
HAL Id: inria-00440223
https://inria.hal.science/inria-00440223

Submitted on 9 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An L(1/3) algorithm for ideal class group and regulator
computation in certain number fields

Jean-François Biasse

To cite this version:
Jean-François Biasse. An L(1/3) algorithm for ideal class group and regulator computation in certain
number fields. Mathematics of Computation, 2014, 83 (288), pp.2005-2031. �inria-00440223�

https://inria.hal.science/inria-00440223
https://hal.archives-ouvertes.fr

AN L(1/3) ALGORITHM FOR IDEAL CLASS GROUP AND

REGULATOR COMPUTATION IN CERTAIN NUMBER FIELDS

JEAN-FRANÇOIS BIASSE

Abstract. We analyse the complexity of the computation of the class group
structure, regulator, and a system of fundamental units of a certain class of
number fields. Our approach differs from Buchmann’s, who proved a complex-
ity bound of L(1/2, O(1)) when the discriminant tends to infinity with fixed
degree. We achieve a subexponential complexity in O(L(1/3, O(1))) when both
the discriminant and the degree of the extension tend to infinity by using tech-
niques due to Enge and Gaudry in the context of algebraic curves over finite
fields.

1. Introduction

Let K = Q(θ) be a number field of degree n and discriminant ∆. The ideal class
group of its maximal order OK is a finite abelian group that can be decomposed as:

Cl(OK) =
⊕

i

Z/diZ,

with di | di+1. Computing the structure of Cl(OK), along with the regulator and a
system of fundamental units of OK is a major task in computational number theory.
In addition, many algorithms solving the discrete logarithm problem are based on
the group structure computation.

In 1968, Shanks [12, 13] proposed an algorithm relying on the baby-step giant-
step method to compute the structure of the ideal class group and the regulator of
a quadratic number field in time O

(

|∆|1/4+ǫ
)

, or O
(

|∆|1/5+ǫ
)

under the extended
Riemann hypothesis [10]. Then, a subexponential strategy for the computation
of the group structure of the class group of an imaginary quadratic extension was
described in 1989 by Hafner and McCurley [9]. The expected running time of this
method is

L∆(1/2,
√

2 + o(1)) = e(
√

2+o(1))
√

log |∆| log log |∆|.

Buchmann [2] generalized this result to the case of an arbitrary extension, the
complexity being valid for fixed degree n and ∆ tending to infinity. Enge [5] used
this technique in the context of discrete logarithm computations in the Jacobian
of hyperelliptic curves, and developed with Gaudry [6] an algorithm for computing
the group structure of the Jacobian and solving the discrete logarithm problem for
a certain class of curves in time:

Lqg (1/3, O(1)) = eO(1)(log(qg)1/3 log log(qg)2/3).

2000 Mathematics Subject Classification. Primary 54C40, 14E20; Secondary 46E25, 20C20.
Key words and phrases. Number fields, ideal class group, regulator, units, index calculus,

subexponentiality.
The author was supported by a DGA grant.

1

2 JEAN-FRANÇOIS BIASSE

In this paper, we adapt the L(1/3) algorithm of Enge and Gaudry to the computa-
tion of the group structure of the ideal class group, the regulator, and a system of
fundamental units of OK. We deal with the case where both the discriminant and
the degree of the extension grow to infinity in certain proportions, whereas in [2]
the degree is assumed to be fixed.

2. Main idea

We consider a number field K = Q(θ) of discriminant ∆ which can be written
as:

K = Q[X]/T (X),

with T (X) = tnX
n + tn−1X

n−1 + . . . + t0 ∈ Z[X], and n := [K : Q]. Let d be a
bound on the bit size of the coefficients of T :

d := max
i
{log(ti)} .

In addition, we require that:

n ≤ n0 log (|∆|)α
(1 + o(1))(1)

d ≤ d0 log (|∆|)1−α (1 + o(1)),(2)

for some α ∈
[

1
3 ,

2
3

[

, and some constants n0 and d0. We define κ := n0d0. We also
denote by r1 the number of real places, by r2 the number of complex places and we
define r := r1 + r2 − 1. Our algorithm computes the group structure of Cl(Z[θ]),
its regulator, and a system of fundamental units of Z[θ], in expected time lying in:

O
(

LDisc(T)(1/3, O(1))
)

.

In the case of number fields satisfying Z[θ] = OK and the above restrictions, we
compute the group structure of Cl(OK), R, and a system of fundamental units, in
expected time L∆(1/3, O(1)). From now on, we assume that K satisfies (1), (2),
and Z[θ] = OK.

Example. Let ∆ ∈ Z, and Kn,K be an extension of Q defined by an irreducible
polynomial of the form:

T (X) = Xn −K,
with

logK =
⌊

log (|∆|)1−α
⌋

n = ⌊log (|∆|)α⌋ ,
for some α ∈

[

1
3 ,

2
3

[

. Then, OKn,K has discriminant satisfying:

log(Disc(OKn,K)) = log(nnKn−1) = log(|∆|)(1 + o(1)).

If in addition we require that n and K be the largest prime numbers below their
respective bounds such that:

n2 ∤ Kn−1 − 1,

then we meet the last restriction Z[θ] = OKn,K .

We proceed by analogy with the approach of [6] in the context of algebraic curves,
where the authors examined curves of the form:

C : Y n +Xd + f(X,Y),

AN L(1/3) ALGORITHM FOR NUMBER FIELDS 3

such that any monomial X iY j occuring in f satisfies ni+ dj < nd. The genus g is
assumed to tend to infinity and:

n ≈ gα

d ≈ g1−α.

The idea in [6] is to look for functions φ(X,Y) ∈ Fq[X,Y] satisfying:

degY φ ≈ gα−1/3 and degX φ ≈ g2/3−α,

with N (φ) splitting into polynomials of degree bounded by B = log (L(1/3, ρ)) for
some number ρ determined in the complexity analysis. Each time such a decompo-
sition occurs, the ideal (φ) is necessarily a product of primes belonging to the set
B of the prime ideals of degree bounded by B:

(φ) =
∏

pi∈B
p

ei

i .

Such a decomposition of a principal ideal is called a relation. In the following, we
will also denote the vector (ei) itself a relation. Every time we find a relation, we
add the row vector (ei) to a matrix M ∈ Zm×N called the relation matrix, where
N := |B|, and m ≥ k is the number of relations collected. A linear algebra step
is performed on this matrix. It consists in computing its Smith Normal Form,
that is to say integers d1, . . . , dN , with dN |dN−1| . . . |d1, such that there exist two
unimodular matrices U ∈ Zm×m and V ∈ ZN×N satisfying:

M = U























d1 (0)

. . .

(0) dk

(0)

(0)























V.

The SNF of M provides us with the group structure of the Jacobian of the curve C.
Indeed, if LZ is the lattice spanned by all the possible relations, and if J denotes
the Jacobian of C, then we have:

J ≃ ZN/LZ.

Providing m is large enough to ensure that the rows of M generate LZ, we have:

J ≃
⊕

i

Z/diZ.

In our context, we need the group structure of Cl(OK), along with the regulator
R, and a system of fundamental units of OK. The computation of the group struc-
ture of Cl(OK) is done using methods similar to those used for the computation of
the structure of J . We look for relations of the form:

(φ) =
∏

i

p
ei

i ,

where φ ∈ K, and where the pi are prime ideals of norm bounded by L(1/3, ρ).
Every time we find such a relation, we add the row vector (ei)i≤N to the relation

4 JEAN-FRANÇOIS BIASSE

matrix denoted by MZ ∈ Zm×N . To continue the analogy with [6], we require that
φ be of the form:

φ = A(θ),

where A ∈ Z[X] of degree k. During the analysis, we will provide bounds on k and
on the coefficients of A, that delimit the search space. Providing the rows of MZ

generate the lattice LZ of all the possible row vectors (ei)i≤N ∈ ZN representing a
relation, we have:

Cl(OK) ≃ ZN/LZ ≃
⊕

i≤N

Z/diZ,

where the di are the diagonal coefficients of the SNF of MZ. The main difference
with the context of algebraic curves is the computation of R and of a system of
fundamental units. The group of units of OK is of the form:

U(K) ≃ µ(K)× Zr,

where µ(K) is the multiplicative group of the roots of unity in OK. A system of
fundamental units (γi), i ≤ r, is a set of elements of K satisfying:

U(K) ≃ µ(K)× 〈γ1〉 × . . .× 〈γr〉 .
Once such a system is found, we use the logarithm map:

K −→ Rr+1

Log : φ 7−→ (log |φ|1, . . . , log |φ|r+1),

where the |.|j are the archimedian valuations on K, to construct a matrix A ∈
Rr×(r+1) whose rows are the vectors Log(φi), for i ≤ r. The regulator is defined as
the determinant of any r × r minor of A. To construct A and a system of funda-
mental units, we augment the row vectors by columns containing the archimedian
valuations, and add the row:

(e1, . . . , ek, log |φ|1, . . . , log |φ|r+1) ∈ ZN × Rr+1

to a relation matrix M whenever a relation (φ) =
∏

i p
ei

i is found. A linear algebra
step performed on M provides us with the group structure, the regulator, and a
system of fundamental units. It is described in detail in §4.

3. The relation matrix

Let ρ be a constant to be determined later, and B a smoothness bound satisfying:

B = ⌈L∆(1/3, ρ)⌉.
We define the factor base B as the set of all non inert prime ideals of norm bounded
by B. This factor base has cardinality:

N := |B| = L(1/3, ρ+ o(1)).

In the following, we will need to test the smoothness of principal ideals of the form
(φ), where φ = A(θ) with A ∈ Z[X]. We will use the well-known result that is
proved in [4], Lemma 3.3.4:

Lemma 1. The norm of φ satisfies:

N (φ) = Res (T (X), A(X)),

where Res denotes the resultant.

AN L(1/3) ALGORITHM FOR NUMBER FIELDS 5

Computing N (φ) for φ ∈ K allows us to decide whether φ is a product of prime
ideals p ∈ B. Indeed, it suffices to check if N (φ) ∈ Z is B-smooth which can be
done by trial division or the ECM method in polynomial time. We assume that the
coefficients ai of the polynomial A have their logarithm bounded by an integer a,
and that there exist two constants δ and ν to be determined later such that:

a ≤
⌈

δ
κ log |∆|/n

(log |∆|/M)1/3

⌉

(3)

k ≤
⌈

ν
n

(log |∆|/M)1/3

⌉

,(4)

with M := log log |∆|. Using Lemma 1 and Hadamard’s inequality, we deduce an
upper bound on logN (φ):

logN (φ) ≤ na+ dk + n log k + k log n(5)

≤ κ log (|∆|)2/3M1/3(δ + ν + o(1)).(6)

In the following, we will also need a bound on the real coefficients log |φ|i occuring
in the relation matrix. By the following proposition, we derive a bound on the
log |θ|i from the imposed bounds on the coefficients of T :

Proposition 2. Let σi be the n complex embeddings of K such that we have T =
∏

i(X − σi(θ)), then the σi(θ) satisfy:

log(|θ|i) = log(|σi(θ)|) = O(log (|∆|)1−α
).

Proof. Landau-Mignotte’s theorem [11] states that if D | T with degD = m, then
the coefficients dj of D satisfy:

|dj | ≤ 2m−1(|T |+ tn),

where |T | is the euclidian norm of the vector of the coefficients of T . Applying this
to D = X − σi(θ) and m = 1 allows us to obtain:

log(|θ|i) ≤ log(|T |+ tn) ∈ O(log (|∆|)1−α
).

�

Corollary 3. With φ = A, and a and k respectively bounded by (3) and (4), we
have:

log |φ|i ≤ O(log (|∆|)2/3M1/3).

To compute the probability for φ to be B-smooth, we have to make the following
assumption:

Heuristic 4. We assume that N (φ) behaves like a random number whose logarithm
satisfies

log(N (φ)) ≤ ι := κ log (|∆|)2/3M1/3(δ + ν + o(1)),

and whose distribution is given by the ψ function of [3].

Consequently, computing the probability for a given (φ) to be B-smooth boils
down to computing the probability for a number whose logarithm is bounded by ι
to be smooth with respect to prime numbers with logarithm bounded by

µ := ⌈ρ log (|∆|)1/3M2/3⌉.
Using [3], and carrying out the same computation as in the proof of Theorem 1 of
[6], one readily shows the following result on the probability of finding a relation:

6 JEAN-FRANÇOIS BIASSE

Proposition 5. Let:

ι = ⌊logL(ζ, c)⌋ = ⌊c log (|∆|)ζM1−ζ⌋
µ = ⌈logL(β, d)⌉ = ⌈d log (|∆|)βM1−β⌉,

then we have:
ψ(ι, µ)

eν
≥ L

(

ζ − β, −c
d

(ζ − β) + o(1)

)

,

where ψ(ι, µ) denotes the cardinality of the set of integers x such that log x ≤ ι,
and x is smooth with respect to the set of prime numbers p such that log p ≤ µ.

4. The linear algebra phase

In this section, we start with an overview of the linear algebra phase, then we
address its complexity in §4.1 and §4.2. We denote by M the relation matrix whose
rows lie in ZN ×Rr+1, and by MZ and MR the matrices formed respectively by the
first N and the last r + 1 columns of M . M thus has the following shape:

M =

(

MZ MR

)

.

To make sure we generate the full lattice of relations, we make the following as-
sumption:

Heuristic 6. We assume that there is a constant K1 such that collecting N +K1r
allows us to generate the full lattice of relations.

In the following, we assume that Heuristic 6 is satisfied. If this is not the case
(which can be tested easily as we will see at the end of this section), we start all over
again and construct another relation matrix. MR contains rational approximations
of the log |φi|j for i ≤ N + K1r and j ≤ r + 1: the discussion of approximation
issues when we add or multiply two real numbers is postponed to §5. As the rows
of M are assumed to generate the full lattice of the relations, the determinant of
the lattice LZ spanned by the rows of MZ gives us the class number h(OK), and its
Smith Normal Form diag(d1, . . . , dN) gives us the decomposition

Cl(OK) ≃ ZN/LZ ≃
⊕

i

Z/diZ.

On the other hand, we need to construct r relations of the form

(0, . . . , 0, log |γ|1, . . . , log |γ|r+1),

along with the corresponding values of γ (that are necessarily units), such that
these relations generate the lattice LR of relations whose integer part contains only
zero coefficients. To do this, we compute separately the Hermite Normal Form of
MZ and a basis (uj)j≤l with l ≤ K1r of the kernel of MZ. Then, we apply the

uj to MR, thus obtaining a matrix AR ∈ Rl×(r+1) whose rows correspond to the
archimedian valuations of units (βj)j≤l. More details on this part of the algorithm
are given in §4.1. To compute the regulator R, we need to find r combinations
of rows of AR, along with the corresponding units (γi)i≤r , that span the lattice of
units LR. This procedure is described in §4.2.

AN L(1/3) ALGORITHM FOR NUMBER FIELDS 7

At the end of the linear algebra phase, we have to check a posteriori that N+K1r
relations were enough to generate LZ and LR. The analytic class number formula
provides a number h∗ computable in polynomial time satisfying:

h∗ ≤ h(OK)R < 2h∗.

Before going into more details on the linear algebra phase, we recall the main steps
of this process:

Algorithm 1 Linear algebra phase

Input: M
Output: h(OK), the structure of Cl(OK), R, and a system of fundamental units
1: Compute the HNF of MZ.
2: Compute the SNF of MZ and deduce h(OK) and the group structure of Cl(OK).
3: Compute a basis (uj)j≤l of kerMZ and deduce AR

4: Find r independent relations generating LR along with the corresponding units.
5: Compute the determinant R of LR.
6: Compute h∗ and check if h∗ ≤ h(OK)R < 2h∗. If not create another M and go

back to step one.

Notation 7. In the following, r
X
i denotes the row number i of the matrix X.

4.1. Hermite and kernel basis computation. To obtain the matrix AR, we
apply the kernel basis computation algorithm described in [8] to the rectangular
matrix MZ. It provides l ≤ K1r vectors uj in ZN+K1r representing linear depen-
dencies between the rows of MZ. Applying those linear combinations to the rows
of M yields l relations with zero coefficients on the first N coordinates. We denote
by LR the lattice of the relations having only zeros on their first N coordinates. As
we assume Heuristic 6, these l relations generate LR. The last r + 1 coordinates of
each of the l relations created this way are added as a row vector to the matrix AR.
In addition, for every uj of the form:

uj = (u
(1)
j , . . . , u

(N+K1r)
j),

and for all j ≤ l, the value βj =
∏

i φ
u
(i)
j

i is the unit corresponding to the row

rAR

j =
∑

i

u
(i)
j rM

i .

As we will see in §6, the coefficients u
(i)
j are too large to allow us to compute directly

∏

i φ
u
(i)
j

i in subexponential time. We thus give the units βj in compact representa-
tion, that is to say by storing the uj . It is proved in [14] that the computation of
the uj takes:

O(l2N3(logN + log |MZ|),
where |MZ| = maxi,j

{

|M i,j
Z
|
}

. We need a bound on |MZ| to express this complex-

ity in terms of the size of the input:

Proposition 8. |MZ| satisfies:

|MZ| = O((log |∆|)2/3
(log log |∆|)1/3

).

8 JEAN-FRANÇOIS BIASSE

Proof. We restricted ourselves to φ satisfying

log(N (φ)) ≤ κ (log |∆|)2/3
(log log |∆|)1/3

(δ + ν + o(1)).

If N (φ) =
∏

iN (pi)
ei , then we clearly see that the vector (ei) having the largest

coefficient under the previous constraint is the one where e1 is maximal and all the
others are set to zero, providing we set p1 to the prime ideal of smallest norm. In
that case, e1 satisfies:

e1 = O((log |∆|)2/3
(log log |∆|)1/3

).

�

Corollary 9. The complexity of the computation of the kernel basis of MZ is
bounded by:

O (L(1/3, 3ρ+ o(1)) .

We use the HNF algorithm described in [8]. Its bit complexity is bounded by:

O
(

lN3 (logN + log |MZ|)3 +N5
(

logN + log |MZ|2
)

)

.

This allows us to determine explicitly the expected time taken by the computation
of the HNF and of the kernel basis of MZ with respect to the size of the entries:

Proposition 10. The computation of the HNF and of the kernel basis of MZ has
bit complexity bounded by:

O (L(1/3, 5ρ+ o(1)) .

In the following, we will need bounds on |uj | and on |AR|. Direct application of
the methods used in [8] leads to the following result:

Lemma 11. |uj | and |AR| satisfy:

log |uj | = O (L(1/3, ρ+ o(1))

log |AR| = O (L(1/3, ρ+ o(1)) .

4.2. The computation of R and of the system of fundamental units. To
compute the regulator and a system of fundamental units, we have to find a set
of r row vectors that span LR. To do that, we take successive r × r determinants
from submatrices extracted from AR, and we perform some elementary operations
on the rows of AR. This procedure is described in Algorithm 2, which was first
introduced in [4], Algorithm 6.5.7. It makes use of the real GCD algorithm, which
is also presented in [4], Algorithm 5.9.3. Given two multiples of the regulator aR
and bR, where a and b are integers, the real GCD algorithm outputs dR, where d
is the GCD of a and b, under the assumption that R > 0.2. Algorithm 2 also calls
the pre-computation step described in Algorithm 3. This step, not presented in [4],
is essential to ensure the validity of Algorithm 2.

AN L(1/3) ALGORITHM FOR NUMBER FIELDS 9

Algorithm 2 Computation of the regulator and a system of fundamental units

Input: AR and the corresponding units βi

Output: R and a system of fundamental units
R1 ← 0
i← r − 2
Find r linearly independent rows using Algorithm 3
while i < l do

Let A be the matrix obtained by extracting any r columns and rows i− r + 2
to i from AR.
R2 ← detA
Using the real GCD algorithm, compute u, v,R3 such that

uR1 + vR2 = R3

R1 ← R3

γi ← βv
i × βi−r+1

(−1)ru

i← i+ 1
end while

R← R1

Algorithm 3 Search for r independent rows

Input: AR

Output: A permutation of the rows of AR such that the first r are independent
A1 ← rAR

1

i← 1
for i = 2 to r do

m← i
ret← 0
while ret = 0 do

Ai ←







Ai−1

rAR

m






.

if det(At
iAi) = 0 then

m← m+ 1
else

Swap rAR

i and rAR

m

ret← 1
end if

end while

end for

The main loop of Algorithm 2 ensures that the sub-lattice L′
R

of LR corresponding
to the γl, for i− (r− 1) ≤ l ≤ i, has determinant R3. Indeed, L′

R
is the sum of two

sub-lattices of LR differing by a single element. The sign (−1)r is the signature of
the permutation that is performed before this addition to make sure that uR1 +
vR2 = R3 holds by multilinearity of the determinant. The precomputation done

10 JEAN-FRANÇOIS BIASSE

with Algorithm 3 ensures that the first determinant computed is not null, which is
essential for the completeness of Algorithm 2. Whenever det(At

iAi) 6= 0, we have i
linearly independent rows.

We postpone the computation of the complexity of Algorithms 2 and 3 to §5,
where we calculate the precision we have to take for the rational approximations
of the logarithms. In §5, we also ensure that this precision is accurate enough to
enable us to decide whever det(At

iAi) = 0 or not. Algorithm 4 describes the real
GCD computation. Its presentation and correctness can be found in [4].

Algorithm 4 Real GCD algorithm

Input: R1 = aR and R2 = bR with R > 0.1, R1 > R2 and a, b ∈ Z
Output: R3 = dR and u, v ∈ Z such that uR1 + vR2 = R3

u0 ← 1, v0 ← 0
u1 ← 0, v1 ← 1
while R2 > 0.1 do

q ← ⌊R1/R2⌋, r ← R1 −R2⌊R1/R2⌋
u1 ← u0 − qu1

v1 ← v0 − qv1
R1 ← R2

R2 ← r
end while

R3 ← R1

u← u1, v ← v1

5. Approximation issues

The matrix MR contains fixed point rational approximations x̂ij of the loga-
rithms of the units xij := log |φi|j . In this section, we discuss the precision of the
computation of the regulator. In the following, we count the precision in bits. For
example, we say that x̂ is a rational approximation of x ∈ R with precision q if
|x̂− x| < 2−q. Let q0 be the precision of the matrix MR. We have for i ≤ N +K1r
and j ≤ r + 1:

x̂ij =

⌈log |xij |⌉
∑

k=−q0

2kaij
k ,

where the aij
k are the coefficients of the development of xij as

∑∞
k=−∞ 2kaij

k . Before
establishing the list of the steps where we might loose precision, we recall the
following result that we will use to estimate the loss of precision whenever we add
or multiply rational approximations:

Lemma 12. Let x̂ and ŷ be rational approximations of precision q1 of respectively
x and y, and u ∈ Z such that ⌈log2 u⌉ = q2 < q1, then:

• x̂+ ŷ is a rational approximation of x+ y of precision q1 − 1.
• ux̂ is a rational approximation of ux of precision q1 − q2.
• x̂ŷ is an approximation of xy of precision q1 −max {log2 |x|, log2 |y|}.

q0 is the precision taken for the approximation of the log |φi|j . We set its value
to:

q0 := L(1/3, 3ρ).

AN L(1/3) ALGORITHM FOR NUMBER FIELDS 11

The computation of the approximate value of each log |φi|j for j ≤ N +K1r and
j ≤ r + 1 takes O(M(q0) log q0) ∈ O (L(1/3, 3ρ+ o(1))) bit operations [1]. As we
have to perform this computation

(r + 1)(N +K1r) ∈ O (L(1/3, ρ+ o(1))

times, the time taken for the creation of MR is bounded by O (L(1/3, 3ρ+ o(1))).
Now, let us procede with the enumeration of the steps in the algorithm that dete-
riorate the precision. The first source of error is the computation of the coefficients
of the matrix AR. Indeed, it contains rational approximations of

N+K1r
∑

i=1

u
(i)
j log |φi|j ,

for j = 1, . . . , l. The loss of precision is due to the multiplications by the u
(i)
j and

to the N + K1r additions. We deduce from Lemma 11 the following proposition
that gives us the loss of precision occuring in the computation of the coefficients of
AR with respect to the original precision taken during the construction of M :

Proposition 13. The computation of
∑

i u
(i)
j log |φi|j for j = 1, . . . , r + 1, with

precision q′, requires that the precision q0 of the log |φi|j be:

q′ +N +K1r + max
i,j

{

log2 |u(i)
j |
}

.

Thus, the loss of precision during the computation of AR is bounded by

O(L(1/3, ρ+ o(1))).

Proof. Multiplying log2 |φi|j by ui induces a loss of

log2 |ui| ∈ O(L(1/3, ρ+ o(1)))

bits of precision. Furthermore every addition induces the loss of one bit of precision.
As we performN+K1r = O(L(1/3, ρ+o(1))) of them, we thus lose another N+K1r
bits of precision. Consequently, the total loss of precision is bounded from above
by:

N +K1r + max
i,j

{

log2 |u(i)
j |
}

∈ O(L(1/3, ρ+ o(1))).

�

Once AR is obtained, we need to compute successive r×r determinants extracted
from this matrix. Every computation of such a determinant induces a loss of pre-
cision. The following proposition allows us to evaluate the loss of precision for one
computation of an r × r determinant of a matrix Ω̂ extracted from AR.

Proposition 14. The computation with precision q′ of the determinant of an r× r
matrix Ω̂ extracted from AR, and which is a rational approximation of Ω ∈ Rr×r,
requires that

q = q′ + (r/2 + 1) log2(r) log2

(

|Ω|r−1 + 1
)

,

where q is the precision of the coefficients of AR, and |Ω| = maxi,j |Ωij |. Thus, the
loss of precision during the computation of the determinant of an r × r submatrix
of AR is bounded by O (L(1/3, ρ+ o(1))).

12 JEAN-FRANÇOIS BIASSE

Proof. We know that Ω = (ω1, . . . , ωr) and Ω̂ = (ω̂1, . . . , ω̂r) are r × r matrices

with r ≤ n ∈ O(log2 (|∆|)α
) and |Ω− Ω̂| ≤ 2−q, and furthermore, by lemma 11, Ω

satisfies log2 |Ω| ∈ O(L(1/3, ρ+o(1))). We have by multilinearity of the determinant
and by Hadamard’s inequality:

| det Ω̂− detΩ| = |
r
∑

i=1

det(ω1, . . . , ωi−1, ω̂i − ωi, ω̂i+1, . . . , ω̂r)|

≤ rr/2+1(|Ω|r−1 + 1)2−q.

Thus, the loss of precision is of

(r/2 + 1) log2(r) log2

(

|Ω|r−1 + 1
)

= O(L(1/3, ρ+ o(1))).

�

The last source of loss of precision is the series of multiplications and additions
involved in the computation of the real GCD of two approximations of multiples of
the regulator. The following proposition gives us this loss of precision during the
successive real GCD computations in Algorithm 2, knowing from Heuristic 6 that
the real GCD need not be called more than K1r times.

Proposition 15. If we have the determinants of the successive r× r matrices with
precision q, then we can obtain the regulator with precision q′ providing

q = q′ +
K1r

3

4
log2

2(r) log2
2 |AR|.

Thus, the loss of precision during the successive real GCD computations is bounded
by O (L(1/3, 2ρ+ o(1))).

Proof. Whenever we compute another determinant R2 of an r× r matrix extracted
from AR, we have to perform the step

R1 ← R2 − R1⌊R2/R1⌋
at most log2R2 times to get the real GCD of R1 and R2, where R1 is the previous
approximation of the regulator R. We know that the coefficients of the submatrix
whose determinant is R2 have bit size bounded by

log2 |Ω| ≤ log2 |AR| ∈ O(L(1/3, ρ+ o(1))).

By Hadamard’s inequality, we have:

log2R2 ≤ r/2 log2 r log2 |AR| = O(L(1/3, ρ+ o(1))),

which gives us an upper bound on the number of times we enter the main loop of

the real GCD algorithm. Every multiplication R1

⌊

R2

R1

⌋

induces the loss of at most

log2R2 bits of precision. Thus, the total loss of precision of one call to the real
GCD algorithm is of:

r2

4
log2

2(r) log2
2 |AR| = O (L(1/3, 2ρ+ o(1))) .

As we know that Algorithm 4 is called at most K1r times, the loss of precision after
the K1r calls for the real GCD algorithm is still of L(1/3, 2ρ+ o(1)) bits. The last

thing we have to do is to check the validity of the value
⌊

R2

R1

⌋

. Indeed if R2/R1 is

close to an integer, then we risk to compute
⌊

R2

R1

⌋

± 1. Assume that R1 = k1R and

AN L(1/3) ALGORITHM FOR NUMBER FIELDS 13

R2 = k2R, with k1 = k′1d, k2 = k′2d, and with k′1 and k′2 coprime. Theoretically, we
have

⌊R2/R1⌋ = ⌊k′2/k′1⌋,
but we can obtain the wrong value if k′2 ∼ Kk′1 for some integer K, the worst
case scenario being k′2 = Kk′1 ± 1 (we cannot have k′2 = Kk′1 since k′1 and k′2 are
coprime). In that case, we have:

∣

∣

∣

∣

k′2
k′1
−K

∣

∣

∣

∣

≥ 1

k′1
.

Thus, we need that the precision be at most of 2 log2 |k′1|. As the loss of pre-
cision encountered so far is in O (L(1/3, 2ρ+ o(1))), and as the original preci-

sion is in O (L(1/3, 3ρ+ o(1))), the current precision of the value
⌊

R2

R1

⌋

is still

in O (L(1/3, 3ρ+ o(1))). Furthermore, log2 |k′1| ≤ log2R1 ≤ L(1/3, ρ + o(1)), so
the condition is satisfied and the value of the quotient can be trusted. �

Corollary 16. The total loss of precision is of:

N +K1r + max
i,j

{

log2 |u(i)
j |
}

+
K1r

3

4
log2

2(r) log2
2 |AR| ∈ O (L(1/3, 2ρ+ o(1))) .

These considerations allow us to evaluate the complexity of Algorithm 2. Indeed,
it consists of at most K1r computations of the determinant of an r × r submatrix
Ω̂ of AR. Let I ⊂ [1,K2r] and J ⊂ [1, r + 1] both be subsets of cardinality r such

that Ω̂ =: (ŷij)i∈I,j∈J . In addition, we define A = (aij)i∈I,j∈J ∈ Zr×r such that it
satisfies:

ŷij =

⌈log2 |yij|⌉
∑

k=−q

2kaij
k =:

aij

2q
.

We thus have by multilinearity:

det Ω̂ =
detA

2rq
,

where q ∈ O (L(1/3, 3ρ+ o(1)) is the precision of the coefficients of AR. Further-

more, the computation of detA takes Õ(r4 log2 |A|) bit operations (see [14]), where

Õ denotes the complexity when we omit the logarithm factors. Therefore, the
expected time for the computation of detA is in

Õ
(

r4
(

q + log2 |Ω̂|
))

,

since log2 |A| = maxij {log2 aij} ≤ q + log2 |Ω̂|. As q is in O (L(1/3, 3ρ+ o(1))),

and as we know from Lemma 11 that log2 |Ω̂| ∈ O (L(1/3, ρ+ o(1))), we have the
following result on the complexity of Algorithm 2:

Proposition 17. The complexity of Algorithm 2 lies in

O(L(1/3, 3ρ+ o(1))).

Now, let us check the validity and the complexity of Algorithm 3. Given an r× i
submatrix Ai of AR, we want to determine whether its rows are approximations of
independant rows. To do this, we compute det(At

iAi) and decide whether this is

14 JEAN-FRANÇOIS BIASSE

the approximation of a zero determinant. We use Minkowski’s bound, which states
that

(7)
√

detAt
iAi ≥

(

‖b(i)1 ‖2√
r

)r

,

where b
(i)
1 is the non-zero vector of minimal length in the lattice spanned by the

rows of Ai. For every i, b
(i)
1 is the logarithm vector of a unit. In [7], it is shown

that for every unit ǫ that is not a root of unity, we have:

(8)

(

∑

i

log |ǫ|2i

)1/2

>
21

128

log n

n2
.

Therefore, we can prove the following proposition:

Proposition 18. The precision q0 = L(1/3, 3ρ) is accurate enough to ensure the
validity of Algorithm 3, whose complexity is in

O(L(1/3, 3ρ+ o(1))).

Proof. First, we calculate the precision of the value det(At
iAi). The coefficients c

(i)
kl

(k, l ≤ i) of At
iAi are given by:

c
(i)
kl =

∑

h≤r

a
(i)
kha

(i)
lh ,

where the a
(i)
kl (k ≤ i, l ≤ r) are the coefficients of Ai. We know from Lemma 11 that

the coefficients of Ai have bit size in O (L(1/3, ρ+ o(1))), thus, using Lemma 12,

we prove that the precision of c
(i)
kl (k, l ≤ i) is still in O(L(1/3, 3ρ+ o(1))). Using

the same techniques as in Proposition 14, we prove that the loss of precision we
encounter during the computation of det(At

iAi) is of

(i/2 + 1) log2(i) log2

(

|At
iAi|i−1 + 1

)

.

As log2 |At
iAi| ∈ O (L(1/3, 2ρ+ o(1))), this loss of precision is inO (L(1/3, 2ρ+ o(1)))

as well. We thus have the value of det(At
iAi) with a precision q satisfying:

q ∈ O (L(1/3, 3ρ+ o(1))) .

On the other hand, we have a lower bound on the value of det(At
iAi) from the com-

bination of (7) and (8) in the case where Ai contains approximations of independent
rows:

det(At
iAi) ≥

(

21

128

)2r
1

rr

(

log n

n2

)2r

.

If det(At
iAi) ≤ 1/2q, then it might equal zero, otherwise it is necessarily the approx-

imation of a strictly non-zero determinant. Furthermore, the bound on det(At
iAi)

satisfies:
∣

∣

∣

∣

∣

log

[

(

21

128

)2r
1

rr

(

logn

n2

)2r
]∣

∣

∣

∣

∣

≤ n log(n)(1 + o(1))≪ q.

We can thus conclude that if det(At
iAi) ≤ 1/2q, then the rows of Ai are necessarily

dependent. �

This allows us to state the following proposition:

AN L(1/3) ALGORITHM FOR NUMBER FIELDS 15

Proposition 19. The complexity of the computation of R and of the system of
fundamental units lies in

O(L(1/3, 3ρ+ o(1))).

In addition, we know the value of R with a precision:

qR ∈ O (L(1/3, 3ρ+ o(1)) .

6. Subexponentiality

In this section, we show that we achieve a subexponential complexity for the
overall running time of the algorithm. Direct application of Proposition 5 with the
parameters

β =
1

3
, d = ρ

ζ =
2

3
, c = κ(δ + ν + o(1)),

shows that the expected number of trials to obtain a relation is at most

L

(

1/3,
κ(ν + δ)

3ρ
+ o(1)

)

.

We know that the factor base has size N ∈ O (L(1/3, ρ)), thus the complexity of
the search for N +K1r relations is bounded by:

L

(

1/3,
κ(ν + δ)

3ρ
+ ρ+ o(1)

)

.

The number of φ in the search space is in O (L(1/3), νδκ). We thus have the
following constraint on the parameters:

(9) νδκ =
κ(ν + δ)

3ρ
+ ρ.

We can prove that the strategy minimizing the overall time is the one where the
relation collection and the linear algebra take the same time. As the complexity of
the linear algebra is dominated by the HNF computation which lies is O(L(1/3, 5ρ+
o(1))), we thus have the additional constraint:

(10) κνδ = 5ρ.

From (9) and (10), we obtain:

νδ =
5ρ

κ

ν + δ =
12b2

κ
.

Thus, δ and ν are roots of the polynomial:

X2 − 24ρ2

κ
X +

5ρ

κ
.

These roots exist providing we have:

ρ ≥ 3

√

5κ

144
.

16 JEAN-FRANÇOIS BIASSE

The optimal choice is to minimize ρ, thus fixing the parameters δ and ν:

δ = ν =

√

5ρ

κ
=

6

√

625

144κ2
.

The total running time becomes L(1/3, 5ρ+ o(1)), with:

ρ =
3

√

5κ

144
.

Acknowledgments

The author thanks Andreas Enge for his support, the fruitful discussions we
had, and his careful reading of this article. He also thanks Steven Galbraith for
the original suggestion of adapting the L(1/3) algorithm of [6] to the context of
number fields, and Michael Pohst for pointing out [7].

References

[1] R.P. Brent. Fast multiple-precision evaluation of elementary functions. Journal of the ACM,
23:242–251, 1976.

[2] J. Buchmann. A subexponential algorithm for the determination of class groups and regu-
lators of algebraic number fields. In Catherine Goldstein, editor, Séminaire de Théorie des

Nombres, Paris 1988–1989, Progress in Mathematics, pages 27–41, Boston, 1990. Birkhäuser.
[3] E.R. Canfield, P. Erdős, and C. Pomerance. On a problem of Oppenheim concerning ‘factori-

satio numerorum’. J. Number Theory, 17:1–28, 1983.
[4] H. Cohen. A course in computational algebraic number theory, volume 138 of Graduate Texts

in Mathematics. Springer-Verlag, 1991.
[5] A. Enge. Computing discrete logarithms in high-genus hyperelliptic Jacobians in provably

subexponential time. Mathematics of Computation, 71:729–742, 2001.
[6] A. Enge and P. Gaudry. An L (1/3 + ǫ) algorithm for the discrete logarithm problem for low

degree curves. In EUROCRYPT ’07: Proceedings of the 26th annual international confer-

ence on Advances in Cryptology, Lecture Notes in Computer Science, pages 379–393, Berlin,
Heidelberg, 2007. Springer-Verlag.

[7] C. Fieker and M. Pohst. Dependency of units in number fields. Mathematics of Computation,
75:1507–1518, 2006.

[8] M. Giesbrecht, M. Jacobson, and A. Storjohann. Algorithms for large integer matrix problems.
In S. Boztas and I. Shparlinski, editors, Proceedings of the 14th International Symposium on

Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC-14, volume 2227
of Lecture Notes in Computer Science, pages 297–307, Heidelberg, 2001. Springer Verlag.

[9] J.L. Hafner and K.S. McCurley. A rigorous subexponential algorithm for computation of class
groups. Journal of American Society, 2:839–850, 1989.

[10] A.K. Lenstra. On the calculation of regulators and class numbers of quadratic fields. In
Journées arithmétiques, pages 123–150. Cambridge Univ. Press, 1982.

[11] M. Mignotte. An inequality about factors of polynomials. Mathematics of Computation,
28:1153–1157, 1974.

[12] D. Shanks. Class number, a theory of factorization, and genera. In W. J. LeVeque and E. G.
Straus, editors, Proceedings of Symposia in Pure Mathematics, volume 20, pages 415–440.
American Mathematical Society, 1969.

[13] D. Shanks. The infrastructure of a real quadratic field and its applications. In Proceedings of

the 1972 Number Theory Conference, pages 217–224. Boulder: University of Colorado, 1972.
[14] A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Department of Com-

puter Science, Swiss Federal Institute of Technology – ETH, 2000.

LIX , École Polytechnique , 91128 PALAISEAU , France

E-mail address: biasse@lix.polytechnique.fr

