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Impédances Généralisées pour des revétements
diélectriques d’épaisseurs variables

Résumé : Nous dérivons des conditions d’impédances généralisées (GIBC) qui
modélisent la présence d’un revétement diélectrique d’épaisseur variable. Nous
traitons le cas des ondes électromagnétiques 2-D aussi bien pour une polarisa-
tion TM (transverse magnétique) que TE (transverse électrique). Les expres-
sions des GIBC sont explicitées jusqu’a l'ordre 3 (par rapport a l’épaisseur du
revétement). L’ordre de convergence est validé numériquement & travers di-
verses expérimentations. Une attention particuliere est donnée au cas ou la
géométrie intérieure comporte des singularités de type coins.

Mots-clés : Problemes de diffraction, Electromagnétisme, Modeles asymp-
totiques, Conditions d'Impédances Généralisées, GIBC, revétements de faible
épaisseur
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1 Introduction

We are interested in time harmonic electromagnetic scattering problems where
the scattering object is made of a perfect conductor coated with a dielectric
layer whose width § is small compared to the incident wavelength. It is well
known that a possible approach to overcome the numerical difficulties caused by
the small thickness of the coating is the use of so-called Generalized Impedance
Boundary Conditions (GiBc) [B, 2, M. These conditions lead to approximate
models that are close to the original one up to an O(§**1) error, where k de-
notes the order of the GiBC. They are numerically attractive since associated
scattering problems are formulated only on the domain exterior to the coating,
and therefore do not require a meshing of the thin layer.

In order to widen applicative perspectives of GIBCs we shall address, in the
present work, configurations where the coating can have a variable width (lo-
calized coatings, corrugated surfaces, ...). These cases are more technical than
the case of coatings with constant width (that can be found in the classical
literature on the subject) and lead to non intuitive expressions of the GIBCs.
We shall restrict ourselves in these first investigations to the 2-D problem but
consider both possible polarizations of the incident electromagnetic wave: TM
corresponding to a Dirichlet boundary condition on the perfect scatterer and
TE corresponding to a Neumann boundary condition. In order to derive these
expressions we adopted a formalism similar to [B, H] based on so-called scaled
asymptotic expansions. Semi-analytical expressions of the expansion are ob-
tained for each polarization till the third order. Let us however emphasize that
while a notable difference can be observed in the derivation of the GIBC expres-
sions, the theoretical justification of the obtained models (i.e. derivation of error
estimates) would follow the same lines as in the constant case and for sufficiently
regular geometries (see for instance [I]). We therefore shall only concentrate on
the numerical validation of obtained models. With that perspective, number
of experiments are conducted to check the formally predicted convergence rate
for the derived models. A particular attention is given to the case where the
interior boundary of the coating is not regular (the outer boundary is however
assumed to be regular). We explain how the expressions of the GIBC can be
adapted to these cases and numerically test that the adaptation preserve the
formally predicted rate of convergence for this case.

The document is organized as follows. The next section is devoted to a
presentation of the mathematical model associated with the ”exact” scattering
problem and introduces the concept of GIBC together with some useful tools
of differential geometry. The third section is dedicated to the derivation of
GIBC expressions using the method of scaled asymptotic expansions. The last
sections contain validating numerical results and discussions of the cases where
the geometry can have some singularities of corners type.

2 Formulation of The Problem

Consider the scatterer illustrated in Figure [l In this configuration a homoge-
neous, lossy, non-magnetic, dielectric material denoted by Qi is coated on a
perfectly electric conductor (PEC) or perfect magnetic conductor (PMC) de-
noted by Q°. Background medium is symbolized by Q_. T' symbolizes the outer
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Figure 1: Geometry of thin coating with variable width

boundary of Qi while I'% symbolizes boundary of Q%. Now we consider the
scattering problem related to the coated object. In this case the total field in
the whole space satisfies reduced wave equation

Au’ 4+ k*u® =0 in Q_ (1)
and

Al + E*u’ =0 in Q5 (2)
where k is the wave number defined by

b — { ko = w/eotio in Q_ 3)

k= \/uﬂsluo +iwoipg  in Qﬁ_

where €9 and e; are the dielectric permittivity of background medium and the
coating, o1 is conductivity of the coating, uo is the magnetic constant of the
background medium. u’ is defined as

uw =u' +ud inQ_ (4)

Here u’ is the incident wave while u? is the scattered field. u$ also satisfies the
Sommerfeld Radiation Condition (RC). Also,

w’ =uf onT (5)
and
ou®  ou
on = on T (6)

INRIA
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For the inner boundary , we will consider two cases.
1. Perfectly Electric Conductor
2. Perfect Magnetic Conductor

or equivalently,

1. Dirichlet Boundary Condition

5 _ 5
u+f0 onI'

2. Neumann Boundary Condition

)
ou’,

B =0 onI?

(8)

In the following generalized impedance boundary conditions (GIBC’s) will be
derived for both cases: We seek a boundary operator D° for Dirichlet and N?

for Neumann such that (for regular coefficients and surfaces)

D° N° :C>®(T) — C>=(I)
and we consider %’ solution of
AW + k3’ =0 in Q-
where
~§

U :uiJrﬂg in Q_,

19 satisfies the Sommerfeld Radiation Condition and
~ 0w’
u° + DY —0 onl
on

in the Dirichlet case, or

ou’ -
ai—i-N‘su‘S =0 onl
n

in the Neumann case, then a formal error estimate of the form

ot~ <eamst

(11)

(12)

(13)

holds for ¢ sufficiently small (see for instance [2]). If [I3)) applies then the GIBC
is said to be of order m. We shall denote by D®™ and N%™ the impedance

operator associated with the order m.

RR n° 7145
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Parametric Coordinates

Consider a C? curve I', boundary of a domain Q (assumed to be simply con-
nected for simplicity). We assume that I' is parametrized (locally) as

xp(t):(y(t) );teIcR (14)

and that this parametrization defines a counter-clockwise orientation.
Let 59 = inf m where ¢(t) is the curvature and Qg = {z such that d(z, T') <

S0}, then one can associate to every z € €y a unique couple (zr,v) € T x
[—s0, S0] such that

x = xp(t) + vii(t) (15)

for some ¢ € I where 7i(t) is the inward unitary normal (see Appendix). ar is the
orthogonal projection of x on I". (zr, ) denotes then the parametric coordinates
associated with . Since there is a bijection between the curvilinear abscissa s(t)
and zp(t), x is also uniquely determined by the couple (s,v) € R4 x [—s0, So]
that we also shall refer to as (curvilinear or) parametric coordinates.

Expression of Differential Operators in Curvilinear Coor-
dinates

Let u be a function defined on Qg and @ : Ry x [—sg, so] by
u(s,v) = u(x) (16)

where x = zp(t) + vi(t) and ds(t) = |2 (¢)|. Then, the gradient and laplacian
of function u are given by

| ou 7 ou
_ ou ou 17
VU= T5oa os 7] o (7

where 7 is the tangential vector defined by 7 = %xr and

! 4 ! 0 ! 2(1+I/c)§yﬂ (18)

Au — Z z
" (14 ve) 9s (14 ve) 85u+ (1+wvce)dv

Thin Coating with Variable Width

We assume that © contains ©° whose boundary I'? is defined as
1% = {af(t) = ar(t) + 6(t)ii(t),t € I} (19)

where 6(t) is a positive function such that 0 < §(t) < so.

Note that, in fact we shall assume that 0 < §(t) < J. and the study the
behavior of the solutions to a diffraction problem as 6. — 0 (we shall also
assume that §(t) < 0,) Tangential and normal vectors on I'’ can be expressed
in the form

P =ad =74 0" + 8¢
=(1+d6c)T+4d'n (20)

INRIA
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1 7
L5 o - ,
10 = — (I+d0) |7 75— 0 T) (21)
7o < 17
where
17 = /(1 + 60 7] + 1o (22)

Let us assume that §(t) = dof(¢t) with dg < 1. f(t) is a real single-valued
function that depends on the width of the coating.

3 Asymptotic Expansions and Derivation of the
GIBC’s

d(t) will be represented as

d(s) = dof(s) (23)
If we scale as £ = % in Q‘i and seek total field in the form
o0 ) ) v ~ )
ui(z) = 258 u? (s, %) = ui(s,&) in Qi (24)
§=0
and
u® () = Zég W (z) =00 (z) inQ_, (25)
j=0

then, the boundary value problem in Chapter 2 can be reformulated using these
new notation. Respectively, Hi and u’ will denote ° in Q‘i and Q_. ?
[0,L] x [0, f(s)] where L is the length of I'. From (X)), @) and EH), the
boundary value problem in ({)-[) can be rewritten as

1 ) 1 ol 1 1 ) s,
(15 0020) 05 (1 00€c) @5 | 2 (1 dogc) 9 L T 080 ¢ +Rt3 =01(26)
? (zr(s)) = @ (5,0) (27)
ou’ (zr(s)) 1 0u5 (s,0)

on T (28)
(s, f(s)) =0 for Dirichlet BC (29)

~5
s (s, /(s)) =0 for Neumann BC (30)

on

In the following from (28))-(B0), impedance operators will be derived for Dirichlet
and Neumann case, respectively.

RR n° 7145
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3.1 Derivation of the GIBC for the Dirichlet case

Substituting Z4) into equation @H) and boundary conditions (Z8) and 29, one
can obtain the following system of boundary value problems (BVP’s)

+2 0 +1 2 9 a 8 8
e Fae“?}7+h o gt
|:£3 3 2

9 9
+&c ——5c—+3§k ]u+ + 3%k,

2

+2¢c? +k:}

o€ oez"

2 +§2 3 9 -2
€2 9¢

+E KA =0 (31)

0 1 0
S (5.0 = 5o (5,0) = 509 (32)
ul, (s, f(5)) =0 (33)
where (Z0) was multiplied by (1 + do&c) and (1 + dpéc)?, respectively. In the
following the system of BVP’s [B)-[B3) will be solved for v, for j =0, 1, 2, 3.
Order 0:
For j =0, one can easily solve the BVP
0*ul.
0¢?

=0

ul (s, f(s)) =0

0
oul

23

(570) =

and can find «9, namely,

ul(s,€) =0 (34)

Order 1:
When the BVP for j =1

92l 2
Ut _ <3€ca_ + cé) ug

0¢? 0¢? o0&
uy (s,0) =0
aui
8—5(8’ 0) = ¢o
is solved, one can easily obtain
uy(s,€) = (€~ f)do (35)
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Order 2:
When the BVP for j = 2
0*ui 0 9\ 1 2 2 0 2 0 0? 2,0
862 = <3§Ca§2 c—£>u+<3§ca—€2+2§c 6—€+@+kl>u+
u? (5,0) =0
ou’
a—g(sao) = @1

is solved, one can easily obtain
1
Ui(s,S)Z(E—f)191—§(§2—f2) cdo (36)

Order 3:
When the BVP for j = 3

Put 2 9 L, 07 o 9
g =~ (350ggs g )t - (36° g o g v g+l

(£3c3 o +€263£ + 506—2 - & 2 + 3€Ck2)

o¢? 23
u? (s,0) =0
8u+
o€ (s,0) =

is solved, one can easily obtain

Ui(s,@:(&*f)ﬁzf%(f —f)ﬂwi £) g
( + k2190>
1
+5(E-7) <@ (f90) + k%ﬁ%) (37)

GIBC’s For Dirichlet:

Dirichlet Boundary Condition ([l can be denoted as

ouF (xr(s))
on

where k is order of impedance operator. Substituting @) and @3 into (B3,
one can obtain

il S oul (r(s))
Z(s (zr(s)) = —D%* (25 T) (39)

* (zp(s)) = —D (38)

RR n° 7145
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Similarly, substituting [24) and B2) into @J), one can obtain

k k
> 60l (5,00 = =D [ > "6y (40)
j=0 j=0

Respectively, for k = 0, 1, 2, 3 substituting (B4)-@17) into @), GIBC’s for the
Dirichlet case can be obtained as

D0 =0 (41)
D = 4() (42)
D%? = §(s) <1 - %5(5)0(5)) (43)
D5 = 5(6) (1= 33(50els) + 307609 ) - 55 (s + 47)

3500 (5 +42) 39 (49

Derivation of the GIBC for the Neumann case

Analogously, GIBC’s for the Neumann case will be derived. Reduced wave equa-
tion (BIl) has already been obtained by depending index j. From gradient of
function u given in ([[d), Neumann Boundary Condition can be expressed as

o (s, f(s)) 7 100 (s, f(s) \ .
(+TW +(1+6of0)g+Tn> =0 (45)

Substituting 7° given in (ZI]) into (@) and rearranging the expression, one can
obtain

us, (s, f(s)) & 10wl (s, f(s))
= 0o 5 (46)
9¢ 171 (1 + d¢) s
Expanding Maclaurin series for 1 / (1+6c)% [EDl) can be rewritten as
0ul (s, f(s)) _ . ¢ 2 2y 0 (s, f(5)) 5

Note that,
fof
17l 9s

INRIA
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and from now on

of

%—f
and

a6,

a—é

are used as new notation.
Substituting series given in (24 and (ZH) into @1) and @) and considering
1), one can obtain the following system of BVP’s:

0 yo 02 0] i 2.2 9 20, O o
a—§2u+ + |:3€C8—§2+C—§:| + |:3€ 8524—25 _§+—+k :|
2
|:§3 38€2+§2 3%+§ 8_75 24»3&]{3 :|U+ +3§2k%C U+2

+E3 k230 =0 (48)

j—1 j—2
cau+ as(sﬂf) +3f2626u+ as(saf)> (49)

u]Jr (S’ 0) =Y, (50)

System of BVP’s [@8)-([E) should be solved to obtain total fields —5 (j =0,

1, 2, 3, 4). Thus, one can derive GIBC’s for the Neumann case. In the following
system of BVP’s [ER)-([E) and their solutions will be expressed for j = 0, 1, 2,
3, 4, respectively.

Order 0:

If the BVP for j =0

2,0
0%y

uy (s,0) = ¥q
is solved, one can obtain
u+ (Sa 6) = \I]O
Thus, derivative of u9 is
Oud (s, )
=0 51
5 (51)

RR n° 7145
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Order 1:
If the BVP for j =1

9201 2
Uy _ (3,506_ + Cﬁ) “gr

0¢? o6z ¢
au1+
a—g(sa f(s))=0
uy (s,0) =y
is solved, one can obtain
u}r(s, 6) =T
Thus, derivative of u}r is
Ol (s,€)
=0 52
5 52)

Order 2:
If the BVP for j = 2

O*ud 0? 0 9 9 0 02 9
J— - _ 2 - -
¢? (3508524-685) (35 3§2+ ée 3§+82+k)
81& f8u+
0& Js
uy (s,0) = Wy

is solved, one can obtain
0 0?
w3 (5,€) = Vo o+ €f 5o ( & —f€) ( +k2)

Thus, derivative of w3 is

2w 0 (i) v (53)

Order 3:
If the BVP for j = 3

oPut 2 9 L, 0 o 2
9 (50852 as) (3“a_52+25a_5+ﬁ+k)

(5%3 8852 + &% 3% i 82 —&d 3 + 3£ck2)

INRIA
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B son =1 (G 200

o¢
3 _
uy (s,0) = W3
is solved, one can obtain
31& .0 , 0 1, ., 0? , 0 2

2
(-1 <c<§f§+ﬂf2) o + <§2 +k2) > (54)
Order 4:

If the BVP for j = 4

82quF 2

_ 0 9 22 0° 9 5
i <3g 6§2+c—€) (35 g 2% —£+—+k)

92 ) 62 )
(53(:3 + 23— +§ — gc 5 T 3§ck2) ul — 382PkTu,

0&2 0&
out. , (Out oul. 5 50Uy
(5160 = 1 <g 2ycly + e E )
us (s,0) = Uy
is solved, one can obtain
oul a ,0 0 0 0
5 =1 [f—f’— b pa- sl arspe ] W 2ffes
+f 2Vt o 3 (5 - 1% K—;cAO +5c¢%A + 5AA — 30%5) \1;0]
+% (S [(40/1 —A)) Ty + (4(:2/11 — (2¢° + A) (f’a2 + fA)) ]
S
f)
Ao (5 sa) vk (27 4 e - chAl) ‘I’o]
where
2
A= 55 + ki
82
Ap *3cm+ca—+ck2
faz+ [kt
s
82
AQ *6682 768—4’36162

RR n° 7145
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GIBC’s for Neumann:

Neumann Boundary Condition ([)) can be denoted as

0u”" (wr(s))

g = N (2 (e () (56)

where k is order of impedance operator. Substituting @4) and @3) into (E8),
one can obtain

k

k J xr(s j o J
S ) e (§7 50 (o (o) o7
3=0

Jj=0

Similarly, substituting 1), (82) and (&) into (&), one can obtain

k k
D 6y =N 60w, (58)
j=0 j=0

Considering B2), from @Il)-(BH), expressions of ¢; (k =0, 1, 2, 3, 4) can be
obtained. Substituting ¢;’s (k =0, 1, 2, 3, 4) into (B8), GIBC’s for the Neumann
case can be obtained as

NJ,O =0 (59)

No = (%5(5)% + 6(s>kf) (60)

N2 — 725(5)2 + 1252(5)0(5)2 — k2 <5(s) + 152(5)0(8)) (61)
0s ds 20s s ! 2

N3 = —[25(s) (1 - %5(5)6(8) + %52(5)@ + %5(5)5”(5) + (5’(5))2>

L0 0 10 O 105 10 0 2,505 0

9:008) g5 12550 els)g; — 350 () (8)g; — 3kig 0 (),
102, 9 10, ., .0
*5@5 @@*5%5 (5)6 (S)% (62)

4 Numerical Method - Finite Elements Method

In previous sections, GIBC’s for the Dirichlet case and Neumann have been
derived. In this section, the boundary value problems ([)-(®) are solved nu-
merically for exact and approximate solutions. The Finite Elements Method
(FEM) is selected to solve the problems numerically. In the following FEM is
constructed for the cases of exact and approximate solutions, respectively.

INRIA
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4.1 The Exact Solution

Consider Figure [l and the boundary value problems ([l)-(). Firstly, it is as-
sumed that the regions 2_ and Qi_ are meshed as triangulation. In order to
bound the domain of calculations, the boundary condition

ou’
on

— ikous

=0 (63)
I'r
is selected as an approximation of the Sommerfeld Radiation Condition, where
7 is a outward unit normal vector and I' is a circle with radius R, chosen to be
sufficiently large. The variational formulation is obtained by multiplying ()- (&)
by 7 and integrating the results over 2_ and Qi, namely,

/ Au‘izwr/ Au+z7+k:§/ uiﬂ+k§/ ulv =0 (64)
¢ Qi < Qi

where 7 is a test function. Then considering Neumann or Dirichlet Boundary
Condition, by Green’s formula, the problem is converted into finding u® and
ui such that

/vu‘iw+/ Vuin?—kg/ u‘iﬁfkf/ 7
< Qi Q_ Qi

- / ikou’ ods — / <a“ zk0u> ds =0 (65)
Tr Tr on

Note that, [G3) already contains Neumann Boundary Condition while not con-
tains Dirichlet Boundary Condition. Thus, ud (s, f(s)) = 0 must be taken into
consideration for the Dirichlet case. Also, 7(s, f(s)) = 0 for the Dirichlet case.

We seek unknown functions u? ui and test function 7 in serial form as

M
> win(x,y) (66)
k=0

where wy’s are unknown real coefficient, ¢x’s are known hat functions which
are continuous piecewise affine and are equal to 1 on one vertex and 0 on all
others. M is the number of vertices. Substituting series (@) into the variational
formula ([B3), a system of linear equation is obtained. If one solves the system
of linear equation, the total field is obtained in whole space.

4.2 The Approximate Solution For the Dirichlet case

Executing FEM, the approximate solution is solved for the Dirichlet case as in
the previous section. This time, only the region €2_ is meshed. Thus, executing
the same procedure as in the previous section, one can obtain

b
/ vu‘iW—kg/ u‘if/f/—uﬂds—/ ikou® ds
Q_ Q_ r on T'r

- / @2 - zk0u> vds =0 (67)
I'r

In the following the variational formulations are derived for order 1,2 and 3,
respectively.

RR n° 7145
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The variational formulation For D%!:
If one substitute [@2) into () and rearrange the result,

oul _ 1 s
on  6(s) ~

is obtained. Substituting (X)) into (@), the variational formulation

/ Vu‘iVﬁ—kg/ u‘iz7+/iu’iz7dsf/ ikou® ds
Q_ Q_ r 0(s) I'r
—/ (&f ‘ ) vds =0 (69)
Tr (971

The variational formulation For D%2:

is obtained.

If one substitute ([@3) into ([l and rearrange the result,

au{i = — 1 U6 on
o~ 5 (- s (70)

is obtained. Substituting ([ into (@), the variational formulation
1
Vul Vi — k2/ u‘il?Jr/ u® vds
/s, o r 6(s) ( - %5(5)0(5»

—/ ikou® vds —/ (aqf —ikzoui) vds =0 (71)
I'r T'r (9n

The variational formulation For D?%3:

is obtained.

For order 3 Dirichlet operator has tangential derivatives of order greater than
2. Therefore, additional unknowns need to be used to set up a variational
formulation that where only second tangential derivatives are present. This will
result into a couple of variational formulation that will be solved together. (G7)
is the first variational formulation. If a new variable is selected as

oul

=" (72)

([ED) is converted a new form as

/ Vul Vi — kzg/ u’ v — / Yods — / ikou® vds
Q- Q- r Tr
ou’ -
— — —ikou' | vds =0 73

The second variational formulation is derived by substituting ) into (),
multiplying the result by 7> and integrating the last results over I, namely,

52
/UiﬂgdS-i—/(SQ(S)é/ V2d8+/ —63(s —wz’/gds—l—/awﬂgds:O (74)
r r

INRIA
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where 5 is a test function and
1 1 2 2 1 3 2 1 2 1
a=0(s)(1- 55(s)c(s) + 55 (s)c”(s) ) + §5 (s)ki + 55 (s)0”(s)

The variational formulation ([7d) is a strong form. To convert it in weak form,
2
second derivatives of unknown functions (%) must be vanished. By partial

integration of [.. 63(s) 6;;4’ Uads, ([[) can be denotes as

55 ods — [ Lo3(5 20072 0 _
/Fu_ugds—i—/rawugds A36 (s) 95 Ds ds =10 (75)

(@) and ([@) are variational formulations for order 3.

4.3 The Approximate Solution For the Neumann case

Following the same procedure as in the section 4.2, one can obtain
R 2 5 = Ou _ . 5 —
Vul Vo — kg uwv— | —vds— tkou’ vds
Q- Q- r on Tr

out L\
/I“R(aﬁzkou)yds() (76)

similar to (D). In the following the variational formulations are derived for
order 1,2 and 3, respectively.

The variational formulation For N%!:

If one substitute (@) into [[A) and rearrange the result,

ou’. ) d 2\ s
o (%5(8)$ + 5(s)k1> u? onT (77)

is obtained. Substituting () into [ZH), the strong form of variational formula-

tion
§ o 2 5 - 2.5 - / ou’. _
Vul Vi — kj wlv — | §(s)kiulods — | §'(s) vds
¢ Q_ r r s

82’&{ _ . 5 — auz . p _
7/115(5) 5 pds — /FR tkou’ vds — /FR <5n —ikou ) pds =0 (78)

2,6
is obtained. By partial integration of [ 6(5)%Dds, @) can be converted

into a weak form as

ou®. 9
S 1.2 §— 2 65 > ov
/( Vul Vo ko/s ulv /Ijé(s)klu_l/der/Fé(s) P aSds

—/ ikou® Dds —/ (aqf —ikzoui) vds =0 (79)
T'r Tr (971
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The variational formulation For N%2:

If one substitute (@) into (IZ) and rearrange the result,

ub
68—7”: = (%5( )% - %%6 (s)c(s)% + k2 (5(8) + %62(s)c(s))) u’  (80)

is obtained.Substituting ) into (@), the strong form of variational formula-
tion
1
Vu® Vi — kg/ u’ v / k3 (6(5) + 562(s)c(5)) u® ods
Q_ Q-
1 u?
—/ (6’(5) —5(s)d"(s)c(s) — —62(5)0'(5)) U= pds
r 2 Os

- /F (5(5) - l52(s)c(s)> a;:f vds

ou
| ikoud pds — D —
/FR ikou’ vds /FR (571 ) vds =0 (81)

is obtained, and converting the result into a weak form,

ou’ o
/ VU{VD—/CS/ uiﬂ-i-/au‘iﬂds—i— 7L—Vds
Q_ Q_ T T 0s Os

Ju
— ] ey - % =
/FR ikou’ bds /FR <8n ) vds =0 (82)

o= 2 (5(5) + %c(s)52(s)>

is obtained where

7= 6(s) ~ 56%(s)els)

The variational formulation For N%3:

If one substitute @) and ([[2) into [[0) and rearrange the result, the strong
form of variational formulation is obtained. If a new variable is selected as

826

Y= (83)

and substitute it into the strong form of variational formulation, then vanish

L 9%u® o . L
the expression included % by partial integrations, the first variational for-

mulation
oud O
VuiVﬂka/ u‘il?Jr/au l/der/ —ds
/Qf O Jo. T 9s Os

/ (25( )(5/(5))2+52(5)5”(5)) birds — /F 6%(5)3 (5) S

/ —83(s a—w@ds—/ ikou‘iDds—/ (8% —ik’oui) vds =0 (84)
Tr Tr an
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is obtained where

@ = =38(s) (14 30(6) e9) +3"(5) + 02 + (0101 )

1 1 2 1
7 = 0(s) = 50%(s)els) + 30°(5)%(s) + 307 ()T + 50°(5)8"(s)
The second variational formulation is derived by multiplying ([&3)) by 72 and

integrating the results over I', namely,

82u6
T 852

172dS - / 1/)l72d5 =0 (85)
r

Converting (8H) into weak form, the second variational formulation

is obtained. B4 and (BH) are variational formulations for order 3.

5 Numerical Results

In this section, the numerical solutions of the problem is given to verify the
accuracy and effectiveness of the GIBC’s. In all cases, the coated object is
assumed to be located in free-space. The errors are calculated using the error

function
B, = /
I'c

and the relative error function

frc ’ui —alt
N ch ’ua_fds

where I'¢ is the measurement circle with radius C. In the following, various
exact and approximate results are given.

As a first example, to verify the accuracy of the exact solution for the Dirich-
let case, FEM and analytic solutions are compared. In the application of the
FEM solution, the discretization size is roughly A/42, and the radius of the
approximate boundary condition (ABC) given in (G3)) is 2.5\ where A is the
free space wavelength. We consider as a coating a cylinder having a radius
5A/6 coated over a perfect electric conductor (PEC) which is a cylinder of ra-
dius 0.75X. The coating with a thickness of A/12 is made of a material with
conductivity of 0.2(S.m™!) and relative dielectric permittivity of 3¢y where €g
is dielectric permittivity of free space. The cylinder is illuminated by a time
harmonic electromagnetic wave with frequency 5 MHz and incidence direction
is 0. In other words, the wavelength of incident wave is selected as 0.6 m. The
amplitude and phase of the total fields which are shown in Figure Pl are obtained
on the circle I'c with radius 5\/3.

5 -8k

2
U_ —u ’

ds (87)

2
‘ds

(88)

T
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Exact-FEM = = = Exact- Analytic = - Exact— Analytic — App RC
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o 1
°
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180
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@ (degrees)

Figure 2: Ex 1. Comparisons of the amplitude and the complex phase of the
total field on a circle with radius I'c = 5A/3 obtained by exact solutions for the
circular coating with thickness of § = A\/12 in the Dirichlet case

Obviously the results of FEM and analytic solutions are in a good agreement.
The error and relative error given ([§T7) and [B) are Es = 2.40861le™2 and E, =
0.15670e~3, respectively. Taking into account the ABC in analytic solution,
smaller errors are calculated as F, = 0.58408e~3 and E, = 0.10627¢~3. In the
following examples we omit the small difference caused by ABC.

As a second example, a PEC cylinder of radius 0.46\ coated by a cylin-
der material of radius 0.5\ with relative dielectric permittivity of 3.5¢p and
conductivity of 0.3(S.m™!) taken into account. The object is illuminated at 6
MHz with incidence angle w. The discretization size is roughly A/55, and the
radius of the ABC is 2\. The amplitude and the phase of the total field on
the circle I'c with radius 1.6\ obtained through FEM end analytic solution are
compared in Figure The error and relative error are Fy = 7.75322¢~3 and
E, = 0.09767¢~3, respectively.

Similarly, to verify the accuracy of the exact solution for the Neumann case,
the FEM and analytic solutions are compared. As a third example, a perfect
magnetic conductor (PMC) cylinder of radius 5A/6 coated by a cylinder mate-
rial of radius 0.75\ with relative dielectric permittivity of 2.5¢p and conductivity
of 0.2(S.m™1) is considered. The object is illuminated at 5 MHz with incidence
angle w/4. The discretization size is roughly A/44, and the radius of the ABC
is 2.5\, The amplitude and the phase of the total field on the circle I'c with
radius 5\/3 obtained through FEM end analytic solution are compared in Fig-
ure @l The error and relative error are Fy = 2.59305¢73 and E, = 0.16496e 3,
respectively.

As a next example, a PMC cylinder of radius 0.97\ coated by a cylinder
material of radius A with relative dielectric permittivity of 3¢y and conductivity
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Exact-FEM = = = Exact— Analytic
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Figure 3: Ex 2. Comparisons of the amplitude and the complex phase of the
total field on a circle with radius I'c = 1.6\ obtained by exact solutions for the
circular coating with thickness of § = A/25 in the Dirichlet case

Exact-FEM = = = Exact- Analytic
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Figure 4: Ex 3. Comparisons of the amplitude and the complex phase of the
total field on a circle with radius I'c = 5A/3 obtained by exact solutions for the
circular coating with thickness of § = A\/12 in the Neumann case
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Exact-FEM = = = Exact— Analytic
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Figure 5: Ex 4. Comparisons of the amplitude and the complex phase of the
total field on a circle with radius I'c = 2\ obtained by exact solutions for the
circular coating with thickness of 6 = 0.03\ in the Neumann case

of 0.4(S.m™1) taken into account. The thinner coated object is illuminated at 3
MHz with incidence angle /2. The discretization size is roughly A/48, and the
radius of the ABC is 2.2\. The amplitude and the phase of the total field on
the circle I'c with radius 2\ obtained through FEM end analytic solution are
compared in Figure Bl The error and relative error are E, = 11.58471e~3 and
E, = 0.45152¢7903 respectively.

The above examples show that FEM is sufficient converge. In the follow-
ing, various exact and approximate results are given for the Dirichlet case and
Neumann,respectively.

5.1 Numerical Results for the Dirichlet case

In this section, the numerical results of the problem is given to verify the accu-
racy and effectiveness of the GIBC’s for the Dirichlet case. If one substitutes the
error function Es given in (®7) into the condition given in (@) and logarithm
to both sides

log(E's) ~ log(c) + 2(m + 1) log(do) (89)

is obtained where c is a constant. ([Bd) is an equation of a line whose slope is
2(m + 1). The exact solution and approximate solutions for order 1, 2, 3 are
compared for various examples.

As a first example, a PEC cylinder coated by a cylinder material of radius
5)/6 with relative dielectric permittivity of 3.0¢p and conductivity of 0.1(S.m™1!)
is considered. f(s) is selected as 1. Note that, §(s) = dof(s) was given in 3.
The object is illuminated at 5 MHz with incidence angle 7/3. The discretization
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ot k0=10.4720
k1=20.5239 +9.6044i

log(Es)
&
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Figure 6: Ex 1. The graphics of log(FEs) given in [BY) for the circular coating
with radius 5A/6 and constant thickness in the Dirichlet case

size is roughly A/58, and the radius of the ABC is 2.5\. The errors of total field
Es’s are calculated on the circle I'c with radius 5A/3 and for order 1, 2, and 3
the equation of the lines given in (89 are compared in Figure @l Furthermore,
the lines are derived for analytical solutions to verify the accuracy of FEM. The
slope of lines for order 1,2 and 3 are approximately m; = 5.51, mo = 5.96 and
ms = 8.91, respectively.

In the first example curvature was constant. As a second example, an el-
liptical cross-sectioned dielectric coating with relative dielectric permittivity of
4.0 and conductivity of 0.05(S.m™1) is taken into account. The curvature, is
not, constant, is given by

—ab
2 ¢in2 2 cog2 %2
(a2 sin” (t) + b2 cos? (1))

c(t) =

where a = 3)\/5 and b = 2)\/5 are parameters in parametric equations of the
elliptical surface given by

(im0 "

f(s) is selected as 1. In other words, the width &(s) is constant. The object
is illuminated at 6 MHz with incidence angle w/4. The discretization size is
roughly A/75, and the radius of the ABC is 2\. The errors of total field Es’s are
calculated on the circle I'c with radius 8\/5 and for order 1, 2, and 3 equation
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of k125664 i
k,=25.5553 + 4.6281i
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log(8)

Figure 7: Ex 2. The graphics of log(Es) given in ®&J) for the object with
constant thickness given by (@) where a = 3A/5 and b = 2X/5 in the Dirichlet
case
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of lines given in [BY) are compared in Figure[d The slope of lines for order 1,2
and 3 are approximately m; = 5.31, ms = 6.09 and mg = 9.01, respectively.

A=1m
Max =143

0.5

y/h
o

-05

Figure 8: Ex 3. The geometry of the circular coating with radius A whose width
is given in (EI)

As a third example, a cylindrical cross-sectioned dielectric coating of vari-
able width, with relative dielectric permittivity of 3.0¢y and conductivity of
0.3(S.m™1) is taken into account. The radius of coating is selected as \, which
is relatively bigger(see Figure B). The variable of width is given with equation

5 (t) = 6o (1 — 0.45in (5t)) (91)

Considering the equation (@), It can be seen that f(¢) = (1 — 0.4sin (5¢)). The
object is illuminated at 3 MHz with incidence angle w/2. The discretization size
is roughly A/55, and the radius of the ABC is 2.2\. The errors of total field
Es’s are calculated on the circle I'c with radius 2\ and for order 1, 2, and 3,
the equation of the lines are compared in Figure @l The slope of lines for order
1,2 and 3 are approximately m; = 5.68, mo = 5.75 and mg = 9.19, respectively.
As a fourth example, an elliptical cross-sectioned dielectric coating of vari-
able width, with relative dielectric permittivity of 2.0eg and conductivity of
0.1(S.m™1) is taken into account. The boundary of the coating is given in (F)
where a = 1.5\ and b = 1.2)\. The variable of width is given with equation

5 (t) = 8o (1 — 0.4sin (61)) (92)

The object (see Figure [[M) is illuminated at 3 MHz with incidence angle /4.
The discretization size is roughly A/50, and the radius of the ABC is 2.8\. The
errors of total field Es’s are calculated on the circle I'c with radius 2.5\ and
for order 1, 2, and 3, the equation of the lines are compared in Figure [[1l The
coating is large, curvature of its boundary is variable, and its width is variable,
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k0=6.2832
k1=20.4680 +17.3351i
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Figure 9: Ex 3. The graphics of log(E's) given in ([89) for the object illustrated
in Figure B in the Dirichlet case

2
A=1m
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M|n§=0.6§0
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0.5
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15 F
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-2 1.5 1 0.5 0 0.5 1 1.5 2

Figure 10: Ex 4. The geometry of the elliptical coating whose boundary is given
in (@) where a = 1.5X, b = 1.2\ and width is given in (&2
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Figure 11: Ex 4. The graphics of log(Fs) given in ([89) for the object illustrated
in Figure [ in the Dirichlet case

but the expected results are obtained as results of previous examples. The
slope of lines for order 1,2 and 3 are approximately m; = 5.65, mo = 5.78 and
ms = 8.92, respectively.

In the next example, a more complex coating whose boundary is given by
parametric equation

(A4 Bsin (6t) + C cos(5t) + D cos (6t)) cos(t)
Xr = < (A + Bsin (6t) + C cos(5t) + D cos (6t)) sin(?) >  £€(0,2m)  (93)

where A = A, B =0.06\, C = 0.07\ and D = 0.05\ and the width is given by
equation

§(t) = 5 (1 — 0.4sin (7t)) (94)

is taken into account(see Figure[[d). Thus, the parametric equation of the PEC
can be shown as

wps(t) = ar(t) + 8 () A (t), t € [0,2n) (95)

The coating with relative dielectric permittivity of 3.0¢y and conductivity of
0.05(S.m~1) is illuminated at 3 MHz with incidence angle 7/3. The discretiza-
tion size is roughly A/55, and the radius of the ABC is 2.2X. The errors of
total field Es’s are calculated on the circle I'c with radius 2\ and for order 1, 2,
and 3, the equation of the lines are compared in Figure The slope of lines
for order 1,2 and 3 are approximately m; = 5.26, my = 5.98 and ms = 9.23,
respectively.
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A=1m
M.ax8=1 .480
A M|n5=0.650

051

X/A
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-05

Figure 12: Ex 5. The geometry of the object whose boundary is given in (B3]
where A = A, B =0.06), C = 0.07\, D = 0.05) and width is given in (@)
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k1:11'9543 + 4.9468i
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Figure 13: Ex 5. The graphics of log(Fs) given in ([89) for the object illustrated
in Figure [[A in the Dirichlet case
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A=0.6m
Max5:1 .460

[ Min5=0.650

051

y/h
o
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Figure 14: Ex 6. The geometry of the object whose boundary is given in ([@3)
where A = 5)/6, B = 0.1\, C = 7A\/60, D = \/12 and width is given in (@4
where dp = A/12

As a next example, similar shaped coating whose boundary is given in (@3])
where A = 50/6, B = 0.1\, C = 7A/60 and D = A/12 and width is given
in (@) where 69 = A/12 is taken into account(see Figure [[Al). The coating
with relative dielectric permittivity of 2.5¢p and conductivity of 0.01(S.m~1)
is illuminated at 5 MHz with incidence angle 7/3. The radius of the ABC is
2.5\. The amplitude and the phase of the total field on the circle I'c with
radius 5 /3 obtained through exact end approximate solutions are compared in
Figure[[d The errors are E, = 52.2411873, E, = 38.33849¢ 73, E, = 1.84402¢ 3
and relative errors are E, = 0.56314e~3, E, = 0.45986e~3, F, = 0.09751e~3,
respectively.

As a next example, a kite shaped dielectric coating, with relative dielectric
permittivity of 2.5¢y and conductivity of 0.01(S.m~1), whose boundary is given
by parametric equation

Acos(t) + Bcos(2t) — C
Xp:< Asm((t)) (2¢) ),te[0,27r) (96)

where A =\, B =11)/30 and C = A/60 is taken into account(see Figure [[).
The boundary of PEC is given in equation (@) where

d (t) = dp (1 — 0.4 sin (6t)) (97)

The object is illuminated at 5 MHz with incidence angle 7/3. The discretization
size is roughly A/50, and the radius of the ABC is 8\/3. The errors of total field
Es’s are calculated on the circle I'c with radius 2A and for order 1, 2, and 3,
the equation of the lines are compared in Figure[[d The slope of lines for order
1,2 and 3 are approximately mi = 5.31, mo = 5.91 and ms = 9.33, respectively.
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Figure 15: Ex 6. Comparisons of the amplitude and the complex phase of the
total field on a circle with radius I'c = 5\/3 obtained by FEM and approximate
solutions for the object illustrated in Figure [[4]in the Dirichlet case
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Figure 16: Ex 7. The geometry of the object whose boundary is given in ({4
where A = A, B =11X/30, C' = \/60 and width is given in (&)
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Figure 17: Ex 7. The graphics of log(Fs) given in ([89) for the object illustrated
in Figure [[[ in the Dirichlet case
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Figure 18: Ex 8. The geometry of the object whose boundary is given in ()
where A = 0.55\, B = 0.2\, C = 0.01\ and width is given in (@)

As a next example, similar shaped coating whose boundary is given in (GH])
where A = 0.55\, B = 0.2\, C' = 0.01\ and width is given as

8 () = 0.08\ (1 — 0.3sin (9t)) (98)

is taken into account(see Figure [[H). The coating with relative dielectric per-
mittivity of 4ep and conductivity of 0.005(S.m 1) is illuminated at 3 MHz with
incidence angle 7/3. The radius of the ABC is 1.5\. The amplitude and the
phase of the total field on the circle I'c with radius 1.2)\ obtained through
exact end approximate solutions are compared in Figure [d The errors are
E, =180.8025573, E, = 146.4178173, E, = 25.56597¢ 3 and relative errors are
E, =1.16502¢73, E, = 1.02404e3, E, = 0.41652e~3, respectively.

In all previous examples §(s) was assumed to be regular. As next examples
in this chapter, we assume that d(s) is a non-regular function. To put it more
clearly, ¢’ (s) is not continuous and 0”(s) is not defined at every point. Redefin-
ing the expressions over I' as piecewise continuous functions and vanishing the
expressions 0”(s), the variational formulations for order 1, 2 and 3 given in [E9
[[1, [[3 and [[A can be rearranged. We assume that ¢’(s) or curvature ¢(s) is not
continuous at N points. Selecting the N points as limits of integrals, one can
modify the variational formulation for order 1 ([GH) as

N 1
W‘ZW—H/ u’ v+ / —ud bds
0 a_ anl T, 5(5)

— / ikou? Dds — / (au —ikoui) vds =0 (99)
Tr Tr 671
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Figure 19: Ex 8. Comparisons of the amplitude and the complex phase of the
total field on a circle with radius I'c = 1.2\ obtained by FEM and approximate
solutions for the object illustrated in Figure [[§ in the Dirichlet case
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where UNT,, = I". Similarly, for order 2
Vul Vi — ki / oud 4 ZN / L u’ vds
o o n=1Jp, 8(s) (1 = 50(s)e(s)) ~

—/ ikouips—/ (alf —z’koui) ps=0 (100)
I'r I'r (971

is obtained. By partial integration of the [ 362(s)é”(s)ywads, the variational
formulation for order 3 ([ZH) can be denotes as

I,
+3 _1/ ﬁw%dwrz::l/r g—f%d = (101)
where
0 =8(6) (1= F06)es) + 3P ) + 38R = 0(6) (3 (0)?
1 2 !
8= —55 (5)0"(s)
1= =28

Also, the other variational formulation ([3))) can be modify as

N
vu‘ZW—k2/ w v — / was—/ ikoud Dds
/Q, O Ja_ anl Tn Tr 0
/ (aui ik ) pds =0 (102)
— — — IRoU ras =
Tr an 0

As a last example, dielectric coating of non-regular width is displayed in
Figure 2l is taken into account. The maximum width and length of the object
are 23A\/6 and 13)\/6, respectively. The object is illuminated at 5 MHz with
incidence angle 7/3. The discretization size is roughly A/44, and the radius of
the ABC is 10A\/3. The errors of total field Es’s are calculated on the circle I'c
with radius 3A. When dielectric coating’s relative dielectric permittivity and
conductivity are selected as respectively 3ep and 0.1(S.m~1), order 1, 2, and 3
solutions are compared in Figure ZIl The slope of lines for order 1,2 and 3 are
approximately my = 5.45, ma = 5.80 and m3 = 9.14, respectively. Selecting dg
as A\/12, the amplitude and the phase of the total field are compared in Fig-
ureZA The errors are B, = 233.2276473, B, = 224.3027273, £, = 57.8735%¢ 3
and relative errors are E, = 1.45933e~3, E, = 1.43530e~3, E, = 0.70211e~3,
respectively. Selecting relative dielectric permittivity and conductivity as re-
spectively 5eg and 0.05(S.m 1), results displayed in Figure E3 is obtained. The
slope of lines are m; = 5.69, mo = 6.08 and mg3 = 9.68.
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Figure 20: Ex 9. The geometry of the coating with non-regular thickness
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Figure 21: Ex 9a. The graphics of log(FE's) given in ([§Y) for the coating, whose
relative dielectric permittivity is 3eg and conductivity is o = 0.15.m™!, illus-
trated in Figure 2l in the Dirichlet case
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Figure 22: Ex 9. Comparisons of the amplitude and the complex phase of the
total field on a circle with radius I'c = 3\ obtained by FEM and approximate
solutions for the object illustrated in Figure Bl in the Dirichlet case
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Figure 23: Ex 9b. The graphics of log(Es) given in ([Bd) for the coating, whose
relative dielectric permittivity is 5ep and conductivity is o = 0.055.m ™!, illus-
trated in Figure Bl in the Dirichlet case
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5.2 Numerical Results for the Neumann case

In this section, the numerical solutions of the problem is given to verify the
accuracy and effectiveness of the GIBC’s for the Neumann case. The exact
solution and approximate solutions for order 1, 2, 3 are compared for various
examples.

0
o} k0=10.4720 -
k1=16.5683 + 0.5949i
_4 - 1
_6 - -
—~ —8F 7]
2]
w
D
o
S ot i
k=1 Analytical Sol.
-1z k=2 Analytical Sol. |
k=3 Analytical Sol.
-14}+ — — — k=3 FEM T
- — — k=2 FEM
16} - — —k=1FEM ]
_18 1 Il Il Il
-4.5 -4 -3.5 -3 -2.5 -2

log(d)

Figure 24: Ex 1. The graphics of log(E's) given in ([§d) for the circular coating
with radius 5A/6 and constant width in the Neumann case

As a first example, a PEC cylinder coated by a cylinder material of radius
51/6 with relative dielectric permittivity of 2.5¢p and conductivity of 0.005(S.m~1)
is considered. f(s) is selected as 1. The object is illuminated at 5 MHz with
incidence angle 7/4. The discretization size is roughly A/62, and the radius of
the ABC is 2.5\. The errors of total field Es’s are calculated on the circle I'c
with radius 5A/3 and for order 1, 2, and 3 the equation of the lines given in (B9)
are compared in Figure Furthermore, the lines are derived for analytical
solutions to verify the accuracy of FEM. The slope of lines for order 1,2 and 3
are approximately my = 4.32, mo = 5.57 and ms = 7.4, respectively.

As a second example, an elliptical cross-sectioned dielectric coating with
relative dielectric permittivity of 2.5¢p and conductivity of 0.007(S.m~1) whose
boundary given in B0 where a = 7A/6 and b = 2)\/3 is taken into account.
The width §(s) is constant. The object is illuminated at 5 MHz with incidence
angle w/4. The discretization size is roughly A/59, and the radius of the ABC
is 2.5\, The errors of total field Es’s are calculated on the circle I'c with radius
5A/3 and for order 1, 2, and 3 equation of lines given in ([8d) are compared in
Figure The slope of lines for order 1,2 and 3 are approximately m; = 4.06,
mg = 5.52 and mg = 7.36, respectively.
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Figure 25: Ex 2. The graphics of log(Es) given in &) for the object with
constant thickness given by (@) where a = 7TA/6 and b = 2A/3 in the Neumann
case

1T A=0.6m 1
Max5=1 .450

08[ \p
Min =0.65
0.6

0.4

021

y/h
o

0.2

04 |

-0.6

-0.8 - 1

Figure 26: Ex 3. The geometry of the circular coating with radius 5\/6 whose
width is given in (I3
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As a third example, a cylindrical cross-sectioned dielectric coating of vari-
able width, with relative dielectric permittivity of 2.0eg and conductivity of
0.007(S.m~1) is taken into account. The radius of coating is selected as 5\/6
(see Figure Zf). The variable of width is given with equation

§(t) =60 (1 — 0.4sin (7t)) (103)

The object is illuminated at 5 MHz with incidence angle 7. The discretization

0
k0=10.4720
kl=14.8388 +0.9299i
-5+ -
w
o)
g
_10 - -
-15 I I I I
-4.5 -4 -3.5 -3 -2.5 -2

log(d)

Figure 27: Ex 3. The graphics of log(FEs) given in ([89) for the object illustrated
in Figure 6 in the Neumann case

size is roughly A/62, and the radius of the ABC is 2.5\. The errors of total field
Es’s are calculated on the circle I'c with radius 5)/3 and for order 1, 2, and 3,
the equation of the lines are compared in Figure 27 The slope of lines for order
1,2 and 3 are approximately m; = 3.96, me = 5.57 and mg = 9.63, respectively.

As a fourth example, an elliptical cross-sectioned dielectric coating of vari-
able width, with relative dielectric permittivity of 3.0eg and conductivity of
0.008(S.m~1) is taken into account. The boundary of the coating is given in
@) where a = 1.5A and b = 0.8\. The variable of width is given with equation

§(t) = dp (1 — 0.4sin (Tt)) (104)

The object (see Figure 2§) is illuminated at 3 MHz with incidence angle 7/3.
The discretization size is roughly A/55, and the radius of the ABC is 2.5\. The
errors of total field Es’s are calculated on the circle I'c with radius 2\ and for
order 1, 2, and 3, the equation of the lines are compared in Figure The
coating is large, curvature of its boundary is variable, and its width is variable,
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Figure 28: Ex 4. The geometry of the elliptical coating whose boundary is given
in (@) where a = 1.5), b = 0.8\ and width is given in (4]
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Figure 29: Ex 4. The graphics of log(Fs) given in ([89) for the object illustrated
in Figure P8 in the Neumann case

RR n° 7145



42 B. Aslanyiirek & H. Haddar & H. Sahintirk

but the expected results are obtained as results of previous examples. The
slope of lines for order 1,2 and 3 are approximately m; = 4.94, mo = 5.75 and
mg = 7.98, respectively.

A=1m
Max8:1 .460

F Min5:0.660

0.5

y/n
o

-0.5

Figure 30: Ex 5. The geometry of the object whose boundary is given in (B3]
where A = A\, B =0.08)\, C = 0.09\, D = 0.07\ and width is given in ([{H)

In the next example, a more complex coating whose boundary is given in
@3) where A = X, B=0.08\, C =0.09\ and D = 0.07\ and the width is given
by equation

5 (t) = 8o (1 — 0.4sin (7¢)) (105)

is taken into account(see Figure Bll). The coating with relative dielectric per-
mittivity of 2.0ep and conductivity of 0.006(S.m~1!) is illuminated at 3 MHz
with incidence angle w/4. The discretization size is roughly \/59, and the ra-
dius of the ABC is 2.2\. The errors of total field Es’s are calculated on the
circle I'c with radius 2\ and for order 1, 2, and 3, the equation of the lines are
compared in Figure Bl The slope of lines for order 1,2 and 3 are approximately
m1 = 3.91, mgo = 5.67 and m3 = 7.83, respectively.Selecting Jy as 0.09), the
amplitude and the phase of the total field obtained through exact end approx-
imate solutions are compared in Figure The errors are £, = 190.54358_3,
E, = 38.38613¢73, E, = 13.98625¢~2 and relative errors are E, = 1.674776_3,
E, =0.74428¢73, E, = 0.43892e 3, respectively.

As a next example, a kite shaped dielectric coating, with relative dielectric
permittivity of 2.5¢9 and conductivity of 0.008(S.m ™), whose boundary is given
in [@6) where A = A\, B = 11A/30 and C' = A/60 is taken into account(see
Figure B3)). The boundary of PEC is given in equation ([@3) where

5 (t) = 8o (1 — 0.4sin (6t)) (106)
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Figure 31: Ex 5. The graphics of log(FEs) given in ([89) for the object illustrated
in Figure Bl in the Neumann case

The object is illuminated at 5 MHz with incidence angle 7/3. The discretization
size is roughly A/56, and the radius of the ABC is 8\/3. The errors of total field
Es’s are calculated on the circle I'c with radius 2A and for order 1, 2, and 3,
the equation of the lines are compared in Figure B4 The slope of lines for order
1,2 and 3 are approximately m; = 4.18, mg = 5.3 and m3 = 7.67, respectively.

As a next example, similar shaped coating whose boundary is given in (0]
where A = 0.55\, B = 0.2\, C' = 0.01\ and width is given in as

§(t) = 0.08A (1 — 0.3sin (9¢))

is taken into account(see Figure [[¥). The coating with relative dielectric per-
mittivity of 4ep and conductivity of 0.005(S.m 1) is illuminated at 3 MHz with
incidence angle w/3. The radius of the ABC is 1.5X. The amplitude and the
phase of the total field on the circle I'c with radius 1.2\ obtained through
exact end approximate solutions are compared in Figure Bl The errors are
E, =160.3448073, E, = 236.0956973, E, = 24.59216¢~2 and relative errors are
E, = 1.53845¢73, E, = 1.84003e¢~3, E, = 0.60745¢~3, respectively.

In case of non-regular §(s), the same procedure given in previous section is
executed. Redefining the expressions over I' as piecewise continuous functions
and vanishing the expressions 6”(s), the variational formulations for order 1,
2 and 3 given in [[9, B2 and can be rearranged. One can modify the
variational formulation for order 1 ([[d) as

/ vu‘iw—kg/ 7
¢

RR n° 7145



44

B. Aslanyiirek € H. Haddar € H. Sahintirk

Order 1

2 T T T T T T T T T T T
Exact Solution
— — — Approximate Solution
oy
3
=2
=
£
=
o . . . . . . . . . . .
o 30 60 90 120 150 180 210 240 270 300 330 360
@ (degrees)
180 F T T T T T T T T T r r
[
& 901 |
8
g N Hf
g
= or i
@
g Hp
£ il
T _—ool
i
!
—180 . . f f h . i ! . . . 1
o 30 60 90 120 150 180 210 240 270 300 330 360
@ (degrees)
Order 2
2 T T T T T T T T T T T
Exact Solution
— — — Approximate Solution
k3
3
=
=
£
=
o . . . . . . . . . . .
o 30 60 90 120 150 180 210 240 270 300 330 360
@ (degrees)
180 T T T T T T T T T T T
@ 90
8
o]
=3
S ot
8
8
=
T _gol
—1s0 L L L L L L L L L L L
o 30 60 90 120 150 180 210 240 270 300 330 360
@ (degrees)
Order 3
2 T T T T T T T T T T T
Exact Solution
1.5 — — — Approximate Solution J
oy
3
]
s 1 7
£
=
0.5 =
o . . . . . . . . . . .
o 30 60 90 120 150 180 210 240 270 300 330 360
@ (degrees)
180 F T T T T T T T T T T T
&= 901
8
o
=3
g
= or
@
&
£
T _ool|
—-180 . . f f h . . . . . .
o 30 60 90 120 150 180 210 240 270 300 330 360

@ (degrees)

Figure 32: Ex 5. Comparisons of the amplitude and the complex phase of the
total field on a circle with radius I'c = 2\ obtained by FEM and approximate

solutions for the object illustrated in Figure Bl in the Neumann case
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Figure 33: Ex 6. The geometry of the object whose boundary is given in ({4
where A = A, B =111/30, C' = \/60 and width is given in ()
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Figure 34: Ex 6. The graphics of log(FEs) given in ([89) for the object illustrated
in Figure B3 in the Neumann case
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Figure 35: Ex 7. Comparisons of the amplitude and the complex phase of the
total field on a circle with radius I'c = 1.2\ obtained by FEM and approximate
solutions for the object illustrated in Figure [§in the Neumann case
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N Gu (’)y
_Zn_l/rné(s)k u z/ds—l—zn 1/ (s 5 9%

ou ;
_ . 5 — _ . i\ = _ 1
/FR ikou® vds /FR (8ﬁ ) vds =0 (107)

where UNT,, = I". Similarly, for order 2
Vu5VD—k§/ u%+ZN / aud vds
o o n=tJp,

Z / ——ds—/ ikou‘iﬁsf/ (a“ ' i)aso (108)
n=1 I'n rp \ On

is obtained where

In case of regular 46(s), the couple of variational formulation for order 3 has al-
ready derived. Analogously, selecting two new variable, the triple of variational
formulation is derived. The first variable already has been given in [&3) and its
variational formulation given in ([BO) can be modified as

Gu Gyg N _
S [ B [y

The second variable is selected as

Aul
Js

ds = 38(5)5"(s) (110)

By partial integration of the [, 16%(s)8” (s )—ngs the expressions §”(s) can
be vanished and new variational formulatlon related to second variable

E 8u ov
2 3
n= 1/ 6(s)d"(s —V3d8+zn 1/ 30°(5)9'(s 3—a—d
2 % i —
+Zn:1 /Fn 55 (5)51(5)1/)1/3(18 + E o /Fn 1/}21/3(18 =0 (111)

is obtained where 73 is a test function. Substituting new variables into vari-
ational formulation for order 3 given in (&) and vanishing second order of
derivatives by partial integration, &) can be modified as

N
o Vu‘in/—k:g/ u‘iD—l—Zn:l/ au’ vds
+> k252( )8 (s )Q vd +Z —k252( )8 (s)u’ o,
el . a vas el u_ a S
ou® 9 % N ot
—i—zn_l/rnjas Sds—i—zn 1/ 0%(8)d"'( ds
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N L sa ()20 07 0o
+Zn—1/rn35( e 9508 ’an/ vds

ou
— | ikou’ pds — pds =0 (112
/FR’L()’U,_I/S /FR<6” )1/5 0 (112)

= —k:%&(s) (1 + %5(5)0(8) + %52(5)]“%)

where

7= 6(5) — 5B ()els) + 35°(5)2(5) + S

As a last example, dielectric coating of non-regular width is given in previous
chapter (see Figure E0) is taken into account. The maximum width and length
of the object are 23\/6 and 13\/6, respectively. The object is illuminated at
5 MHz with incidence angle 7/3. The discretization size is roughly A\/44, and
the radius of the ABC is 10A/3. The errors of total field Es’s are calculated on
the circle I'c with radius 3A. When dielectric coating’s relative dielectric per-
mittivity and conductivity are selected as respectively 2ep and 0.005(S.m~1),
order 1, 2, and 3 solutions are compared in Figure The slope of lines for
order 1,2 and 3 are approximately m; = 4.6, ms = 5.58 and m3 = 8.4, respec-
tively. Selecting dg as A/12, the amplitude and the phase of the total field are
compared in Figure Bl The errors are E, = 126.73140e~3, E, = 133.55387¢ 73,
E, = 7.20718¢2 and relative errors are F, = 0.96038¢73, E, = 1.02741e73,
E, = 0.23781e™3, respectively. Selecting relative dielectric permittivity and
conductivity as respectively 3ep and 0.01(S.m~1), results displayed in Figure BY
is obtained. The slope of lines are m; = 4.72, my = 5.55 and m3 = 8.3.
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Figure 36: Ex 8a. The graphics of log(FE's) given in (BY) for the coating, whose
relative dielectric permittivity is 2¢yp and conductivity is ¢ = 0.0055.m ™!, illus-
trated in Figure 2l in the Neumann case
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Figure 37: Ex 8. Comparisons of the amplitude and the complex phase of the
total field on a circle with radius I'c = 3\ obtained by FEM and approximate
solutions for the object illustrated in Figure Bl in the Neumann case
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Figure 38: Ex 8b. The graphics of log(Es) given in (B for the coating, whose
relative dielectric permittivity is 3¢y and conductivity is o = 0.01S.m ™!, illus-
trated in Figure 2l in the Neumann case
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Appendix

Parametrization for curves: used conventions and defini-

tions

Let T" be the boundary of a connected regular domain Q and let zr = (x(t), y(t))
be a counterclockwise parametrization of this curve in terms of a parameter
t € [t1, to] (this parametrization can be only local). The curvilinear abscissa s

%’ncident

wave

Figure 39: Geometry for the fundamental definitions

is defined as

ds = /' (t)? + y'(t)2dt

and the (inward) normal (unitary) is defined by

i — 1 _y/(t)
0 x’(t)2+y’(t)2< z'(t) )

The tangential vector 7 is defined by 7 = ;
) 2 (t) )

T(t) =
o=ty

The curvature c(t) is defined by

Z:Zr and is given by

di
ar €

and therefore can be expressed as

(113)

(114)

(115)

(116)

(117)
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Examples: For a circle object parametric equations are given by

{ x(t) = scos(t)

y(t) = ssin(t)

Respectively, the curvature, tangential and normal derivatives are given by

1
t)=—=
et) = —
7_"28_‘9
= —&,

For an elliptical body parametric equations are given by

x(t) = acos(t)
{Mwbmm)’a>Qb>o
and the curvature is given by
—ab

c(t)=

3
(a2 sin’ (¢) + b2 cos? (t)) 2
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