with yo = 0. The
other one has a curved trajectory (N) that takes advantage of the larger values
of Yo.

4.1.1 PMP and shooting method

We first try to solve the problem with the PMP and the shooting method.
Therefore we seek a zero of the shooting function defined by

ty yi(ty) —3
Sy p(0) | = | yalty)
p2(0) pa(ty) —1

Global and local solutions. Depending on the starting point, the shooting
method can converge to a local or global solution (Fig. B). The more common
local solution is the straight line trajectory from z to C := {(3,0)}, with a
constant control v = 0 and a final time Tj,cq; = 5.5. The global solution has an
arch shaped trajectory that benefits from the higher speed for increasing values
of yo, with a final time t? = Tgiobal = 4.868.

STATE COSTATE CONTROL STATE COSTATE CONTROL
1 8 0 75
o—— 7
° _f_ ! 0 / T es
=1 6 ] —
-5 -2 -5 -2 6
5 55
10 1 0.1 1
P b
5 ” 0 0 0
0 -1 -0.1 -1
6 1 7 1
o N
5 x 6 X
0.5 0.5
4 5
3 0 0 4 0 0

Figure 2: (P;) - Global solution (curved trajectory) and local solution (straight
trajectory) found by the shooting method.
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Sensitiveness with respect to the starting point. Even for this simple
problem, the shooting method is very sensitive to the starting point. Numerical
tests indicate that it converges in most cases to local solutions. We run the
shooting method with a batch of 441 values of p(0) € [~10,10]? on a 21 x 21
grid, with different starting guesses for the final time (Fig. B). We observe that
for the batch with the ¢y = 1 initialization, 11% of the shootings converge to
the global solution, 60% to the straight line local solution, and 24% to another
local solution with an even worse final time (t; = 6.06). For the batch with
the t; = 10 initialization, 9% of the shootings converge to the global solution,
and 50% and 29% to the two local solutions. Obviously, just taking a random
starting point is not a reliable way to find the global solution.

CONVERGENCE STUDY FOR P(0) O [710,10]2 ANDT=1 CONVERGENCE STUDY FOR P(0) O [710,10]2 ANDT =10
107 o+ 0 o oo o o + oo oo o oo 107_+ o + o o oo oo o+ oo
+ GLOBAL SOLUTION (T=4.868): 49 [11%]| © + o o + + GLOBAL SOLUTION (T=4.868): 38 [9%]]
8 © LOCAL SOLUTION (T=55):265[60%] | © o o o 8 o LOCAL SOLUTION (T=5.5): 222 [50%]
LOCAL SOLUTION (T=6.06): 127 [29%]) © © o © @
6 oo T O T T oo
5o o+ +
pit 4% + o + + + + o
N
2% 2 B
- + + ~ +o
8.\4 O¢) o o 0O o oo o oo Q’N O oo oo oo s ms s ooooo
o 4 o
2t o oo o 8o oo + 2% o oo o oo oo oo oo oo
+ 50008 oo a
-4 + + o0 oo oooo + + 4 + o0 o oooo
+ + oo+ +
—61 + + 000 o000 s + + + +
uuuuuuuuuuuuuuu
-8 + : + + + +
uuuuu Fook oo+ + . +
% -5 0 10 £ -5 Q 10
P.(0) P,0)

Figure 3: (P;) - Convergence to the global solution from a random initialization
is hazardous due to the presence of a local solution.

4.1.2 Solving the problem with the HJB approach

In Fig. B, we show the level sets of the minimum time function 7" associated to
the control problem (P;). These level sets are obtained by solving numerically
the HJB equation. As it can be easily seen in Fig. @l the minimum time function
is not differentiable everywhere. The curve of the discontinuity of the gradient
represents here the set of the initial points associated to two optimal trajectories.

4.1.3 Coupling the HIB and PMP approaches

We now use the data provided by the HJB approach to obtain a starting point
close to the global solution. The HJB solution provides an estimate of the final
time, and also an approximation of the costate p(0) by computing a direction
of maximal decrease of the minimum time function at y(0) = x. In Table[ll we
summarize the results obtained by solving the HJB equation on several grids,
and give the obtained minimal time to reach the target starting from the position
x = (—2.5,0). As we can see, even on a coarse grid (25 x 25 nodes), we obtain
a good approximation of p(0) in a very short time (the CPU times in Table
[ include the numerical resolution of the HJB equation and the computation
of p(0)). As we expected, the shooting method immediately converges to the
global solution when using the starting point obtained from the HJB method
(Table B).
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Figure 4: (P;) - Level sets of the minimum time function 7, the optimal tra-
jectory starting from (—2.5,0) and the two optimal trajectories starting from

(—1.835,0).

| nodes | N¢ | —£&* | t | CPU time (sec) |
25 x 25 16 | (-0.049, -1.000) | 4.895 0.08
50 x 50 16 | (-0.048,-1.000) | 4.895 0.37
200 x 200 | 32 | (-0.051, -1.000) | 4.878 20.25

Table 1: (P;) - HJB approach: the optimal minimal time starting from z =
(—2.5,0), and the approximation —¢&* of the initial costate associated to the

optimal trajectory

Initialization from HIJB | ¢} = 4.89 —&* = (-0.05,-1)

Solution by PMP #; = 4.868 | p(0) = (5552 x 10 2, —9.985 x 10 1)

Table 2: (Py) - Initialization from HJB and solution from PMP.

We can check that the convergence of the shooting method is much better in
a neighbourhood of the HJB initialization. Compared to the previous grid with
p(0) € [-10,10]?, we test initial points with p(0) € [-0.1,0] x [-2,0], which
corresponds to a 100% range around the HJB initialization —¢* = (—0.05, —1);
we also set £y = 4.89. This time the shooting method finds the global solution
for 76% of the points, and only 12% and 9% for the local solutions (Fig. H).

In Table Bl (see also Fig. H), we consider the case of a starting point very
close to the curve where the minimal time function is not differentiable: = =
(—1.835,0). Here the computation of p(0) by HIB gives the two directions
p(0) = (—0.05,—1.00) and p(0) = (—0.99,0.00). Using these two values to
initialize the shooting method, we obtain the two distinct solutions with the
“cap” and “straight” trajectories (TableHl). For this problem, the starting points
where the minimal time function is not differentiable correspond to the case

RR n°® 7139
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CONVERGENCE STUDY NEAR HJB INITIALIZATION
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-0.1 -0.08 -0.06 -0.04 -0.02 0
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Figure 5: (P;) - Convergence to the global solution is much easier near the HJB
initialization.

where the local (“straight”) solution becomes global and has the same minimal
time as the global (“cap”) solution. Notice that here the minimal time function
remains differentiable along each trajectory. We will see in section 2 a different
case of non differentiability for the value function.

| nodes | Ng | —& | 7 | CPU time (sec) ]
[ 300 x 300 [ 32 | (-0.05,-1.00) and (-0.99,0.00) | 4.84 | 39.98 |

Table 3: (P1) - HIB approach for an initial position x = (—1.835,0).

t p(0)
HIB 1.84 (—0.05, —1) and (—0.99,0)
PMP (N) | 48246 (—7.67 x 10~2,-9.97 x 10~ 1)
PMP (—) | 4.835 (—1,—6.2137 x 10~16)

Table 4: (P;) - Local solution becomes global for a starting point where the
minimal time function is not differentiable.

4.2 Van der Pol oscillator

The second test problem is a controlled Van der Pol oscillator. Here we want to
reach the steady state (y1,y2) = (0,0) in minimum time. It is well known that
the optimal trajectories, for this problem, are associated to bang-bang control
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variables.

u(t) € [-1,1]
y(0) =z = (1,-0.8)
y(ty) = (0,0)

4.2.1 PMP and shooting method

Here, the Hamiltonian is linear with respect to u, therefore we have a bang-bang
control with the switching function ¥ (x, p) = Hy,(x, p,u) = pa.

The shooting function is defined by

ty ya(ty)
Sy i | pr(0) | = | walty)
p2(0) pa(ty) —1

We test the shooting method with the same initial points as for problem (Py).
The convergence results are even worse in this case: for the ¢ty = 1 initialization,
only 9% of the shootings converge to the global solution, and 0.5% for the t; = 10
initialization.

4.2.2 Solving the problem with the HJB approach

Here we use the HJB approach to compute the minimal time function. In Fig.
Bl we show the numerical solution obtained by carrying out computations on a
200 x 200 grid and N¢ = 2.

Figure 6: (P,) - Level sets of function 7 and the optimal trajectory starting
from (1,—0.8)T.

4.2.3 Coupling the HIJIB and PMP approaches

The numerical solution of the HJB equation provides some useful data, namely
an approximation of the final time ¢; and an initial costate p(0). This infor-
mation is used here to start the shooting algorithm. Once again, the HJB
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initialization gives an immediate accurate convergence to the optimal solution,
see Table Bl and Fig. [ In this example, the control discontinuities hinder the

Initialization from HJB | 1} =4.2 —&*=(1.2,-4.2)
Solution from PMP t; =3.837 | p(0) = (1.249, —3.787)

Table 5: (P») - Initialization from HJB and solution from PMP.

convergence by testing different integration schemes for the state and costate
pair (z,p). Using a fixed step integrator (4th order Runge-Kutta) without any
precautions gives a very poor convergence with a norm of ~ 10~2 for the shoot-
ing function. Using either a variable step integrator (DOPRI, see [I7]) or a
switching detection method for the fixed step integrator (see [15]) we get much
better results (~ 107! for the shooting function norm).

TRAJECTORY CONTROL STATE COSTATE

o 05 1 0 05 1
0 0]
1 2|
-05
0.5
~ 0

2 15 -1 -05 o0 05 1 15 2 0 0.2 0.4 0.6 0.8 1 0 05 1 0 05 1

o e
RS N}
s o
@ o & ~
b o e N

Figure 7: (P,) - Solution with one switch for the Van der Pol oscillator (shooting
method).

We now test two starting points for which the minimal time function is not
differentiable. In the previous problem the non differentiability was caused by a
local solution becoming global (following the front propagation interpretation,
two fronts are hitting). Here the non differentiability has a different nature. Tt
can not be seen as the curve of collision between fronts, and corresponds to the
points where the control switches between —1 and +1. Taking such a starting
point we have a solution with a constant control v = +1 and no switches. We
test the two starting points = (1.5, —0.67) and « = (1, —0.57) that are close
to the non differentiable curve (see Fig. B). Computation of £* is performed as
before in the case 7 is not differentiable. We observe that the shooting method
finds solutions with a switch immediately after the initial time or just before
the final time. Here the HJB initialization is not as close to the initial costate
p(0), but is sufficient to obtain convergence. Also, the minimum times given by
HJB are still close to the exact ones (Table Hl).

4.3 Goddard problem

The third example is the well-known Goddard problem (see for instance [I6]
T8, 20, 28, 25, []), to illustrate the case of singular arcs. This problem models
the ascent of a rocket through the atmosphere, and we restrict here ourselves
to vertical (monodimensional) trajectories. The state variables are the altitude,
speed and mass of the rocket during the flight, for a total dimension of 3. The
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x method p(0) 173
(15,-0.67) | HIB (1.62,—0.87) 2.96
PMP | (1.487,2.309 x 10~3) | 2.9594
(1,-057) | HJB (1.96, —0.10) 2.2
PMP (1.715,1.111 x 1072) | 2.1351

Table 6: (P2) - Solutions with no switches for starting point where the value
function is not differentiable.

rocket is subject to gravity, thrust and drag forces. The final time is free, and
the objective is to reach a certain altitude with a minimal fuel consumption.

min J(u) = fotf bT aatt

=

V= —%2 + %(Tmamu — D(r,v))
(PB) m= _bTmazu

u(t) € [0, 1]

r(0) =1, v(0) = 0,m(0) =1,
r(t) > 1.01

with the parameters used for instance in [20]: b = 7, Tyhee = 3.5 and drag
D(r,v) = 31002e—500(r=1),

4.3.1 PMP and shooting method

As for (P»), the Hamiltonian is linear with respect to u, and we have a bang-
bang control with possible switchings or singular arcs. The switching function
is Y(x,p) = Hy(z,p,u) = Trmae((1 = pm)b+22), and the singular control can be
obtained by formally solving ¢) = 0. The main difficulty, however, is to deter-
mine the structure of the optimal control, namely the number and approximate
location of singular arcs. The HJB approach is able to provide such informa-
tion, in addition to the initial costate p(0). Assuming for instance one interior
singular arc, the shooting function is defined by

tf,01(0),p2(0), p3(0) r(tg) — 1.01, pa(ty), ps(ts), palty)
Sg : tentry = w(x(tentry ) ’ p(tentry))
tezit w(x(tentry ) p(tentry))

4.3.2 Solving the problem with the HJB approach

Goddard problem is also hard to solve with the HJB approach, specially because
the computation of the value function needs a huge number of iterations to
converge and the solution is quite sensible to the choice of the numerical box
in which the value function is computed. In Fig. B

we show the optimal trajectory and the optimal control computed by HJB
on a rough grid. As we can see, the HJB approach does not give a good approx-
imation of the optimal control (vertical lines correspond to strong oscillations
of the solution). The HJB formulation can suggest not only the values for p(0)
and tf, but also the location of the singular arc.
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Figure 8: (P;) - Goddard problem, solution by HJB approach (first line: altitude
and velocity. Second line: mass and control).

4.3.3 Coupling the HIB and PMP approaches

We now try to initialize the shooting method directly from the results of the
HJB approach. As for problems (P;) and (P2), the HIB solution provides an
estimate of the final time ¢} and initial costate p(0). Moreover, examining the
state variables on the HJB solution also gives a good idea of the structure of
the control: the change of slope on the speed clearly visible in Fig. B indicates
an interior singular arc at (fentry, tezit) ~ (0.02,0.06). Once again we obtain a
quick convergence to the correct solution with the expected singular arc (Table

[ and Fig. @)).

t? (tentryytexit) —£* and p(O)
Initialization from HJB 0.17 (0.02,0.06) (=7.79,—0.31,0.04)
Solution from PMP 0.1741 | (0.02351,0.06685) | (—7.275,—0.2773,0.04382)

Table 7: (Ps) - Initialization from HJB and solution from PMP.

4.4 Minimum time target problem with a state constraint

This fourth example aims to illustrate the case of a state constraint, as well as
a four-dimensional problem for the HJB approach. We chose a simple problem
where we want to move a point on the plane, from a steady initial position to a
target position, with a null initial and final speed. The control is the direction
of acceleration, and the objective is to minimize the final time. We add a state
constraint which limits the velocity of the point along the z-axis.
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Figure 9: (P3) - Goddard problem, solution by PMP method.

min J(z,u) =5

Y1 =ys3
Y2 = Y4
U3 = cos(u)
(P4) y4 = sin(u)
u(t) € [0, 27)
y(0) =2 =(-3,-4,0,0)
y(tf) = (3a 4,0, 0)

y3(t) <1 te(0,ty)

Let us write the state constraints as g(y(t)) < 0, with g defined by ¢(y) =
y3 — 1. The control appears explicitly in the first time derivative of g, so the
constraint is of order 1, and we have:

9(y(t)) = cos(u(t)),  gy(y) = (0,0,1,0).

When the constraint is not active, minimizing the Hamiltonian gives the optimal
control u* via
(cos(u*), sin(u*)) = 77@2@4)2_
VP3tDpi
Over a constrained arc where g(z) = 0, the equation ¢(z,u) = 0 and minimizing
the Hamiltonian H leads to

*

. ™
u” = —sign(pa)5-

Then the condition H,, = 0 gives the value for the constraint multiplier ;1 = —ps.
At the entry point we have a jump condition for the costate:

p(t:ntry) = p(te_ntry) — Tentry Yu)

with 7entry € R an additional shooting unknown. Compared to the uncon-
strained problem, we have three more unknowns tentry, tezit and Tentry. The cor-
responding equations are the Hamiltonian continuity at tepsry and tezs (which

RR n°® 7139



20 Cristiani €& Martinon

boils down to ps = 0), and the tangential entry condition g(z(tentry)) = 0. The
shooting function is defined by

ty psty) — 1
Sy : P1...4(0) — y1.a(ty) — (=3,-4,0,0)
tentry; texit; ﬂ_entry D3 (tentry )7 P4 (tentry)7 g(y(tentry))
5 5
O/ 0
5 -5
0 2 4 6 0 2 4 6
X y
4 4
2/ ~ ZM
0 0
-2 -2
0 2 4 6 0 2 4 6
Vx Vy

Figure 10: (P4) - Solution with a constrained arc by the HJB approach.

In fig. we show the numerical solution obtained by using the HJB ap-
proach. This approach provides also approximations of the optimal final time
and the initial costate. Examining the HJB solution also gives an estimate of the
bounds for the constrained arc where y3 = 1. The only shooting unknown for
which we were not able to obtain relevant information is the multiplier m¢psyy for
the costate jump at tentry. Therefore we used mentry = 0.1 as a starting guess,
which turned out to be sufficient for the shooting method to converge prop-
erly (Table B). Fig. M shows the corresponding solution, much cleaner than
the HJB solution but with the same structure. We checked that the condition
> 0 was satisfied over the boundary arc as ps is negative, and p3 = 0 at both
entry and exit of the arc as requested by the Hamiltonian continuity conditions.
The actual value of the multiplier for the jump on ps3 is Tepsry = 4.1294.

t*f (tentry, tewit) —£* and p(0)
Initialization from HJB 7.5 (1.35,5.6) (—0.51, —0.24, —0.89, —0.61)
Solution from PMP 7.0356 (1.1370, 5.8986) (—0.8672, —0.0474, —0.9860, —0.1667)

Table 8: (Py) - Initialization from HJB and solution from PMP.

CPU times. In Table @ we finally summarize the CPU times needed for
computations.
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Figure 11: (Py4) - Solution with a constrained arc by PMP approach.

Problem 1 Problem 2 Problem 3 Problem 4
HJB approach with rough discretization 8 x 1072 2.98 211 182
PMP approach with HIB initialization 3x 1073 7x 1073 3x 1072 2 x 1072
Shooting function norm for PMP 2.82x 1076 | 814 x 107 | 1.12x 1077 | 6.68 x 10711

Table 9: Summary of CPU times for numerical experiments (seconds) and shoot-
ing function norm

5 Conclusions

The known relation between the gradient of the value function in the HJB
approach and the costate in the PMP approach makes it possible to use the
HJB results to initialize a shooting method. With this combined method, one
can hope to benefit from the optimality of HJB and the high precision of PMP.
The main limitation is on the state dimension imposed by HJB.

We have tested this approach on four control problems presenting some
specific difficulties: local and global solutions (Problem 1), discontinuous bang-
bang control (Problem 2), singular arcs (Problem 3), state constraint (Problem
4). The numerical tests also included two cases where the value function was
not differentiable.

For these four problems, the HIB approach provides an approximate solution
with some additional information, such as an estimate of the initial costate p(0),
optimal final time ¢¢, structure of the optimal solution with respect to singular
or constrained subarcs. In each case this information allowed us to successfully
initialize the shooting method. The fact that the optimal control reconstructed
by HJB was sometimes far from the exact control did not seem to be problematic
for the shooting method initialization. The total computational time for the
combined HJB-PMP approach did not exceed four minutes, up to dimension
four.
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Appendix
Proof of Theorem [l Given the numerical domain 2 we define the set Q' as

Q={zeR? : ¥(2;h,Q) < mianﬂﬂ(x';h,ﬂ)}.
S

The set €2 is the box in which the approximate solution is actually computed
and € represents the subset of € in which the solution is not affected by the
fictitious boundary conditions we need to impose at 02 to make computation.
From the front propagation point of view, 9§’ represents the front at the time
it touches 0N for the very first time.

Let us define vpq5 := (1 — e~ 7mae) and fix 2 € . We have

T(.’L‘) < Tmaz < 400 and ’U(CE) < Umaz < 1.

By (@) we have
v(z; h) < v(x) + Ch® < Umax + Ch®.

Since vmaee < 1 there exists hg > 0 such that
Umaz + Ch® <1 forall0 < h <hg

then we can define
Umaz = Umaz + Chy < 1

and we have
v(2) < Vmax < Omaz  and  0(z;h) < Opae forallz € Q' 0 < h < hy.

For any fixed x € 0, it exists & € [min{v(x),v(x; h)}, max{v(x),v(x; h)}] such
that

~ _ 1 _
|7 (z) — T (x)] = ‘hl (1-v(z) —In(1- v(x;h))‘ = ‘ ¢ [v(x) — 0(x; h)l.
Since &, < Umaz, We have
~ Ch® ,
|7 (x) — T (x)] < T forall z € Q" and 0 < h < hg
— Umax

and then it exists a positive constant C5 which depends by the problem’s data
and on (Q such that

|7 — Tl poo ) < Coh®  for all 0 < h < ho. (15)

We are now ready to recover an estimate on the gradient of the approximate
solution 7. By (&) we know that, for any i = 1,...,d

T(xz+ze;) =T (x+ ze;) + Fy with |Ey| < Cah”

and

T(x—ze;) =T (xz — ze;) + By with |Ea| < Cah”.
So we have
~ ~ T((E + Z@i) + E1 — (T(ZE — zei) + EQ)) ~ E1 — E2

DT (x) = =D.T
¢ (x) 2z ! ($)+ 2z
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so that

D7) - Do) < | P22 <
z

and then

(03

~~ ~ h
DT () ~ DT ()l < G
We finally obtain, for z € Q" and 0 < h < hy,

ha

|5%u>DTummsn5%@>ET@MWH@T@>DT@mmo(;)+ow%

and the conclusion follows. O
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