
HAL Id: inria-00440312
https://hal.inria.fr/inria-00440312

Submitted on 10 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BlobSeer: Bringing High Throughput under Heavy
Concurrency to Hadoop Map/Reduce Applications

Bogdan Nicolae, Diana Moise, Gabriel Antoniu, Luc Bougé, Matthieu Dorier

To cite this version:
Bogdan Nicolae, Diana Moise, Gabriel Antoniu, Luc Bougé, Matthieu Dorier. BlobSeer: Bringing
High Throughput under Heavy Concurrency to Hadoop Map/Reduce Applications. [Research Report]
RR-7140, INRIA. 2009, pp.20. <inria-00440312>

https://hal.inria.fr/inria-00440312
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
71

40
--

F
R

+
E

N
G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

BlobSeer: Bringing High Throughput
under Heavy Concurrency

to Hadoop Map/Reduce Applications

Bogdan Nicolae — Diana Moise — Gabriel Antoniu — Luc Bougé — Matthieu Dorier

N° 7140

December 2009

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

BlobSeer: Bringing High Throughputunder Heavy Conurrenyto Hadoop Map/Redue AppliationsBogdan Niolae∗, Diana Moise†, Gabriel Antoniu†, Lu Bougé‡,Matthieu Dorier‡Thème : Calul distribué et appliations à très haute performaneÉquipe-Projet KerDataRapport de reherhe n° 7140 � Deember 2009 � 20 pagesAbstrat: Hadoop is a software framework supporting the Map/Redue pro-gramming model. It relies on the Hadoop Distributed File System (HDFS) as itsprimary storage system. The e�ieny of HDFS is ruial for the performaneof Map/Redue appliations. We substitute the original HDFS layer of Hadoopwith a new, onurreny-optimized data storage layer based on the BlobSeerdata management servie. Thereby, the e�ieny of Hadoop is signi�antly im-proved for data-intensive Map/Redue appliations, whih naturally exhibit ahigh degree of data aess onurreny. Moreover, BlobSeer's features (built-inversioning, its support for onurrent append operations) open the possibilityfor Hadoop to further extend its funtionalities. We report on extensive exper-iments onduted on the Grid'5000 testbed. The results illustrate the bene�tsof our approah over the original HDFS-based implementation of Hadoop.Key-words: Distributed �le systems; High-performane systems; Highthroughput; Large-sale; Heavy aess onurreny; Map/Redue appliations;Hadoop; BlobSeer.
Contat author: Gabriel.Antoniu�inria.fr.A slightly revised version of this work will be published in the Proeedings of the 24thIEEE International Parallel and Distributed Proessing Symposium (IPDPS 2010), Atlanta,April 19-23, 2010

∗ University of Rennes 1/IRISA, Rennes, Frane
† INRIA/IRISA, Rennes, Frane
‡ ENS Cahan Bretagne/IRISA, Rennes, Frane

BlobSeer: augmenter la bande passantedans un ontexte de forte onurrenepour les appliations Map/Redue sur HadoopRésumé : Hadoop est un environnement logiiel pour la mise en ÷uvre dumodèle de programmation Map/Redue. Il s'appuie prinipalement sur le sys-tème de gestion de �hiers distribué HDFS. L'e�aité de HDFS est un pa-ramètre ruial de la performane des appliations Map/Redue. Nous pro-posons de remplaer la ouhe HDFS de Hadoop par une nouvelle ouhe destokage des données qui soit optimisée pour une utilisation onurrente. Cettenouvelle ouhe s'appuie sur le servie de gestion de données BlobSeer. Nousmontrons que l'e�aité de Hadoop est ainsi améliorée de manière signi�ativepour des appliations Map/Redue qui manipulent intensivement les données:en e�et, elles o�rent naturellement un haut degré de onurrene. De plus, lesfontionnalités spéi�ques de BlobSeer (gestion intégrée des versions, supportpour les opérations �append� onurrentes) permettent d'envisager d'étendreles fontionnalités de Hadoop. Nous rendons ompte d'une ampagne intensived'expérienes menée sur l'instrument Grid'5000. Les résultats illustrent les bé-né�es de notre approhe par rapport à l'implémentation primitive de Hadoopfondée sur HDFS.Mots-lés : Système de gestion de �hiers distribué; système haute perfor-mane; grande bande passante; grande éhelle; aès hautement onurrents;appliations Map/Redue; Hadoop; BlobSeer.

BlobSeer: High Throughput under Heavy Conurreny for Map/Redue 3Contents1 Introdution 32 Speialized �le systems for data-intensive Map/Redue appli-ations 42.1 Requirements for the storage layer 42.2 Dediated �le systems for Map/Redue 43 BlobSeer as a onurreny-optimized �le system for Hadoop 63.1 Design overview of BlobSeer . 63.2 Integrating BlobSeer with Hadoop 93.3 BlobSeer: detailed arhiteture 103.4 Zooming on reads . 113.5 Zooming on writes . 114 Experimental evaluation 124.1 Mirobenhmarks . 134.2 Senario 1: single writer, single �le 144.3 Senario 2: onurrent reads, shared �le 154.4 Senario 3: Conurrent appends, shared �le 164.5 Higher-level experiments with Map/Redue appliations 175 Conlusion 181 IntrodutionMap/Redue [5℄ is a parallel programming paradigm suessfully used by largeInternet servie providers to perform omputations on massive amounts of data.After being strongly promoted by Google, it has also been implemented bythe open soure ommunity through the Hadoop [7℄ projet, maintained bythe Apahe Foundation and supported by Yahoo! and even by Google itself.This model is urrently getting more and more popular as a solution for rapidimplementation of distributed data-intensive appliations.At the ore of the Map/Redue frameworks stays a key omponent: thestorage layer. To enable massively parallel data proessing to a high degreeover a large number of nodes, the storage layer must meet a series of spei�requirements (disussed in Setion 2), that are not part of design spei�ationsof traditional distributed �le systems employed in the HPC ommunities: these�le systems typially aim at onforming to well-established standards suh asPOSIX and MPI-IO. To address these requirements, speialized �le systemshave been designed, suh as HDFS [8℄, the default storage layer of Hadoop.HDFS has however some di�ulties to sustain a high throughput in the aseof onurrent aesses to the same �le. Moreover, many desirable features aremissing altogether, suh as the support for versioning and for onurrent updatesto the same �le.We substitute the original data storage layer of Hadoop with a new,onurreny-optimized storage layer based on BlobSeer, a data managementservie we developed with the goal of supporting e�ient, �ne-grain aess tomassive, distributed data aessed under heavy onurreny. By using BlobSeerRR n° 7140

4 B. Niolae, D. Moise, G. Antoniu, L. Bougé, M. Dorierinstead of its default storage layer, Hadoop signi�antly improves its sustainedthroughput in senarios that exhibit highly onurrent aesses to shared �les.We report on extensive experimentation both with syntheti mirobenhmarksand real Map/Redue appliations. The results illustrate the bene�ts of ourapproah over the original HDFS-based implementation of Hadoop. Moreoverwe support additional features suh as e�ient onurrent appends, onurrentwrites at random o�sets and versioning. These features ould be leveraged toextend or improve funtionalities in future versions of Hadoop or other Map/Re-due frameworks.2 Speialized �le systems for data-intensiveMap/Redue appliations2.1 Requirements for the storage layerMap/Redue appliations typially runh ever growing data sets of billions ofsmall reords. Storing billions of KB-sized reords in separate tiny �les is bothunfeasible and hard to handle, even if the storage layer would support it. Forthis reason, data sets are usually paked together in huge �les whose size reahesthe order of several hundreds of GB.The key strength of the Map/Redue model is its inherently high paralleliza-tion of the omputation, that enables proessing of PB of data in a ouple ofhours on large lusters onsisting of several thousand nodes. This has severalonsequenes for the storage bakend. Firstly, sine data is stored in huge �les,the omputation will have to proess small parts of these huge �les onurrently.Thus, the storage layer is expeted to provide e�ient �ne-grain aess to the�les. Seondly, the storage layer must be able to sustain a high throughputin spite of heavy aess onurreny to the same �le, as thousands of lientssimultaneously aess data.Dealing with of huge amounts of data is di�ult in terms of manageability.Simple mistakes that may lead to loss of data an have disastrous onsequenessine gathering suh amounts of data requires onsiderable e�ort investment.Versioning in this ontext beomes an important feature that is expeted fromthe storage layer. Not only it enables rolling bak undesired hanges, but alsobranhing a dataset into two independent datasets that an evolve indepen-dently. Obviously, versioning should have a minimal impat both on perfor-mane and on storage spae overhead.Finally, another important requirement for the storage layer is its ability toexpose an interfae that enables the appliation to be data-loation aware. Thisallows the sheduler to use this information to plae omputation tasks loseto the data. This redues network tra�, ontributing to a better global datathroughput.2.2 Dediated �le systems for Map/RedueThese ritial needs of data-intensive distributed appliations have not beenaddressed by lassial, POSIX-ompliant distributed �le systems. Therefore,Google introdued GoogleFS [6℄ as a storage bakend that provides the rightINRIA

BlobSeer: High Throughput under Heavy Conurreny for Map/Redue 5abstration for their Map/Redue data proessing framework. Then, other spe-ialized �le systems emerged: ompanies suh as Yahoo! and Kosmix followedthis trend by emulating the GoogleFS arhiteture with the Hadoop DistributedFile System (HDFS, [8℄) and CloudStore [4℄.Essentially, GoogleFS splits �les into �xed-sized 64 MB hunks that aredistributed among hunkservers. Both metadata that desribes the diretorystruture of the �le system, and metadata that desribes the hunk layout arestored on a entralized master server. Clients that need to aess a �le �rstontat this server to obtain the loation of the hunks that orrespond to therange of the �le they are interested in. Then, they diretly interat with theorresponding hunkservers. GoogleFS is optimized to sustain a high through-put for onurrent reads/appends from/to a single �le, by relaxing the semantionsisteny requirements. It also implements support for heap snapshootingand branhing.Hadoop Map/Redue is a framework designed for easily writing and e�-iently proessing Map/Redue appliations. The framework onsists of a singlemaster jobtraker , and multiple slave tasktrakers , one per node. The jobtrakeris responsible for sheduling the jobs' omponent tasks on the slaves, monitoringthem and re-exeuting the failed tasks. The tasktrakers exeute the tasks asdireted by the master. HDFS is the default storage bakend that ships with theHadoop framework. It was inspired by the arhiteture of GoogleFS. Files arealso split in 64 MB bloks that are distributed among datanodes . A entralizednamenode is responsible to maintain both hunk layout and diretory struturemetadata. Read and write requests are performed by diret interation withthe orresponding datanodes and do not go through the namenode.In Hadoop, reads essentially work the same way as with GoogleFS. However,HDFS has a di�erent semantis for onurrent write aess: it allows only onewriter at a time, and, one written, data annot be altered, neither by overwrit-ing nor by appending. Several optimization tehniques are used to signi�antlyimprove data throughput. First, HDFS employs a lient side bu�ering meha-nism for small read/write aesses. It prefethes data on reading. On writing,it postpones ommitting data after the bu�er has reahed at least a full hunksize. Atually, suh �ne-grain aesses are dominant in Map/Redue applia-tions, whih usually manipulate small reords. Seond, Hadoop's job sheduler(the jobtraker) plaes omputations as lose as possible to the data. For thispurpose, HDFS expliitely exposes the mapping of hunks over datanodes to theHadoop framework.With loud omputing beoming more and more popular, providers suh asAmazon started o�ering Map/Redue platforms as a servie. Amazon's initia-tive, Elasti MapRedue [2℄, employs Hadoop on their Elasti Compute Cloudinfrastruture (EC2, [1℄). The storage bakend used by Hadoop is Amazon'sSimple Storage Servie (S3, [3℄). The S3 framework was designed with sim-pliity in mind, to handle objets that may reah sizes in the order of GB: theuser an write, read, and delete objets simply identi�ed by an unique key. Theaess interfae is based on well-established standards suh as SOAP. Carefulonsideration was invested into using deentralized tehniques and designingoperations in suh way as to minimize the need for onurreny ontrol. A faulttolerant layer enables operations to ontinue with minimal interruption. Thisallows S3 to be highly salable. On the downside however, simpliity omes ata ost: S3 provides limited support for onurrent aesses to a single objet.RR n° 7140

6 B. Niolae, D. Moise, G. Antoniu, L. Bougé, M. DorierOther e�orts aim at adapting general-purpose distributed �le systems fromthe HPC ommunity to the needs of the Map/Redue appliations. For instane,PVFS (Parallel Virtual File System) and GPFS (General Parallel File System,from IBM) have been adapted to serve as a storage layer for Hadoop. GPFS [13℄is part of the shared-disk �le systems lass, that use a pool of blok-level storage,shared and distributed aross all the nodes in the luster. The shared storagean be diretly aessed by lients, with no interation with an intermediateserver. Integrating GPFS with the Hadoop framework, involves overomingsome limitations: GPFS supports a maximal blok size of 16 MB, whereasHadoop often makes use of data in 64 MB hunks; Hadoop's jobtraker must beaware of the blok loation, while GPFS (like all parallel �le systems) exposesa POSIX interfae. PVFS [12℄ belongs to a seond lass of parallel �le systems,objet-based �le systems whih separate the nodes that store the data from theones that store the medatata (�le information, and �le blok loation). When alient wants to aess a �le, it must �rst ontat the metadata server and thendiretly aess the data on the data servers indiated by the metadata server.In [14℄, it is desribed the way PVFS was integrated with Hadoop, by adding alayer on top of PVFS. This layer enhaned PVFS with some features that HDFSalready provides to the Hadoop framework: performing read-ahead bu�ering,exposing the data layout and emulating repliation.The above work has been a soure of inspiration for our approah. Thanks tothe spei� features of BlobSeer, we ould address several limitations of HDFShighlighted in it.3 BlobSeer as a onurreny-optimized �le sys-tem for HadoopIn this setion we introdue BlobSeer, a system for managing massive data in alarge-sale distributed ontext [10℄. Its e�ient version-oriented design enableslok-free aess to data, and thereby favors salablity under heavy onurreny.Thanks to its deentralized data and metadata management, it provides highdata throughput [11℄. The goal of this paper is to show how BlobSeer an beextended into an �lesystem for Hadoop, and thus used as an e�ient storagebakend for Map/Redue appliations.3.1 Design overview of BlobSeerThe goal of BlobSeer is to provide support for data-intensive distributed ap-pliations. No hypothesis whatsoever is made about the struture of the dataat stake: they are viewed as huge, �at sequenes of bytes, often alled BLOBs(Binary Large OBjets). We espeially target appliations that proess BLOBsin a �ne-grain manner. This is the typial ase of Map/Redue appliations,indeed: workers usually aess piees of up to 64 MB from huge input �les,whose size may reah hundreds of GB.A lient of BlobSeer manipulates BLOBs by using a simple interfae thatallows to: reate a new empty BLOB; append data to an existing BLOB; read-/write a subsequene of bytes spei�ed by an o�set and a size from/to an existingBLOB. Eah BLOB is identi�ed by a unique id in the system. INRIA

BlobSeer: High Throughput under Heavy Conurreny for Map/Redue 7

Figure 1: Metadata tree after writing the �rst 4 bloks of a BLOBVersioning is built in BlobSeer at the earliest stage of design. Eah time awrite or append is performed on a BLOB, a new snapshot re�eting the hangesis generated instead of overwriting any existing data. This new snapshot is la-beled with an inremental version number, so that all past versions of the BLOBan potentially be aessed, at least as long as they have not been garbaged forthe sake of storage spae.The version numbers are assigned and managed by the system. In orderto read a part of the BLOB, the lient must speify both the unique id of theBLOB and the snapshot version it desires to read from. A speial all allowsthe lient to �nd out the latest version of a partiular BLOB, but the lient isallowed to read any past version of the BLOB.Although eah write or append generates a new version, only the di�erentialpath is atually stored, so that storage spae is saved at far as possible. Thenew snapshot shares all unmodi�ed data and most of the assoiated metadatawith the previous versions, as we will see further in this setion. Suh an imple-mentation further failitates the implementation of advaned features suh asrollbak and branhing, sine data and metadata orresponding to past versionsremain available in the system and an easily be aessed.The goal of BlobSeer is to sustain high throughput under heavy aess on-urreny in reading, writing and appending. This is ahieved thanks to theombination of various tehniques, inluding: data striping, distributed meta-data, version-based design, lok-free data aess.Data striping. BlobSeer relies on striping: eah BLOB is made up of bloksof a �xed size. To optimize BlobSeer for Map/Redue appliations, we set thissize to the size of the data piee a Map/Redue worker is supposed to proess(i.e., 64 MB in the experiments below with Hadoop, equal to the hunk sizein HDFS). These bloks are distributed among the storage nodes. We use aload balaning strategy that aims at evenly distributing the bloks among thesenodes. As desribed in Setion 4.3, this has a major positive impat in sustaininga high throughput when many onurrent readers aess di�erent parts of thesame �le.Distributed metadata. A BLOB is aessed by speifying a version numberand a range of bytes delimited by an o�set and a size. BlobSeer manages addi-tional metadata to map a given range and a version to the physial nodes wherethe orresponding bloks are loated. We organize metadata as a distributedRR n° 7140

8 B. Niolae, D. Moise, G. Antoniu, L. Bougé, M. Doriersegment tree [15℄: one suh tree is assoiated to eah version of a given blob id.A segment tree is a binary tree in whih eah node is assoiated to a range ofthe blob, delimited by o�set and size. We say that the node overs the range(o�set, size). The root overs the whole BLOB. For eah node that is not a leaf,the left hild overs the �rst half of the range, and the right hild overs the se-ond half. Eah leaf overs a single blok of the BLOB. Figure 1 illustrates suha metadata tree for a 4-blok. To favor e�ient onurrent aess to metadata,tree nodes are distributed: they are stored on the metadata providers using aDHT (Distributed Hash Table). Eah tree node is identi�ed in the DHT byits version and by the range spei�ed through the o�set and the size it overs.Suh a metadata tree is reated when the �rst bloks of the blob are written,for the range overed by those bloks. Then, to avoid the overhead (in time andspae!) of rebuilding suh a tree for the subsequent updates, we reate new treenodes only for the ranges that do interset with the range of the update.Note that metadata deentralization has a signi�ant impat on the globalthroughput, as demonstrated in [11℄: it avoids the bottlenek reated by on-urrent aesses in the ase of a entralized metadata server in most distributed�le systems, inluding HDFS. A detailed desription of the algorithms we useto manage metadata an be found in [10℄: due to spae onstraints, we will notdevelop them further in this paper.Version-based, lok-free, onurreny-optimized data aess. Blob-Seer relies on a versioning-based onurreny ontrol algorithm that maximizesthe number of operations performed in parallel in the system. It is done byavoiding synhronization as muh as possible, both at the data and metadatalevels. The key idea is amazingly simple: no existing data or metadata is evermodi�ed! First, any writer or appender writes its new data bloks, by storingthe di�erential path. Then, in a seond phase, the version number is alloatedand the new metadata referring to these bloks are generated. The �rst phaseonsists in atually writing the new data on the distributed storage nodes. Theonurrent writers an proeed with full parallelism, without any synhroniza-tion. In the seond phase, the new metadata are then �weaved� together withthe metadata of the versions with a lower number. The ruial observation isthat this seond phase an also be mostly onurrent. The only global synhro-nization requirement is that the order in whih the ompletion of the onurrentwrites ours must respet the order in whih the version numbers have beenassigned. This is transparently ensured by the system, without requiring anyexpliit synhronization by the user. Thereby, the algorithm reates the illusionof a fully independent snapshot generation. This allows write/write onurrenyat data level, while still preserving serialization and atomiity.Sine eah writer or appender generates new data/metadata and never modi-�es existing data/metadata, readers are ompletely deoupled from them. Read-ers an thus proeed with full onurreny with respet to writers and appenders(and vie-versa), both for data and metadata aess. We an thus laim thatour approah supports read/read, read/write and write/write onurreny bydesign. This signi�antly overpasses the apabilities of HDFS, whih only al-lows a single writer to proeed at a time. The experimental results presented inSetion 4 learly support our laim. INRIA

BlobSeer: High Throughput under Heavy Conurreny for Map/Redue 9

Figure 2: BlobSeer's arhiteture. The BSFS layer enables Hadoop to use Blob-Seer as a storage bakend through a �le system interfae.3.2 Integrating BlobSeer with HadoopThe Hadoop Map/Redue framework aesses its default storage bakend(HDFS) through a lean, spei� Java API. This API exposes the basi op-erations of a �le system: read, write, append, et. To make Hadoop bene�tfrom BlobSeer's properties, we implemented this API on top of BlobSeer. Weall this higher layer the BlobSeer File System (BSFS): it enables BlobSeer toat as a storage bakend �le system for Hadoop. To enable a fair omparison ofBSFS with HDFS, we addressed several performane-oriented issues highlightedin [14℄. They are brie�y disussed below.File system namespae. The Hadoop framework expets a lassial hierar-hial diretory struture, whereas BlobSeer provides a �at struture for BLOBs.For this purpose, we had to design and implement a speialized namespaemanager, whih is responsible for maintaining a �le system namespae, and formapping �les to BLOBs. For the sake of simpliity, this entity is entralized.Careful onsideration was given to minimize the interation with this namespaemanager, in order to fully bene�t from the deentralized metadata managementsheme of BlobSeer. Our implementation of Hadoop's �le system API onlyinterats with it for operations like �le opening and �le/diretory reation/dele-tion/renaming. Aess to the atual data is performed by a diret interationwith BlobSeer through read/write/append operations on the assoiated BLOB,whih fully bene�t from BlobSeer's e�ient support for onurreny.Data prefething. Hadoop manipulates data sequentially in small hunks ofa few KB (usually, 4 KB) at a time. To optimize throughput, HDFS implementsa ahing mehanism that prefethes data for reads, and delays ommittingdata for writes. Thereby, physial reads and writes are performed with datasizes large enough to ompensate for network tra� overhead. We implementeda similar ahing mehanism in BSFS. It prefethes a whole blok when theRR n° 7140

10 B. Niolae, D. Moise, G. Antoniu, L. Bougé, M. Dorierrequested data is not already ahed, and delays ommitting writes until awhole blok has been �lled in the ahe.A�nity sheduling: exposing data distribution. In a typial Hadoopdeployment, the same physial nodes at both as storage elements and as om-putation workers. Therefore, the Hadoop sheduler strives at plaing the om-putation as lose as possible to the data: this has a major impat on the globaldata throughput, given the huge volume of data being proessed. To enable thissheduling poliy, Hadoop's �le system API exposes a all that allows Hadoopto learn how the requested data is split into bloks, and where those bloksare stored. We address this point by extending BlobSeer with a new primitive.Given a spei�ed BLOB id, version, o�set and size, it returns the list of bloksthat make up the requested range, and the addresses of the physial nodes thatstore those bloks. Then, we simply map Hadoop's orresponding �le systemall to this primitive provided by BlobSeer.3.3 BlobSeer: detailed arhitetureBlobSeer onsists of a series of distributed ommuniating proesses. Figure 2illustrates the proesses and their interations between them.Clients reate, read, write and append data from/to BLOBs. Clients anaess the BLOBs with full onurreny, even if they all aess the sameBLOB.Data providers physially store the bloks generated by appends and writes.New data providers may dynamially join and leave the system. In theontext of Hadoop Map/Redue, the nodes hosting data providers typi-ally also at as omputing elements as well. This enables them to bene�tfrom the sheduling strategy of Hadoop, whih aims at plaing the om-putation as lose as possible to the data.The provider manager keeps information about the available storage spaeand shedules the plaement of newly generated bloks. For eah suhblok to be stored, it selets the data providers aording to a load bal-aning strategy that aims at evenly distributing the bloks aross dataproviders.Metadata providers physially store the metadata that allows identifying thebloks that make up a snapshot version. We use a distributed metadatamanagement sheme to enhane onurrent aess to metadata. The nodeshosting metadata providers may at as omputing elements as well.The version manager is in harge of assigning snapshot version numbers insuh a way that serialization and atomiity of writes and appends is guar-anteed. It is typially hosted on a dediated node.The namespae manager is not part of the BlobSeer. It is an additionalentity introdued for BSFS, the higher-level �le system layer. It maintainsa �le system namespae, and maps �les in the namespae to BLOBs. Itis typially hosted on a dediated node. INRIA

BlobSeer: High Throughput under Heavy Conurreny for Map/Redue 113.4 Zooming on readsTo read data, the lient �rst needs to �nd out the BLOB orresponding to therequested �le. This information is typialy available loally (as it has typiallybeen requested from the namespae manager when the �le was opened). Thenthe lient must speify the version number it desires to read from, as well asthe o�set and size of the range to be read. The lient may also all a speialprimitive �rst, to �nd out the latest version available in the system at the timethis primitive was invoked. In pratie, sine Hadoop's �le system API does notsupport versioning yet, this all is always issued in the urrent implementation.Next, the read operation in BSFS follows BlobSeer's sequene of steps forreading a range within a BLOB. The orresponding distributed algorithm, de-sribing the interations between the lient, the version manager, the distributeddata and metadata providers are presented and disussed in detail in [10℄. Themain global steps an be summarized as follows. The lient queries the ver-sion manager about the requested version of the BLOB. The version managerforwards the query to the metadata providers, whih send to the lient the meta-data that orresponds to the bloks that make up the requested range. Whenthe loation of all these bloks was determined, the lient fethes the bloksfrom the data providers. These requests are sent asynhronously and proessedin parallel by the data providers. Note that the �rst and the last blok in the se-quene of bloks for the requested range may not need to be fethed ompletely,as the requested range may be unaligned to full bloks. In this ase, the lientfethes only the required parts of the extremal bloks.3.5 Zooming on writesTo write data, the lient �rst splits the data to be written into a list of bloksthat orrespond to the requested range. Then, it ontats the provider manager,requesting a list of providers apable of storing the bloks: one provider foreah blok. Bloks are then written in parallel to the providers alloated by theprovider manager. If, for some reason, writing of a blok fails, then the wholewrite fails. Otherwise the lient proeeds by ontating the version managerto announe its intent to update the BLOB. As highlighted in Setion 3.1,onurrent writers of di�erent bloks of the same �le an perform this �rst stepwith full parallelism. Subsequently, the version manager assigns to eah writerequest a new snapshot version number. This number is used by the lient togenerate new metadata, weave it together with existing metadata, and store iton the distributed metadata providers, in order to reate the illusion of a newstandalone snapshot.Note that the term �existing metadata� overs two ases. First, it refersto metadata orresponding to previous, ompleted writes. But it also refersto metadata generated by still ative onurrent writers that were assigneda lower version number (i.e., they have written the data, but they have not�nished writing the metadata)! In partiular, suh onurrent writers mightbe in the proess of generating and writing metadata, on whih the lient shalldepend when weaving its own metadata. To deal with this situation, the versionmanager hints the lient on suh dependenies. In some sense, the lient is ableto predit the values orresponding to the metadata that is being written by theonurrent writers that are still in progress. It an thus proeed onurrentlyRR n° 7140

12 B. Niolae, D. Moise, G. Antoniu, L. Bougé, M. Dorierwith the other writers, rather than waiting for them to �nish writing theirmetadata. The reader an refer to [10℄ for further details on how we handlemetadata for onurrent writers.One metadata was suessfully written to the metadata providers, the lientnoti�es the version manager of suess, and returns to the user. Observe thatthe version manager needs to keep trak of all writers onurrently ative, anddelay ompleting a new snapshot version until all writers that were assigned alower version number reported suess. The detailed algorithm for writing isprovided in [10℄.The append operation is idential to the write operation, exept for a singledi�erene: the o�set of the range to be appended is unknown at the time theappend is issued. It is eventually �xed by the version manager at the time theversion number is assigned. It is set to the size of the snapshot orresponding tothe preeding version number. Again, observe that the writing of this snapshotmay still be in progress.4 Experimental evaluationPlatform desription. To evaluate the bene�ts of using BlobSeer as the stor-age bakend for Map/Redue appliations we used Yahoo!'s release of Hadoopv.0.20.0 (whih is essentially the main release of Hadoop with some minorpathes designed to enable Hadoop to run on the Yahoo! prodution lusters).We hose this release beause it is freely available and enables us to experi-ment with a framework that is both stable and used in prodution on Yahoo!'slusters.We performed our experiments on the Grid'5000 [9℄ testbed, a reon�gurable,ontrollable and monitorable experimental Grid platform gathering 9 sites ge-ographially distributed in Frane. We used the lusters loated in Sophia-Antipolis, Orsay and Lille. Eah experiment was arried out within a singlesuh luster. The nodes are out�tted with x86_64 CPUs and 4 GB of RAMfor the Rennes and Sophia lusters (2 GB for the luster loated in Orsay).Intraluster bandwidth is 1 Gbit/s (measured: 117.5 MB/s for TCP soketswith MTU = 1500 B), intraluster lateny is 0.1 ms. A signi�ant e�ort wasinvested in preparing the experimental setup, by de�ning an automated deploy-ment proess for the Hadoop framework both when using BlobSeer and HDFSas the storage bakend. We had to overome nontrivial node management andon�guration issues to reah this point.Overview of the experiments. In a �rst phase, we have implemented a setof mirobenhmarks that write/read and append data to �les through Hadoop's�le system API and have measured the ahieved throughput as more and moreonurrent lients aess the �le system. This syntheti setup has enabled us toontrol the aess pattern to the �le system and fous on di�erent senarios thatexhibit partiular aess patterns. We an thus diretly ompare the respetivebehavior of BSFS and HDFS in these partiular syntheti senarios.In a seond phase, our goal was to get a feeling of the impat of BlobSeerat the appliation level. We have run two standard Map/Redue appliationsfrom the Hadoop release, both with BSFS and with HDFS. We have evaluatedthe impat of using BSFS instead of HDFS on the total job exeution time asINRIA

BlobSeer: High Throughput under Heavy Conurreny for Map/Redue 13
 20
 30
 40
 50
 60
 70
 80
 90

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t

File size (GB)

HDFS
BSFS

(a) Performane of HDFS and BSFS whena single lient writes to a single �le 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

D
eg

re
e

of
 u

nb
al

an
ce

File size (GB)

HDFS
BSFS

(b) Load-balaning evaluationFigure 3: Single writer resultsthe number of available Map/Redue workers progressively inreases. Note thatHadoop Map/Redue appliations run out-of-the-box in an environment whereHadoop uses BlobSeer as a storage bakend, just like in the original, unmodi�edenvironment of Hadoop. This was made possible thanks to the Java �le systeminterfae we provided with BSFS, on top of BlobSeer.4.1 MirobenhmarksWe have �rst de�ned several senarios aiming at evaluating the throughputahieved by BSFS and HDFS when the distributed �le system is aessed bya single lient or by multiple, onurrent lients, aording to several spei�aess patterns. In this paper we have foused the following patterns, oftenexhibited by Map/Redue appliations:� a single proess writing a huge distributed �le;� onurrent readers reading di�erent parts of the same huge �le;� onurrent writers appending data to the same huge �le.The aim of these experiments is of ourse to evaluate whih bene�ts an beexpeted when using a onurreny-optimized storage servie suh as BlobSeerfor highly-parallel Map-Redue appliations generating suh aess patterns.The relevane of these patterns is disussed in the following subsetions, foreah senario. Additional senarios with other di�erent aess patterns areurrently under investigation.In eah senario, we �rst measure the throughput ahieved when a singlelient performs a set of operations on the �le system. Then, we gradually in-rease the number of lients performing the same operation onurrently andmeasure the average throughput per lient. For any �xed number N of on-urrent lients, the experiment onsists in two phases: we deploy of HDFS(respetively BSFS) on a given setup, then we run the test senario.In the deployment phase, HDFS (respetively BSFS) is deployed on 270 ma-hines from the same luster of Grid'5000. For HDFS, we deploy one namenodeon a dediated mahine; the remaining nodes are used for the datanodes (onedatanode per mahine). On the same number of nodes, we deploy BSFS asRR n° 7140

14 B. Niolae, D. Moise, G. Antoniu, L. Bougé, M. Dorierfollows: one version manager, one provider manager, one node for the names-pae manager, 20 metadata providers; the remaining nodes are used as dataproviders. Eah entity is deployed on a a separate, dediated mahine.For the measurement phase, a subset of N mahines is hosen from theset of mahines where datanodes/providers are running. The lients are thenlaunhed simultaneously on this subset of mahines, individual throughput isolleted and is then averaged. These steps are repeated 5 times for betterauray (whih is enough, as the orresponding standard deviation proved tobe low).4.2 Senario 1: single writer, single �leWe �rst measure the performane of HDFS/BSFS when a single lient writes a�le whose size gradually inreases. This test onsists in sequentially writing aunique �le of N×64 MB, in bloks of 64 MB (N goes from 1 to 246). The size ofHDFS's hunks is 64MB, and so is the blok size on�gured with BlobSeer in thisase. The goal of this experiment is to ompare the blok alloation strategiesthat HDFS and BSFS use in distributing the data aross datanodes (respetivelydata providers). The poliy used by HDFS onsists in writing loally whenever awrite is initiated on a datanode. To enable a fair omparison, we hose to alwaysdeploy lients on nodes where no datanode has previously been deployed. Thisway, we make sure that HDFS will distribute the data among the datanodes ,instead of loally storing the whole �le. BlobSeer's default strategy onsistsin alloating the orresponding bloks on remote providers in a round-robinfashion.We measure the write throughput for both HDFS and BSFS: the resultsan be seen on Figure 3(a). BSFS ahieves a signi�antly higher throughputthan HDFS, whih is a result of the balaned, round-robin blok distributionstrategy used by BlobSeer. A high throughput is sustained by BSFS even whenthe �le size inreases (up to 16 GB). To evaluate of the load balaning in bothHDFS and BSFS, we hose to ompute the Manhattan distane to an ideallybalaned system where all data providers/datanodes store the same number ofbloks/hunks. To alulate this distane, we represent the data layout in eahase by a vetor whose size is equal to the number of data providers/datanodes ;the elements of the vetor represent the number of bloks/hunks stored byeah provider/datanode. We ompute 3 suh vetors: one for HDFS, one forBSFS and one for a perfetly balaned system (where all elements have thesame value: the total number of bloks/hunks divided by the total number ofstorage nodes. We then ompute the distane between the �ideal� vetor and theHDFS (respetively BSFS). As shown on Figure 3(b), as the �le size (and thus,the number of bloks) inreases, both BSFS and HDFS beome unbalaned.However, BSFS remains muh loser to a perfetly balaned system, and itmanages to distribute the bloks almost evenly to the providers, even in thease of a large �le. As far as we an tell, this an be explained by the fat thatthe blok alloation poliy in HDFS mainly takes into aount data loalityand does not aim at perfetly balaning the data distribution. A global load-balaning of the system is done for Map/Redue appliations when the tasks areassigned to nodes. During this experiment, we ould notie that in HDFS thereare datanodes that do not store any blok, whih explains the inreasing urveINRIA

BlobSeer: High Throughput under Heavy Conurreny for Map/Redue 15
 20
 30
 40
 50
 60
 70
 80

 0 50 100 150 200 250
A

ve
ra

ge
 th

ro
ug

hp
ut

 (
M

B
/s

)

Number of clients

HDFS
BSFS

Figure 4: Performane of HDFS and BSFS when onurrent lients read froma single �leshown in �gure 3(b). As we will see in the next experiments, a balaned datadistribution has a signi�ant impat on the overall data aess performane.4.3 Senario 2: onurrent reads, shared �leIn this senario, for eah given number N of lients varying from 1 to 250, weexeuted the experiment in two steps. First, we performed a boot-up phase,where a single lient writes a �le of N × 64 MB, right after the deploymentof HDFS/BSFS. Seond, N lients read parts from the �le onurrently; eahlient reads a di�erent 64 MB hunk sequentially, using �ner-grain bloks of4 KB. This pattern where multiple readers request data in hunks of 4 KB isvery ommon in the �map� phase of a Hadoop Map/Redue appliation, wherethe mappers read the input �le in order to parse the (key, value) pairs.For this senario, we ran two experiments in whih we varied the data layoutfor HDFS. The �rst experiment orresponds to the ase where the �le read byall lients is entirely stored by a single datanode This orresponds to the asewhere the �le has previously been entirely written by a lient oloated with adatanode (as explained in the previous senario). Thus, all lients subsequentlyread the data stored by one node, whih will lead to a very poor performaneof HDFS. We do not represent these results here. In order to ahieve a morefair omparison where the �le is distributed on multiple nodes both in HDFSand in BSFS, we hose to exeute a seond experiment. Here, the boot-upphase is performed on a dediated node (no datanode is deployed on that node).By doing so, HDFS will spread the �le in a more balaned way on multipleremote datanodes and the reads will be performed remotely for both BSFS andHDFS. This senario also o�ers an aurate simulation of the �rst phase of aMap/Redue appliation, when the mappers are assigned to nodes. The HDFSjob sheduler tries to assign eah map task to the node that stores the hunk thetask will proess; these tasks are alled loal maps. The sheduler also tries toahieve a global load-balaning of the system, therefore not all the assignmentswill be loal. The tasks running on a di�erent node than the one storing itsinput data, are alled remote maps : they will read the data remotely.The results obtained in the seond experiment are presented on Figure 4.BSFS performs signi�antly better than HDFS, and moreover, it is able todeliver the same throughput even when the number of lients inreases. Thisis a diret onsequene of how balaned is the blok distribution for that �le.RR n° 7140

16 B. Niolae, D. Moise, G. Antoniu, L. Bougé, M. Dorier
 0

 2000
 4000
 6000
 8000

 10000
 12000

 0 50 100 150 200 250
A

gg
re

ga
te

d
th

ro
ug

hp
ut

 (
M

B
/s

)

Number of clients

BSFS

Figure 5: Performane of BSFS when onurrent lients append to the same �leThe superior load balaning strategy used by BlobSeer when writing the �le hasa positive impat on the performane of onurrent reads, whereas the HDFSsu�ers from the poor distribution of the �le hunks.4.4 Senario 3: Conurrent appends, shared �leWe now fous on another senario, where onurrent lients append data to thesame �le. This senario is also useful in the ontext of Map/Redue appliations,as it is for a wide range of data-intensive appliations in general. For instane,the possibility of running onurrent appends an improve the performaneof a simple operation suh as opying a large distributed �le. This an bedone in parallel by multiple lients whih read di�erent parts of the �le, thenonurrently append the data to the destination �le. Moreover, if onurrentappend operations are enabled, Map/Redue workers an write the output ofthe redue phase to the same �le, instead of reating many output �les, as it isurrently done in Hadoop.Despite its obvious usefulness, this feature is not available with Hadoop's �lesystem: Hadoop has not been optimized for suh a senario. As BlobSeer pro-vides support for e�ient, onurrent appends by design, we have implementedthe append operation in BSFS and evaluated the aggregated throughput asthe number of lients varies from 1 to 250. We ould not perform the sameexperiment for HDFS, sine it does not implement the append operation.Figure 5 illustrates the aggregated throughput obtained when multiplelients onurrently append data to the same BSFS �le. These good results anbe obtained thanks to BlobSeer, whih is optimized for onurrent appends.Note that these results also give an idea about the performane of onurrentwrites to the same �le. In BlobSeer, the append operation is implemented asa speial ase of the write operation where the write o�set is impliitly equalto the urrent �le size: the underlying algorithms are atually idential. Thesame experiment performed with writes instead of appends, leads to very similarresults.
INRIA

BlobSeer: High Throughput under Heavy Conurreny for Map/Redue 17
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 1 2 3 4 5 6 7

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

Size of data generated by one mapper (GB)

HDFS
BSFS

(a) RandomTextWrite: Job ompletiontime for a total of 6.4 GB of output datawhen inreasing the data size generated byeah mapper 0

 20

 40

 60

 80

 100

 6 7 8 9 10 11 12 13

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

Total text size to be searched (GB)

HDFS
BSFS

(b) Distributed grep: Job ompletion timewhen inreasing the size of the input textto be searhedFigure 6: Bene�ts of using BSFS instead of HDFS as a storage layer in Hadoop:impat on the performane of Map/Redue appliations4.5 Higher-level experiments with Map/Redue applia-tionsIn order to evaluate how well BSFS and HDFS perform in the role of storagelayers for real Map/Redue appliations, we seleted two standard Map/Redueappliations that are part of Yahoo!'s Hadoop release.The �rst appliation, RandomTextWriter, is representative of a distributedjob onsisting in a large number of tasks eah of whih needs to write a largeamount of output data (with no interation among the tasks). The appliationlaunhes a �xed number of mappers, eah of whih generates a huge sequene ofrandom sentenes formed from a list of prede�ned words. The redue phase ismissing altogether: the output of eah of the mappers is stored as a separate �lein the �le system. The aess pattern generated by this appliation orrespondsto onurrent, massively parallel writes, eah of them writing to a di�erent �le.To ompare the performane of BSFS vs. HDFS in suh a senario, we o-deploy a Hadoop tasktraker with a datanode in the ase of HDFS (with a dataprovider in the ase of BSFS) on the same physial mahine, for a total of 50mahines. The other entities for Hadoop, HDFS (namenode, jobtraker) and forBSFS (version manager, provider manager, namespae manager) are deployedon separate dediated nodes. For BlobSeer, 10 metadata providers are deployedon dediated mahines as well.We �x the total output size of the job to amount to 6.4 GB worth of generatedtext and vary the size generated by eah mapper from 128 MB (orresponding to50 parallel mappers) to 6.4 GB (orresponding to a single mapper), and measurethe job ompletion time in eah ase.Results obtained are displayed on Figure 6(a). Observe the relative gain ofBSFS over HDFS ranges from 7 % for 50 parallel mappers to 11 % for a singlemapper. The ase of a single mapper learly favours BSFS and is onsistent withour �ndings for the syntheti benhmark in whih we explained the respetivebehavior of BSFS and HDFS when a single proess writes a huge �le. Therelative di�erene is smaller than in the ase of the syntheti benhmark beausehere the total job exeution time inludes some omputation time (generationRR n° 7140

18 B. Niolae, D. Moise, G. Antoniu, L. Bougé, M. Dorierof random text). This omputation time is the same for both HDFS and BSFSand takes a signi�ant part of the total exeution time.The seond appliation we onsider is distributed grep. It is representative ofa distributed job where huge input data needs to be proessed in order to obtainsome statistis. The appliation sans a huge text input �le for ourrenes ofa partiular expression and ounts the number of lines where the expressionours. Mappers simply output the value of these ounters, then the reduerssum up the all the outputs of the mappers to obtain the �nal result. The aesspattern generated by this appliation orresponds to onurrent reads from thesame shared �le.In this senario we o-deploy a tasktraker with a HDFS datanode (with aBlobSeer data provider, respetively), on a total of 150 nodes. We deploy allentralized entities (version manager, provider manager, namespae manager,namenode, et) on dediated nodes. Also, 20 Metadata providers are deployedon dediated nodes for BlobSeer.We �rst write a huge input �le to HDFS and BSFS respetively. In the aseof HDFS, the �le is written from a node that is not oloated with a datanode, inorder to avoid the senario where HDFS writes all data bloks loally. This givesHDFS the hane to perform some load-balaning of data bloks. Then we runthe distributed grep Map/Redue appliation and measure the job ompletiontime. We vary the size of the input �le from 6.4 GB to 12.8 GB in inrementsof 1.6 GB. Sine a Hadoop data blok is 64 MB large and sine usually Hadoopassigns a single mapper to proess suh a data blok, this roughly orrespondsto varying the number of onurrent mappers from 100 to 200.Results obtained are represented in Figure 6(b). As an be observed BSFSoutperforms HDFS by 35 % for 6.4 GB and the gap steadily inreases to 38 %for 12.8 GB. This behavior is onsistent with the results obtained for the syn-theti benhmark where onurrent proesses read from the same �le. Again,the relative di�erene is smaller than in the syntheti benhmark beause thejob ompletion time aounts for both the omputation time and the I/O trans-fer time. Note however the high impat of I/O in suh appliations that santhrough the data for spei� patterns: the bene�ts of supporting e�ient on-urrent reads from the same �le at the level of the underlying distributed �lesystem are de�nitely signi�ant.5 ConlusionThe e�ieny of the Hadoop framework is a diret funtion of that of its datastorage layer. This work demonstrates that it is possible to enhane it by repla-ing the default Hadoop Distributed File System (HDFS) layer by another layer,built along di�erent design priniples. We introdue our BlobSeer system, whihis spei�ally optimized toward e�ient, �ne-grain aess to massive, distributeddata aessed under heavy onurreny. Thank to this new BlobSeer-based FileSystem (BSFS) layer, the sustained throughput of Hadoop is signi�antly im-proved in senarios that exhibit highly onurrent aesses to shared �les. More-over, BSFS supports additional features suh as e�ient onurrent appends,onurrent writes at random o�sets and versioning. These features ould beleveraged to extend or improve funtionalities in future versions of Hadoop orother Map/Redue frameworks. We list below several interesting perspetives.INRIA

BlobSeer: High Throughput under Heavy Conurreny for Map/Redue 19Leveraging versioning. Although in most real Map/Redue appliations,data is mostly appended rather than overwritten, Hadoop's �le system API doesnot implement append. Sine BlobSeer supports arbitrarily onurrent writesas well as appends, this opens a high potential for very promising improvementsof Map/Redue framework implementations, inluding Hadoop. Versioning anbe leveraged to optimize more omplex Map/Redue work�ows, in whih theoutput of one Map/Redue is the input of another. In many suh senarios,datasets are only loally altered from one Map/Redue pass to another: writingparts of the dataset while still being able to aess the original dataset (thanksto versioning) ould save a lot of temporary storage spae.Fault tolerane. An important aspet we did not disuss in this paper isfault tolerane. For this, we urrently rely on lassial mehanisms. At datalevel, we employ a simple repliation mehanism that allows the user to speify arepliation level for eah BLOB. A write operation atually writes its respetivebloks to a number of providers equal to that repliation level. The metadata isstored in a DHT (formed by the metadata providers), whih is resilient to faultsby onstrution. The entralized managers represent single points of failure asis the ase with the namenode of HDFS. Overall, fault-tolerane shemes ur-rently used in BlobSeer are however rather minimal. We are urrently exploringways to replae them with distributed, fault-tolerant mehanisms, while stillpreserving a high-throughput for data aess.Seurity. We did not address seurity issues in this paper, as most of thetime Hadoop deployments are exploited within private, trusted lusters ownedby big ompanies, suh as Google and Yahoo!: for now, we plae ourselves inthe same ontext, therefore the seurity assumptions are basially the sameas for Hadoop's built-in �le system. In the ase where Hadoop would run asa Map/Redue loud servie, possibly relying on externalized, virtualized re-soures from other loud omputing servie providers (suh as Amazon), theseurity onstraints would be di�erent. It then beomes ruial to guaranteedata privay and data aess ontrol for multiple users, aording to a ontrat.We plan to explore these issues in the near future.Referenes[1℄ Amazon Elasti Compute Cloud (EC2). http://aws.amazon.om/e2/.[2℄ Amazon Elasti Map Redue. http://aws.amazon.om/elastimapredue/.[3℄ Amazon Simple Storage Servie (S3). http://aws.amazon.om/s3/.[4℄ Kosmix CloudStore Distributed File System. http://kosmosfs.soureforge.net/index.html.[5℄ Je�rey Dean and Sanjay Ghemawat. MapRedue: simpli�ed data proess-ing on large lusters. Communiations of the ACM, 51(1):107�113, 2008.[6℄ Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. The google �lesystem. SIGOPS - Operating Systems Review, 37(5):29�43, 2003.RR n° 7140

20 B. Niolae, D. Moise, G. Antoniu, L. Bougé, M. Dorier[7℄ The Apahe Hadoop Projet. http://www.hadoop.org.[8℄ HDFS. The Hadoop Distributed File System. http://hadoop.apahe.org/ommon/dos/r0.20.1/hdfs_design.html.[9℄ Yvon Jégou, Stephane Lantéri, Julien Ledu, Melab Noredine, GuillaumeMornet, Raymond Namyst, Pasale Primet, Benjamin Quetier, OlivierRihard, El-Ghazali Talbi, and Touhe Iréa. Grid'5000: a large saleand highly reon�gurable experimental grid testbed. International Journalof High Performane Computing Appliations, 20(4):481�494, November2006.[10℄ Bogdan Niolae, Gabriel Antoniu, and Lu Bougé. BlobSeer: How to en-able e�ient versioning for large objet storage under heavy aess on-urreny. In Pro. 2nd Workshop on Data Management in Peer-to-PeerSystems (DAMAP'2009), Saint Petersburg, Russia, Marh 2009. Held inonjuntion with EDBT'2009.[11℄ Bogdan Niolae, Gabriel Antoniu, and Lu Bougé. Enabling high datathroughput in desktop grids through deentralized data and metadata man-agement: The blobseer approah. In Pro. 15th International Euro-ParConferene on Parallel Proessing (Euro-Par '09), volume 5704 of Let.Notes in Comp. Siene, pages 404�416, Delft, The Netherlands, 2009.Springer-Verlag.[12℄ PVFS. Parallel virtual �le system, version 2. http://pvfs2.org/.[13℄ Frank B. Shmuk and Roger L. Haskin. GPFS: A shared-disk �le systemfor large omputing lusters. In FAST '02: Proeedings of the Confereneon File and Storage Tehnologies, pages 231�244. USENIX Assoiation,2002.[14℄ Garth Gibson Wittawat Tantisiriroj, Swapnil Patil. Data-intensive �le sys-tems for internet servies: A rose by any other name... Tehnial ReportUCB/EECS-2008-99, Parallel Data Laboratory, Otober 2008.[15℄ C. Zheng, G. Shen, S. Li, and S. Shenker. Distributed Segment Tree:Support range query and over query over DHT. In Proeedings of the FifthInternational Workshop on Peer-to-Peer Systems (IPTPS), Santa Barbara,California, 2006.

INRIA

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

