
HAL Id: inria-00440312
https://hal.inria.fr/inria-00440312

Submitted on 10 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BlobSeer: Bringing High Throughput under Heavy
Concurrency to Hadoop Map/Reduce Applications

Bogdan Nicolae, Diana Moise, Gabriel Antoniu, Luc Bougé, Matthieu Dorier

To cite this version:
Bogdan Nicolae, Diana Moise, Gabriel Antoniu, Luc Bougé, Matthieu Dorier. BlobSeer: Bringing
High Throughput under Heavy Concurrency to Hadoop Map/Reduce Applications. [Research Report]
RR-7140, INRIA. 2009, pp.20. <inria-00440312>

https://hal.inria.fr/inria-00440312
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
71

40
--

F
R

+
E

N
G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

BlobSeer: Bringing High Throughput
under Heavy Concurrency

to Hadoop Map/Reduce Applications

Bogdan Nicolae — Diana Moise — Gabriel Antoniu — Luc Bougé — Matthieu Dorier

N° 7140

December 2009

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

BlobSeer: Bringing High Throughputunder Heavy Con
urren
yto Hadoop Map/Redu
e Appli
ationsBogdan Ni
olae∗, Diana Moise†, Gabriel Antoniu†, Lu
 Bougé‡,Matthieu Dorier‡Thème : Cal
ul distribué et appli
ations à très haute performan
eÉquipe-Projet KerDataRapport de re
her
he n° 7140 � De
ember 2009 � 20 pagesAbstra
t: Hadoop is a software framework supporting the Map/Redu
e pro-gramming model. It relies on the Hadoop Distributed File System (HDFS) as itsprimary storage system. The e�
ien
y of HDFS is
ru
ial for the performan
eof Map/Redu
e appli
ations. We substitute the original HDFS layer of Hadoopwith a new,
on
urren
y-optimized data storage layer based on the BlobSeerdata management servi
e. Thereby, the e�
ien
y of Hadoop is signi�
antly im-proved for data-intensive Map/Redu
e appli
ations, whi
h naturally exhibit ahigh degree of data a

ess
on
urren
y. Moreover, BlobSeer's features (built-inversioning, its support for
on
urrent append operations) open the possibilityfor Hadoop to further extend its fun
tionalities. We report on extensive exper-iments
ondu
ted on the Grid'5000 testbed. The results illustrate the bene�tsof our approa
h over the original HDFS-based implementation of Hadoop.Key-words: Distributed �le systems; High-performan
e systems; Highthroughput; Large-s
ale; Heavy a

ess
on
urren
y; Map/Redu
e appli
ations;Hadoop; BlobSeer.
Conta
t author: Gabriel.Antoniu�inria.fr.A slightly revised version of this work will be published in the Pro
eedings of the 24thIEEE International Parallel and Distributed Pro
essing Symposium (IPDPS 2010), Atlanta,April 19-23, 2010

∗ University of Rennes 1/IRISA, Rennes, Fran
e
† INRIA/IRISA, Rennes, Fran
e
‡ ENS Ca
han Bretagne/IRISA, Rennes, Fran
e

BlobSeer: augmenter la bande passantedans un
ontexte de forte
on
urren
epour les appli
ations Map/Redu
e sur HadoopRésumé : Hadoop est un environnement logi
iel pour la mise en ÷uvre dumodèle de programmation Map/Redu
e. Il s'appuie prin
ipalement sur le sys-tème de gestion de �
hiers distribué HDFS. L'e�
a
ité de HDFS est un pa-ramètre
ru
ial de la performan
e des appli
ations Map/Redu
e. Nous pro-posons de rempla
er la
ou
he HDFS de Hadoop par une nouvelle
ou
he desto
kage des données qui soit optimisée pour une utilisation
on
urrente. Cettenouvelle
ou
he s'appuie sur le servi
e de gestion de données BlobSeer. Nousmontrons que l'e�
a
ité de Hadoop est ainsi améliorée de manière signi�
ativepour des appli
ations Map/Redu
e qui manipulent intensivement les données:en e�et, elles o�rent naturellement un haut degré de
on
urren
e. De plus, lesfon
tionnalités spé
i�ques de BlobSeer (gestion intégrée des versions, supportpour les opérations �append�
on
urrentes) permettent d'envisager d'étendreles fon
tionnalités de Hadoop. Nous rendons
ompte d'une
ampagne intensived'expérien
es menée sur l'instrument Grid'5000. Les résultats illustrent les bé-né�
es de notre appro
he par rapport à l'implémentation primitive de Hadoopfondée sur HDFS.Mots-
lés : Système de gestion de �
hiers distribué; système haute perfor-man
e; grande bande passante; grande é
helle; a

ès hautement
on
urrents;appli
ations Map/Redu
e; Hadoop; BlobSeer.

BlobSeer: High Throughput under Heavy Con
urren
y for Map/Redu
e 3Contents1 Introdu
tion 32 Spe
ialized �le systems for data-intensive Map/Redu
e appli-
ations 42.1 Requirements for the storage layer 42.2 Dedi
ated �le systems for Map/Redu
e 43 BlobSeer as a
on
urren
y-optimized �le system for Hadoop 63.1 Design overview of BlobSeer . 63.2 Integrating BlobSeer with Hadoop 93.3 BlobSeer: detailed ar
hite
ture 103.4 Zooming on reads . 113.5 Zooming on writes . 114 Experimental evaluation 124.1 Mi
roben
hmarks . 134.2 S
enario 1: single writer, single �le 144.3 S
enario 2:
on
urrent reads, shared �le 154.4 S
enario 3: Con
urrent appends, shared �le 164.5 Higher-level experiments with Map/Redu
e appli
ations 175 Con
lusion 181 Introdu
tionMap/Redu
e [5℄ is a parallel programming paradigm su

essfully used by largeInternet servi
e providers to perform
omputations on massive amounts of data.After being strongly promoted by Google, it has also been implemented bythe open sour
e
ommunity through the Hadoop [7℄ proje
t, maintained bythe Apa
he Foundation and supported by Yahoo! and even by Google itself.This model is
urrently getting more and more popular as a solution for rapidimplementation of distributed data-intensive appli
ations.At the
ore of the Map/Redu
e frameworks stays a key
omponent: thestorage layer. To enable massively parallel data pro
essing to a high degreeover a large number of nodes, the storage layer must meet a series of spe
i�
requirements (dis
ussed in Se
tion 2), that are not part of design spe
i�
ationsof traditional distributed �le systems employed in the HPC
ommunities: these�le systems typi
ally aim at
onforming to well-established standards su
h asPOSIX and MPI-IO. To address these requirements, spe
ialized �le systemshave been designed, su
h as HDFS [8℄, the default storage layer of Hadoop.HDFS has however some di�
ulties to sustain a high throughput in the
aseof
on
urrent a

esses to the same �le. Moreover, many desirable features aremissing altogether, su
h as the support for versioning and for
on
urrent updatesto the same �le.We substitute the original data storage layer of Hadoop with a new,
on
urren
y-optimized storage layer based on BlobSeer, a data managementservi
e we developed with the goal of supporting e�
ient, �ne-grain a

ess tomassive, distributed data a

essed under heavy
on
urren
y. By using BlobSeerRR n° 7140

4 B. Ni
olae, D. Moise, G. Antoniu, L. Bougé, M. Dorierinstead of its default storage layer, Hadoop signi�
antly improves its sustainedthroughput in s
enarios that exhibit highly
on
urrent a

esses to shared �les.We report on extensive experimentation both with syntheti
 mi
roben
hmarksand real Map/Redu
e appli
ations. The results illustrate the bene�ts of ourapproa
h over the original HDFS-based implementation of Hadoop. Moreoverwe support additional features su
h as e�
ient
on
urrent appends,
on
urrentwrites at random o�sets and versioning. These features
ould be leveraged toextend or improve fun
tionalities in future versions of Hadoop or other Map/Re-du
e frameworks.2 Spe
ialized �le systems for data-intensiveMap/Redu
e appli
ations2.1 Requirements for the storage layerMap/Redu
e appli
ations typi
ally
run
h ever growing data sets of billions ofsmall re
ords. Storing billions of KB-sized re
ords in separate tiny �les is bothunfeasible and hard to handle, even if the storage layer would support it. Forthis reason, data sets are usually pa
ked together in huge �les whose size rea
hesthe order of several hundreds of GB.The key strength of the Map/Redu
e model is its inherently high paralleliza-tion of the
omputation, that enables pro
essing of PB of data in a
ouple ofhours on large
lusters
onsisting of several thousand nodes. This has several
onsequen
es for the storage ba
kend. Firstly, sin
e data is stored in huge �les,the
omputation will have to pro
ess small parts of these huge �les
on
urrently.Thus, the storage layer is expe
ted to provide e�
ient �ne-grain a

ess to the�les. Se
ondly, the storage layer must be able to sustain a high throughputin spite of heavy a

ess
on
urren
y to the same �le, as thousands of
lientssimultaneously a

ess data.Dealing with of huge amounts of data is di�
ult in terms of manageability.Simple mistakes that may lead to loss of data
an have disastrous
onsequen
essin
e gathering su
h amounts of data requires
onsiderable e�ort investment.Versioning in this
ontext be
omes an important feature that is expe
ted fromthe storage layer. Not only it enables rolling ba
k undesired
hanges, but alsobran
hing a dataset into two independent datasets that
an evolve indepen-dently. Obviously, versioning should have a minimal impa
t both on perfor-man
e and on storage spa
e overhead.Finally, another important requirement for the storage layer is its ability toexpose an interfa
e that enables the appli
ation to be data-lo
ation aware. Thisallows the s
heduler to use this information to pla
e
omputation tasks
loseto the data. This redu
es network tra�
,
ontributing to a better global datathroughput.2.2 Dedi
ated �le systems for Map/Redu
eThese
riti
al needs of data-intensive distributed appli
ations have not beenaddressed by
lassi
al, POSIX-
ompliant distributed �le systems. Therefore,Google introdu
ed GoogleFS [6℄ as a storage ba
kend that provides the rightINRIA

BlobSeer: High Throughput under Heavy Con
urren
y for Map/Redu
e 5abstra
tion for their Map/Redu
e data pro
essing framework. Then, other spe-
ialized �le systems emerged:
ompanies su
h as Yahoo! and Kosmix followedthis trend by emulating the GoogleFS ar
hite
ture with the Hadoop DistributedFile System (HDFS, [8℄) and CloudStore [4℄.Essentially, GoogleFS splits �les into �xed-sized 64 MB
hunks that aredistributed among
hunkservers. Both metadata that des
ribes the dire
torystru
ture of the �le system, and metadata that des
ribes the
hunk layout arestored on a
entralized master server. Clients that need to a

ess a �le �rst
onta
t this server to obtain the lo
ation of the
hunks that
orrespond to therange of the �le they are interested in. Then, they dire
tly intera
t with the
orresponding
hunkservers. GoogleFS is optimized to sustain a high through-put for
on
urrent reads/appends from/to a single �le, by relaxing the semanti

onsisten
y requirements. It also implements support for
heap snapshootingand bran
hing.Hadoop Map/Redu
e is a framework designed for easily writing and e�-
iently pro
essing Map/Redu
e appli
ations. The framework
onsists of a singlemaster jobtra
ker , and multiple slave tasktra
kers , one per node. The jobtra
keris responsible for s
heduling the jobs'
omponent tasks on the slaves, monitoringthem and re-exe
uting the failed tasks. The tasktra
kers exe
ute the tasks asdire
ted by the master. HDFS is the default storage ba
kend that ships with theHadoop framework. It was inspired by the ar
hite
ture of GoogleFS. Files arealso split in 64 MB blo
ks that are distributed among datanodes . A
entralizednamenode is responsible to maintain both
hunk layout and dire
tory stru
turemetadata. Read and write requests are performed by dire
t intera
tion withthe
orresponding datanodes and do not go through the namenode.In Hadoop, reads essentially work the same way as with GoogleFS. However,HDFS has a di�erent semanti
s for
on
urrent write a

ess: it allows only onewriter at a time, and, on
e written, data
annot be altered, neither by overwrit-ing nor by appending. Several optimization te
hniques are used to signi�
antlyimprove data throughput. First, HDFS employs a
lient side bu�ering me
ha-nism for small read/write a

esses. It prefet
hes data on reading. On writing,it postpones
ommitting data after the bu�er has rea
hed at least a full
hunksize. A
tually, su
h �ne-grain a

esses are dominant in Map/Redu
e appli
a-tions, whi
h usually manipulate small re
ords. Se
ond, Hadoop's job s
heduler(the jobtra
ker) pla
es
omputations as
lose as possible to the data. For thispurpose, HDFS expli
itely exposes the mapping of
hunks over datanodes to theHadoop framework.With
loud
omputing be
oming more and more popular, providers su
h asAmazon started o�ering Map/Redu
e platforms as a servi
e. Amazon's initia-tive, Elasti
 MapRedu
e [2℄, employs Hadoop on their Elasti
 Compute Cloudinfrastru
ture (EC2, [1℄). The storage ba
kend used by Hadoop is Amazon'sSimple Storage Servi
e (S3, [3℄). The S3 framework was designed with sim-pli
ity in mind, to handle obje
ts that may rea
h sizes in the order of GB: theuser
an write, read, and delete obje
ts simply identi�ed by an unique key. Thea

ess interfa
e is based on well-established standards su
h as SOAP. Careful
onsideration was invested into using de
entralized te
hniques and designingoperations in su
h way as to minimize the need for
on
urren
y
ontrol. A faulttolerant layer enables operations to
ontinue with minimal interruption. Thisallows S3 to be highly s
alable. On the downside however, simpli
ity
omes ata
ost: S3 provides limited support for
on
urrent a

esses to a single obje
t.RR n° 7140

6 B. Ni
olae, D. Moise, G. Antoniu, L. Bougé, M. DorierOther e�orts aim at adapting general-purpose distributed �le systems fromthe HPC
ommunity to the needs of the Map/Redu
e appli
ations. For instan
e,PVFS (Parallel Virtual File System) and GPFS (General Parallel File System,from IBM) have been adapted to serve as a storage layer for Hadoop. GPFS [13℄is part of the shared-disk �le systems
lass, that use a pool of blo
k-level storage,shared and distributed a
ross all the nodes in the
luster. The shared storage
an be dire
tly a

essed by
lients, with no intera
tion with an intermediateserver. Integrating GPFS with the Hadoop framework, involves over
omingsome limitations: GPFS supports a maximal blo
k size of 16 MB, whereasHadoop often makes use of data in 64 MB
hunks; Hadoop's jobtra
ker must beaware of the blo
k lo
ation, while GPFS (like all parallel �le systems) exposesa POSIX interfa
e. PVFS [12℄ belongs to a se
ond
lass of parallel �le systems,obje
t-based �le systems whi
h separate the nodes that store the data from theones that store the medatata (�le information, and �le blo
k lo
ation). When a
lient wants to a

ess a �le, it must �rst
onta
t the metadata server and thendire
tly a

ess the data on the data servers indi
ated by the metadata server.In [14℄, it is des
ribed the way PVFS was integrated with Hadoop, by adding alayer on top of PVFS. This layer enhan
ed PVFS with some features that HDFSalready provides to the Hadoop framework: performing read-ahead bu�ering,exposing the data layout and emulating repli
ation.The above work has been a sour
e of inspiration for our approa
h. Thanks tothe spe
i�
 features of BlobSeer, we
ould address several limitations of HDFShighlighted in it.3 BlobSeer as a
on
urren
y-optimized �le sys-tem for HadoopIn this se
tion we introdu
e BlobSeer, a system for managing massive data in alarge-s
ale distributed
ontext [10℄. Its e�
ient version-oriented design enableslo
k-free a

ess to data, and thereby favors s
alablity under heavy
on
urren
y.Thanks to its de
entralized data and metadata management, it provides highdata throughput [11℄. The goal of this paper is to show how BlobSeer
an beextended into an �lesystem for Hadoop, and thus used as an e�
ient storageba
kend for Map/Redu
e appli
ations.3.1 Design overview of BlobSeerThe goal of BlobSeer is to provide support for data-intensive distributed ap-pli
ations. No hypothesis whatsoever is made about the stru
ture of the dataat stake: they are viewed as huge, �at sequen
es of bytes, often
alled BLOBs(Binary Large OBje
ts). We espe
ially target appli
ations that pro
ess BLOBsin a �ne-grain manner. This is the typi
al
ase of Map/Redu
e appli
ations,indeed: workers usually a

ess pie
es of up to 64 MB from huge input �les,whose size may rea
h hundreds of GB.A
lient of BlobSeer manipulates BLOBs by using a simple interfa
e thatallows to:
reate a new empty BLOB; append data to an existing BLOB; read-/write a subsequen
e of bytes spe
i�ed by an o�set and a size from/to an existingBLOB. Ea
h BLOB is identi�ed by a unique id in the system. INRIA

BlobSeer: High Throughput under Heavy Con
urren
y for Map/Redu
e 7

Figure 1: Metadata tree after writing the �rst 4 blo
ks of a BLOBVersioning is built in BlobSeer at the earliest stage of design. Ea
h time awrite or append is performed on a BLOB, a new snapshot re�e
ting the
hangesis generated instead of overwriting any existing data. This new snapshot is la-beled with an in
remental version number, so that all past versions of the BLOB
an potentially be a

essed, at least as long as they have not been garbaged forthe sake of storage spa
e.The version numbers are assigned and managed by the system. In orderto read a part of the BLOB, the
lient must spe
ify both the unique id of theBLOB and the snapshot version it desires to read from. A spe
ial
all allowsthe
lient to �nd out the latest version of a parti
ular BLOB, but the
lient isallowed to read any past version of the BLOB.Although ea
h write or append generates a new version, only the di�erentialpat
h is a
tually stored, so that storage spa
e is saved at far as possible. Thenew snapshot shares all unmodi�ed data and most of the asso
iated metadatawith the previous versions, as we will see further in this se
tion. Su
h an imple-mentation further fa
ilitates the implementation of advan
ed features su
h asrollba
k and bran
hing, sin
e data and metadata
orresponding to past versionsremain available in the system and
an easily be a

essed.The goal of BlobSeer is to sustain high throughput under heavy a

ess
on-
urren
y in reading, writing and appending. This is a
hieved thanks to the
ombination of various te
hniques, in
luding: data striping, distributed meta-data, version-based design, lo
k-free data a

ess.Data striping. BlobSeer relies on striping: ea
h BLOB is made up of blo
ksof a �xed size. To optimize BlobSeer for Map/Redu
e appli
ations, we set thissize to the size of the data pie
e a Map/Redu
e worker is supposed to pro
ess(i.e., 64 MB in the experiments below with Hadoop, equal to the
hunk sizein HDFS). These blo
ks are distributed among the storage nodes. We use aload balan
ing strategy that aims at evenly distributing the blo
ks among thesenodes. As des
ribed in Se
tion 4.3, this has a major positive impa
t in sustaininga high throughput when many
on
urrent readers a

ess di�erent parts of thesame �le.Distributed metadata. A BLOB is a

essed by spe
ifying a version numberand a range of bytes delimited by an o�set and a size. BlobSeer manages addi-tional metadata to map a given range and a version to the physi
al nodes wherethe
orresponding blo
ks are lo
ated. We organize metadata as a distributedRR n° 7140

8 B. Ni
olae, D. Moise, G. Antoniu, L. Bougé, M. Doriersegment tree [15℄: one su
h tree is asso
iated to ea
h version of a given blob id.A segment tree is a binary tree in whi
h ea
h node is asso
iated to a range ofthe blob, delimited by o�set and size. We say that the node
overs the range(o�set, size). The root
overs the whole BLOB. For ea
h node that is not a leaf,the left
hild
overs the �rst half of the range, and the right
hild
overs the se
-ond half. Ea
h leaf
overs a single blo
k of the BLOB. Figure 1 illustrates su
ha metadata tree for a 4-blo
k. To favor e�
ient
on
urrent a

ess to metadata,tree nodes are distributed: they are stored on the metadata providers using aDHT (Distributed Hash Table). Ea
h tree node is identi�ed in the DHT byits version and by the range spe
i�ed through the o�set and the size it
overs.Su
h a metadata tree is
reated when the �rst blo
ks of the blob are written,for the range
overed by those blo
ks. Then, to avoid the overhead (in time andspa
e!) of rebuilding su
h a tree for the subsequent updates, we
reate new treenodes only for the ranges that do interse
t with the range of the update.Note that metadata de
entralization has a signi�
ant impa
t on the globalthroughput, as demonstrated in [11℄: it avoids the bottlene
k
reated by
on-
urrent a

esses in the
ase of a
entralized metadata server in most distributed�le systems, in
luding HDFS. A detailed des
ription of the algorithms we useto manage metadata
an be found in [10℄: due to spa
e
onstraints, we will notdevelop them further in this paper.Version-based, lo
k-free,
on
urren
y-optimized data a

ess. Blob-Seer relies on a versioning-based
on
urren
y
ontrol algorithm that maximizesthe number of operations performed in parallel in the system. It is done byavoiding syn
hronization as mu
h as possible, both at the data and metadatalevels. The key idea is amazingly simple: no existing data or metadata is evermodi�ed! First, any writer or appender writes its new data blo
ks, by storingthe di�erential pat
h. Then, in a se
ond phase, the version number is allo
atedand the new metadata referring to these blo
ks are generated. The �rst phase
onsists in a
tually writing the new data on the distributed storage nodes. The
on
urrent writers
an pro
eed with full parallelism, without any syn
hroniza-tion. In the se
ond phase, the new metadata are then �weaved� together withthe metadata of the versions with a lower number. The
ru
ial observation isthat this se
ond phase
an also be mostly
on
urrent. The only global syn
hro-nization requirement is that the order in whi
h the
ompletion of the
on
urrentwrites o

urs must respe
t the order in whi
h the version numbers have beenassigned. This is transparently ensured by the system, without requiring anyexpli
it syn
hronization by the user. Thereby, the algorithm
reates the illusionof a fully independent snapshot generation. This allows write/write
on
urren
yat data level, while still preserving serialization and atomi
ity.Sin
e ea
h writer or appender generates new data/metadata and never modi-�es existing data/metadata, readers are
ompletely de
oupled from them. Read-ers
an thus pro
eed with full
on
urren
y with respe
t to writers and appenders(and vi
e-versa), both for data and metadata a

ess. We
an thus
laim thatour approa
h supports read/read, read/write and write/write
on
urren
y bydesign. This signi�
antly overpasses the
apabilities of HDFS, whi
h only al-lows a single writer to pro
eed at a time. The experimental results presented inSe
tion 4
learly support our
laim. INRIA

BlobSeer: High Throughput under Heavy Con
urren
y for Map/Redu
e 9

Figure 2: BlobSeer's ar
hite
ture. The BSFS layer enables Hadoop to use Blob-Seer as a storage ba
kend through a �le system interfa
e.3.2 Integrating BlobSeer with HadoopThe Hadoop Map/Redu
e framework a

esses its default storage ba
kend(HDFS) through a
lean, spe
i�
 Java API. This API exposes the basi
 op-erations of a �le system: read, write, append, et
. To make Hadoop bene�tfrom BlobSeer's properties, we implemented this API on top of BlobSeer. We
all this higher layer the BlobSeer File System (BSFS): it enables BlobSeer toa
t as a storage ba
kend �le system for Hadoop. To enable a fair
omparison ofBSFS with HDFS, we addressed several performan
e-oriented issues highlightedin [14℄. They are brie�y dis
ussed below.File system namespa
e. The Hadoop framework expe
ts a
lassi
al hierar-
hi
al dire
tory stru
ture, whereas BlobSeer provides a �at stru
ture for BLOBs.For this purpose, we had to design and implement a spe
ialized namespa
emanager, whi
h is responsible for maintaining a �le system namespa
e, and formapping �les to BLOBs. For the sake of simpli
ity, this entity is
entralized.Careful
onsideration was given to minimize the intera
tion with this namespa
emanager, in order to fully bene�t from the de
entralized metadata managements
heme of BlobSeer. Our implementation of Hadoop's �le system API onlyintera
ts with it for operations like �le opening and �le/dire
tory
reation/dele-tion/renaming. A

ess to the a
tual data is performed by a dire
t intera
tionwith BlobSeer through read/write/append operations on the asso
iated BLOB,whi
h fully bene�t from BlobSeer's e�
ient support for
on
urren
y.Data prefet
hing. Hadoop manipulates data sequentially in small
hunks ofa few KB (usually, 4 KB) at a time. To optimize throughput, HDFS implementsa
a
hing me
hanism that prefet
hes data for reads, and delays
ommittingdata for writes. Thereby, physi
al reads and writes are performed with datasizes large enough to
ompensate for network tra�
 overhead. We implementeda similar
a
hing me
hanism in BSFS. It prefet
hes a whole blo
k when theRR n° 7140

10 B. Ni
olae, D. Moise, G. Antoniu, L. Bougé, M. Dorierrequested data is not already
a
hed, and delays
ommitting writes until awhole blo
k has been �lled in the
a
he.A�nity s
heduling: exposing data distribution. In a typi
al Hadoopdeployment, the same physi
al nodes a
t both as storage elements and as
om-putation workers. Therefore, the Hadoop s
heduler strives at pla
ing the
om-putation as
lose as possible to the data: this has a major impa
t on the globaldata throughput, given the huge volume of data being pro
essed. To enable thiss
heduling poli
y, Hadoop's �le system API exposes a
all that allows Hadoopto learn how the requested data is split into blo
ks, and where those blo
ksare stored. We address this point by extending BlobSeer with a new primitive.Given a spe
i�ed BLOB id, version, o�set and size, it returns the list of blo
ksthat make up the requested range, and the addresses of the physi
al nodes thatstore those blo
ks. Then, we simply map Hadoop's
orresponding �le system
all to this primitive provided by BlobSeer.3.3 BlobSeer: detailed ar
hite
tureBlobSeer
onsists of a series of distributed
ommuni
ating pro
esses. Figure 2illustrates the pro
esses and their intera
tions between them.Clients
reate, read, write and append data from/to BLOBs. Clients
ana

ess the BLOBs with full
on
urren
y, even if they all a

ess the sameBLOB.Data providers physi
ally store the blo
ks generated by appends and writes.New data providers may dynami
ally join and leave the system. In the
ontext of Hadoop Map/Redu
e, the nodes hosting data providers typi-
ally also a
t as
omputing elements as well. This enables them to bene�tfrom the s
heduling strategy of Hadoop, whi
h aims at pla
ing the
om-putation as
lose as possible to the data.The provider manager keeps information about the available storage spa
eand s
hedules the pla
ement of newly generated blo
ks. For ea
h su
hblo
k to be stored, it sele
ts the data providers a

ording to a load bal-an
ing strategy that aims at evenly distributing the blo
ks a
ross dataproviders.Metadata providers physi
ally store the metadata that allows identifying theblo
ks that make up a snapshot version. We use a distributed metadatamanagement s
heme to enhan
e
on
urrent a

ess to metadata. The nodeshosting metadata providers may a
t as
omputing elements as well.The version manager is in
harge of assigning snapshot version numbers insu
h a way that serialization and atomi
ity of writes and appends is guar-anteed. It is typi
ally hosted on a dedi
ated node.The namespa
e manager is not part of the BlobSeer. It is an additionalentity introdu
ed for BSFS, the higher-level �le system layer. It maintainsa �le system namespa
e, and maps �les in the namespa
e to BLOBs. Itis typi
ally hosted on a dedi
ated node. INRIA

BlobSeer: High Throughput under Heavy Con
urren
y for Map/Redu
e 113.4 Zooming on readsTo read data, the
lient �rst needs to �nd out the BLOB
orresponding to therequested �le. This information is typi
aly available lo
ally (as it has typi
allybeen requested from the namespa
e manager when the �le was opened). Thenthe
lient must spe
ify the version number it desires to read from, as well asthe o�set and size of the range to be read. The
lient may also
all a spe
ialprimitive �rst, to �nd out the latest version available in the system at the timethis primitive was invoked. In pra
ti
e, sin
e Hadoop's �le system API does notsupport versioning yet, this
all is always issued in the
urrent implementation.Next, the read operation in BSFS follows BlobSeer's sequen
e of steps forreading a range within a BLOB. The
orresponding distributed algorithm, de-s
ribing the intera
tions between the
lient, the version manager, the distributeddata and metadata providers are presented and dis
ussed in detail in [10℄. Themain global steps
an be summarized as follows. The
lient queries the ver-sion manager about the requested version of the BLOB. The version managerforwards the query to the metadata providers, whi
h send to the
lient the meta-data that
orresponds to the blo
ks that make up the requested range. Whenthe lo
ation of all these blo
ks was determined, the
lient fet
hes the blo
ksfrom the data providers. These requests are sent asyn
hronously and pro
essedin parallel by the data providers. Note that the �rst and the last blo
k in the se-quen
e of blo
ks for the requested range may not need to be fet
hed
ompletely,as the requested range may be unaligned to full blo
ks. In this
ase, the
lientfet
hes only the required parts of the extremal blo
ks.3.5 Zooming on writesTo write data, the
lient �rst splits the data to be written into a list of blo
ksthat
orrespond to the requested range. Then, it
onta
ts the provider manager,requesting a list of providers
apable of storing the blo
ks: one provider forea
h blo
k. Blo
ks are then written in parallel to the providers allo
ated by theprovider manager. If, for some reason, writing of a blo
k fails, then the wholewrite fails. Otherwise the
lient pro
eeds by
onta
ting the version managerto announ
e its intent to update the BLOB. As highlighted in Se
tion 3.1,
on
urrent writers of di�erent blo
ks of the same �le
an perform this �rst stepwith full parallelism. Subsequently, the version manager assigns to ea
h writerequest a new snapshot version number. This number is used by the
lient togenerate new metadata, weave it together with existing metadata, and store iton the distributed metadata providers, in order to
reate the illusion of a newstandalone snapshot.Note that the term �existing metadata�
overs two
ases. First, it refersto metadata
orresponding to previous,
ompleted writes. But it also refersto metadata generated by still a
tive
on
urrent writers that were assigneda lower version number (i.e., they have written the data, but they have not�nished writing the metadata)! In parti
ular, su
h
on
urrent writers mightbe in the pro
ess of generating and writing metadata, on whi
h the
lient shalldepend when weaving its own metadata. To deal with this situation, the versionmanager hints the
lient on su
h dependen
ies. In some sense, the
lient is ableto predi
t the values
orresponding to the metadata that is being written by the
on
urrent writers that are still in progress. It
an thus pro
eed
on
urrentlyRR n° 7140

12 B. Ni
olae, D. Moise, G. Antoniu, L. Bougé, M. Dorierwith the other writers, rather than waiting for them to �nish writing theirmetadata. The reader
an refer to [10℄ for further details on how we handlemetadata for
on
urrent writers.On
e metadata was su

essfully written to the metadata providers, the
lientnoti�es the version manager of su

ess, and returns to the user. Observe thatthe version manager needs to keep tra
k of all writers
on
urrently a
tive, anddelay
ompleting a new snapshot version until all writers that were assigned alower version number reported su

ess. The detailed algorithm for writing isprovided in [10℄.The append operation is identi
al to the write operation, ex
ept for a singledi�eren
e: the o�set of the range to be appended is unknown at the time theappend is issued. It is eventually �xed by the version manager at the time theversion number is assigned. It is set to the size of the snapshot
orresponding tothe pre
eding version number. Again, observe that the writing of this snapshotmay still be in progress.4 Experimental evaluationPlatform des
ription. To evaluate the bene�ts of using BlobSeer as the stor-age ba
kend for Map/Redu
e appli
ations we used Yahoo!'s release of Hadoopv.0.20.0 (whi
h is essentially the main release of Hadoop with some minorpat
hes designed to enable Hadoop to run on the Yahoo! produ
tion
lusters).We
hose this release be
ause it is freely available and enables us to experi-ment with a framework that is both stable and used in produ
tion on Yahoo!'s
lusters.We performed our experiments on the Grid'5000 [9℄ testbed, a re
on�gurable,
ontrollable and monitorable experimental Grid platform gathering 9 sites ge-ographi
ally distributed in Fran
e. We used the
lusters lo
ated in Sophia-Antipolis, Orsay and Lille. Ea
h experiment was
arried out within a singlesu
h
luster. The nodes are out�tted with x86_64 CPUs and 4 GB of RAMfor the Rennes and Sophia
lusters (2 GB for the
luster lo
ated in Orsay).Intra
luster bandwidth is 1 Gbit/s (measured: 117.5 MB/s for TCP so
ketswith MTU = 1500 B), intra
luster laten
y is 0.1 ms. A signi�
ant e�ort wasinvested in preparing the experimental setup, by de�ning an automated deploy-ment pro
ess for the Hadoop framework both when using BlobSeer and HDFSas the storage ba
kend. We had to over
ome nontrivial node management and
on�guration issues to rea
h this point.Overview of the experiments. In a �rst phase, we have implemented a setof mi
roben
hmarks that write/read and append data to �les through Hadoop's�le system API and have measured the a
hieved throughput as more and more
on
urrent
lients a

ess the �le system. This syntheti
 setup has enabled us to
ontrol the a

ess pattern to the �le system and fo
us on di�erent s
enarios thatexhibit parti
ular a

ess patterns. We
an thus dire
tly
ompare the respe
tivebehavior of BSFS and HDFS in these parti
ular syntheti
 s
enarios.In a se
ond phase, our goal was to get a feeling of the impa
t of BlobSeerat the appli
ation level. We have run two standard Map/Redu
e appli
ationsfrom the Hadoop release, both with BSFS and with HDFS. We have evaluatedthe impa
t of using BSFS instead of HDFS on the total job exe
ution time asINRIA

BlobSeer: High Throughput under Heavy Con
urren
y for Map/Redu
e 13
 20
 30
 40
 50
 60
 70
 80
 90

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t

File size (GB)

HDFS
BSFS

(a) Performan
e of HDFS and BSFS whena single
lient writes to a single �le 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

D
eg

re
e

of
 u

nb
al

an
ce

File size (GB)

HDFS
BSFS

(b) Load-balan
ing evaluationFigure 3: Single writer resultsthe number of available Map/Redu
e workers progressively in
reases. Note thatHadoop Map/Redu
e appli
ations run out-of-the-box in an environment whereHadoop uses BlobSeer as a storage ba
kend, just like in the original, unmodi�edenvironment of Hadoop. This was made possible thanks to the Java �le systeminterfa
e we provided with BSFS, on top of BlobSeer.4.1 Mi
roben
hmarksWe have �rst de�ned several s
enarios aiming at evaluating the throughputa
hieved by BSFS and HDFS when the distributed �le system is a

essed bya single
lient or by multiple,
on
urrent
lients, a

ording to several spe
i�
a

ess patterns. In this paper we have fo
used the following patterns, oftenexhibited by Map/Redu
e appli
ations:� a single pro
ess writing a huge distributed �le;�
on
urrent readers reading di�erent parts of the same huge �le;�
on
urrent writers appending data to the same huge �le.The aim of these experiments is of
ourse to evaluate whi
h bene�ts
an beexpe
ted when using a
on
urren
y-optimized storage servi
e su
h as BlobSeerfor highly-parallel Map-Redu
e appli
ations generating su
h a

ess patterns.The relevan
e of these patterns is dis
ussed in the following subse
tions, forea
h s
enario. Additional s
enarios with other di�erent a

ess patterns are
urrently under investigation.In ea
h s
enario, we �rst measure the throughput a
hieved when a single
lient performs a set of operations on the �le system. Then, we gradually in-
rease the number of
lients performing the same operation
on
urrently andmeasure the average throughput per
lient. For any �xed number N of
on-
urrent
lients, the experiment
onsists in two phases: we deploy of HDFS(respe
tively BSFS) on a given setup, then we run the test s
enario.In the deployment phase, HDFS (respe
tively BSFS) is deployed on 270 ma-
hines from the same
luster of Grid'5000. For HDFS, we deploy one namenodeon a dedi
ated ma
hine; the remaining nodes are used for the datanodes (onedatanode per ma
hine). On the same number of nodes, we deploy BSFS asRR n° 7140

14 B. Ni
olae, D. Moise, G. Antoniu, L. Bougé, M. Dorierfollows: one version manager, one provider manager, one node for the names-pa
e manager, 20 metadata providers; the remaining nodes are used as dataproviders. Ea
h entity is deployed on a a separate, dedi
ated ma
hine.For the measurement phase, a subset of N ma
hines is
hosen from theset of ma
hines where datanodes/providers are running. The
lients are thenlaun
hed simultaneously on this subset of ma
hines, individual throughput is
olle
ted and is then averaged. These steps are repeated 5 times for bettera

ura
y (whi
h is enough, as the
orresponding standard deviation proved tobe low).4.2 S
enario 1: single writer, single �leWe �rst measure the performan
e of HDFS/BSFS when a single
lient writes a�le whose size gradually in
reases. This test
onsists in sequentially writing aunique �le of N×64 MB, in blo
ks of 64 MB (N goes from 1 to 246). The size ofHDFS's
hunks is 64MB, and so is the blo
k size
on�gured with BlobSeer in this
ase. The goal of this experiment is to
ompare the blo
k allo
ation strategiesthat HDFS and BSFS use in distributing the data a
ross datanodes (respe
tivelydata providers). The poli
y used by HDFS
onsists in writing lo
ally whenever awrite is initiated on a datanode. To enable a fair
omparison, we
hose to alwaysdeploy
lients on nodes where no datanode has previously been deployed. Thisway, we make sure that HDFS will distribute the data among the datanodes ,instead of lo
ally storing the whole �le. BlobSeer's default strategy
onsistsin allo
ating the
orresponding blo
ks on remote providers in a round-robinfashion.We measure the write throughput for both HDFS and BSFS: the results
an be seen on Figure 3(a). BSFS a
hieves a signi�
antly higher throughputthan HDFS, whi
h is a result of the balan
ed, round-robin blo
k distributionstrategy used by BlobSeer. A high throughput is sustained by BSFS even whenthe �le size in
reases (up to 16 GB). To evaluate of the load balan
ing in bothHDFS and BSFS, we
hose to
ompute the Manhattan distan
e to an ideallybalan
ed system where all data providers/datanodes store the same number ofblo
ks/
hunks. To
al
ulate this distan
e, we represent the data layout in ea
h
ase by a ve
tor whose size is equal to the number of data providers/datanodes ;the elements of the ve
tor represent the number of blo
ks/
hunks stored byea
h provider/datanode. We
ompute 3 su
h ve
tors: one for HDFS, one forBSFS and one for a perfe
tly balan
ed system (where all elements have thesame value: the total number of blo
ks/
hunks divided by the total number ofstorage nodes. We then
ompute the distan
e between the �ideal� ve
tor and theHDFS (respe
tively BSFS). As shown on Figure 3(b), as the �le size (and thus,the number of blo
ks) in
reases, both BSFS and HDFS be
ome unbalan
ed.However, BSFS remains mu
h
loser to a perfe
tly balan
ed system, and itmanages to distribute the blo
ks almost evenly to the providers, even in the
ase of a large �le. As far as we
an tell, this
an be explained by the fa
t thatthe blo
k allo
ation poli
y in HDFS mainly takes into a

ount data lo
alityand does not aim at perfe
tly balan
ing the data distribution. A global load-balan
ing of the system is done for Map/Redu
e appli
ations when the tasks areassigned to nodes. During this experiment, we
ould noti
e that in HDFS thereare datanodes that do not store any blo
k, whi
h explains the in
reasing
urveINRIA

BlobSeer: High Throughput under Heavy Con
urren
y for Map/Redu
e 15
 20
 30
 40
 50
 60
 70
 80

 0 50 100 150 200 250
A

ve
ra

ge
 th

ro
ug

hp
ut

 (
M

B
/s

)

Number of clients

HDFS
BSFS

Figure 4: Performan
e of HDFS and BSFS when
on
urrent
lients read froma single �leshown in �gure 3(b). As we will see in the next experiments, a balan
ed datadistribution has a signi�
ant impa
t on the overall data a

ess performan
e.4.3 S
enario 2:
on
urrent reads, shared �leIn this s
enario, for ea
h given number N of
lients varying from 1 to 250, weexe
uted the experiment in two steps. First, we performed a boot-up phase,where a single
lient writes a �le of N × 64 MB, right after the deploymentof HDFS/BSFS. Se
ond, N
lients read parts from the �le
on
urrently; ea
h
lient reads a di�erent 64 MB
hunk sequentially, using �ner-grain blo
ks of4 KB. This pattern where multiple readers request data in
hunks of 4 KB isvery
ommon in the �map� phase of a Hadoop Map/Redu
e appli
ation, wherethe mappers read the input �le in order to parse the (key, value) pairs.For this s
enario, we ran two experiments in whi
h we varied the data layoutfor HDFS. The �rst experiment
orresponds to the
ase where the �le read byall
lients is entirely stored by a single datanode This
orresponds to the
asewhere the �le has previously been entirely written by a
lient
olo
ated with adatanode (as explained in the previous s
enario). Thus, all
lients subsequentlyread the data stored by one node, whi
h will lead to a very poor performan
eof HDFS. We do not represent these results here. In order to a
hieve a morefair
omparison where the �le is distributed on multiple nodes both in HDFSand in BSFS, we
hose to exe
ute a se
ond experiment. Here, the boot-upphase is performed on a dedi
ated node (no datanode is deployed on that node).By doing so, HDFS will spread the �le in a more balan
ed way on multipleremote datanodes and the reads will be performed remotely for both BSFS andHDFS. This s
enario also o�ers an a

urate simulation of the �rst phase of aMap/Redu
e appli
ation, when the mappers are assigned to nodes. The HDFSjob s
heduler tries to assign ea
h map task to the node that stores the
hunk thetask will pro
ess; these tasks are
alled lo
al maps. The s
heduler also tries toa
hieve a global load-balan
ing of the system, therefore not all the assignmentswill be lo
al. The tasks running on a di�erent node than the one storing itsinput data, are
alled remote maps : they will read the data remotely.The results obtained in the se
ond experiment are presented on Figure 4.BSFS performs signi�
antly better than HDFS, and moreover, it is able todeliver the same throughput even when the number of
lients in
reases. Thisis a dire
t
onsequen
e of how balan
ed is the blo
k distribution for that �le.RR n° 7140

16 B. Ni
olae, D. Moise, G. Antoniu, L. Bougé, M. Dorier
 0

 2000
 4000
 6000
 8000

 10000
 12000

 0 50 100 150 200 250
A

gg
re

ga
te

d
th

ro
ug

hp
ut

 (
M

B
/s

)

Number of clients

BSFS

Figure 5: Performan
e of BSFS when
on
urrent
lients append to the same �leThe superior load balan
ing strategy used by BlobSeer when writing the �le hasa positive impa
t on the performan
e of
on
urrent reads, whereas the HDFSsu�ers from the poor distribution of the �le
hunks.4.4 S
enario 3: Con
urrent appends, shared �leWe now fo
us on another s
enario, where
on
urrent
lients append data to thesame �le. This s
enario is also useful in the
ontext of Map/Redu
e appli
ations,as it is for a wide range of data-intensive appli
ations in general. For instan
e,the possibility of running
on
urrent appends
an improve the performan
eof a simple operation su
h as
opying a large distributed �le. This
an bedone in parallel by multiple
lients whi
h read di�erent parts of the �le, then
on
urrently append the data to the destination �le. Moreover, if
on
urrentappend operations are enabled, Map/Redu
e workers
an write the output ofthe redu
e phase to the same �le, instead of
reating many output �les, as it is
urrently done in Hadoop.Despite its obvious usefulness, this feature is not available with Hadoop's �lesystem: Hadoop has not been optimized for su
h a s
enario. As BlobSeer pro-vides support for e�
ient,
on
urrent appends by design, we have implementedthe append operation in BSFS and evaluated the aggregated throughput asthe number of
lients varies from 1 to 250. We
ould not perform the sameexperiment for HDFS, sin
e it does not implement the append operation.Figure 5 illustrates the aggregated throughput obtained when multiple
lients
on
urrently append data to the same BSFS �le. These good results
anbe obtained thanks to BlobSeer, whi
h is optimized for
on
urrent appends.Note that these results also give an idea about the performan
e of
on
urrentwrites to the same �le. In BlobSeer, the append operation is implemented asa spe
ial
ase of the write operation where the write o�set is impli
itly equalto the
urrent �le size: the underlying algorithms are a
tually identi
al. Thesame experiment performed with writes instead of appends, leads to very similarresults.
INRIA

BlobSeer: High Throughput under Heavy Con
urren
y for Map/Redu
e 17
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 1 2 3 4 5 6 7

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

Size of data generated by one mapper (GB)

HDFS
BSFS

(a) RandomTextWrite: Job
ompletiontime for a total of 6.4 GB of output datawhen in
reasing the data size generated byea
h mapper 0

 20

 40

 60

 80

 100

 6 7 8 9 10 11 12 13

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

Total text size to be searched (GB)

HDFS
BSFS

(b) Distributed grep: Job
ompletion timewhen in
reasing the size of the input textto be sear
hedFigure 6: Bene�ts of using BSFS instead of HDFS as a storage layer in Hadoop:impa
t on the performan
e of Map/Redu
e appli
ations4.5 Higher-level experiments with Map/Redu
e appli
a-tionsIn order to evaluate how well BSFS and HDFS perform in the role of storagelayers for real Map/Redu
e appli
ations, we sele
ted two standard Map/Redu
eappli
ations that are part of Yahoo!'s Hadoop release.The �rst appli
ation, RandomTextWriter, is representative of a distributedjob
onsisting in a large number of tasks ea
h of whi
h needs to write a largeamount of output data (with no intera
tion among the tasks). The appli
ationlaun
hes a �xed number of mappers, ea
h of whi
h generates a huge sequen
e ofrandom senten
es formed from a list of prede�ned words. The redu
e phase ismissing altogether: the output of ea
h of the mappers is stored as a separate �lein the �le system. The a

ess pattern generated by this appli
ation
orrespondsto
on
urrent, massively parallel writes, ea
h of them writing to a di�erent �le.To
ompare the performan
e of BSFS vs. HDFS in su
h a s
enario, we
o-deploy a Hadoop tasktra
ker with a datanode in the
ase of HDFS (with a dataprovider in the
ase of BSFS) on the same physi
al ma
hine, for a total of 50ma
hines. The other entities for Hadoop, HDFS (namenode, jobtra
ker) and forBSFS (version manager, provider manager, namespa
e manager) are deployedon separate dedi
ated nodes. For BlobSeer, 10 metadata providers are deployedon dedi
ated ma
hines as well.We �x the total output size of the job to amount to 6.4 GB worth of generatedtext and vary the size generated by ea
h mapper from 128 MB (
orresponding to50 parallel mappers) to 6.4 GB (
orresponding to a single mapper), and measurethe job
ompletion time in ea
h
ase.Results obtained are displayed on Figure 6(a). Observe the relative gain ofBSFS over HDFS ranges from 7 % for 50 parallel mappers to 11 % for a singlemapper. The
ase of a single mapper
learly favours BSFS and is
onsistent withour �ndings for the syntheti
 ben
hmark in whi
h we explained the respe
tivebehavior of BSFS and HDFS when a single pro
ess writes a huge �le. Therelative di�eren
e is smaller than in the
ase of the syntheti
 ben
hmark be
ausehere the total job exe
ution time in
ludes some
omputation time (generationRR n° 7140

18 B. Ni
olae, D. Moise, G. Antoniu, L. Bougé, M. Dorierof random text). This
omputation time is the same for both HDFS and BSFSand takes a signi�
ant part of the total exe
ution time.The se
ond appli
ation we
onsider is distributed grep. It is representative ofa distributed job where huge input data needs to be pro
essed in order to obtainsome statisti
s. The appli
ation s
ans a huge text input �le for o

urren
es ofa parti
ular expression and
ounts the number of lines where the expressiono

urs. Mappers simply output the value of these
ounters, then the redu
erssum up the all the outputs of the mappers to obtain the �nal result. The a

esspattern generated by this appli
ation
orresponds to
on
urrent reads from thesame shared �le.In this s
enario we
o-deploy a tasktra
ker with a HDFS datanode (with aBlobSeer data provider, respe
tively), on a total of 150 nodes. We deploy all
entralized entities (version manager, provider manager, namespa
e manager,namenode, et
) on dedi
ated nodes. Also, 20 Metadata providers are deployedon dedi
ated nodes for BlobSeer.We �rst write a huge input �le to HDFS and BSFS respe
tively. In the
aseof HDFS, the �le is written from a node that is not
olo
ated with a datanode, inorder to avoid the s
enario where HDFS writes all data blo
ks lo
ally. This givesHDFS the
han
e to perform some load-balan
ing of data blo
ks. Then we runthe distributed grep Map/Redu
e appli
ation and measure the job
ompletiontime. We vary the size of the input �le from 6.4 GB to 12.8 GB in in
rementsof 1.6 GB. Sin
e a Hadoop data blo
k is 64 MB large and sin
e usually Hadoopassigns a single mapper to pro
ess su
h a data blo
k, this roughly
orrespondsto varying the number of
on
urrent mappers from 100 to 200.Results obtained are represented in Figure 6(b). As
an be observed BSFSoutperforms HDFS by 35 % for 6.4 GB and the gap steadily in
reases to 38 %for 12.8 GB. This behavior is
onsistent with the results obtained for the syn-theti
 ben
hmark where
on
urrent pro
esses read from the same �le. Again,the relative di�eren
e is smaller than in the syntheti
 ben
hmark be
ause thejob
ompletion time a

ounts for both the
omputation time and the I/O trans-fer time. Note however the high impa
t of I/O in su
h appli
ations that s
anthrough the data for spe
i�
 patterns: the bene�ts of supporting e�
ient
on-
urrent reads from the same �le at the level of the underlying distributed �lesystem are de�nitely signi�
ant.5 Con
lusionThe e�
ien
y of the Hadoop framework is a dire
t fun
tion of that of its datastorage layer. This work demonstrates that it is possible to enhan
e it by repla
-ing the default Hadoop Distributed File System (HDFS) layer by another layer,built along di�erent design prin
iples. We introdu
e our BlobSeer system, whi
his spe
i�
ally optimized toward e�
ient, �ne-grain a

ess to massive, distributeddata a

essed under heavy
on
urren
y. Thank to this new BlobSeer-based FileSystem (BSFS) layer, the sustained throughput of Hadoop is signi�
antly im-proved in s
enarios that exhibit highly
on
urrent a

esses to shared �les. More-over, BSFS supports additional features su
h as e�
ient
on
urrent appends,
on
urrent writes at random o�sets and versioning. These features
ould beleveraged to extend or improve fun
tionalities in future versions of Hadoop orother Map/Redu
e frameworks. We list below several interesting perspe
tives.INRIA

BlobSeer: High Throughput under Heavy Con
urren
y for Map/Redu
e 19Leveraging versioning. Although in most real Map/Redu
e appli
ations,data is mostly appended rather than overwritten, Hadoop's �le system API doesnot implement append. Sin
e BlobSeer supports arbitrarily
on
urrent writesas well as appends, this opens a high potential for very promising improvementsof Map/Redu
e framework implementations, in
luding Hadoop. Versioning
anbe leveraged to optimize more
omplex Map/Redu
e work�ows, in whi
h theoutput of one Map/Redu
e is the input of another. In many su
h s
enarios,datasets are only lo
ally altered from one Map/Redu
e pass to another: writingparts of the dataset while still being able to a

ess the original dataset (thanksto versioning)
ould save a lot of temporary storage spa
e.Fault toleran
e. An important aspe
t we did not dis
uss in this paper isfault toleran
e. For this, we
urrently rely on
lassi
al me
hanisms. At datalevel, we employ a simple repli
ation me
hanism that allows the user to spe
ify arepli
ation level for ea
h BLOB. A write operation a
tually writes its respe
tiveblo
ks to a number of providers equal to that repli
ation level. The metadata isstored in a DHT (formed by the metadata providers), whi
h is resilient to faultsby
onstru
tion. The
entralized managers represent single points of failure asis the
ase with the namenode of HDFS. Overall, fault-toleran
e s
hemes
ur-rently used in BlobSeer are however rather minimal. We are
urrently exploringways to repla
e them with distributed, fault-tolerant me
hanisms, while stillpreserving a high-throughput for data a

ess.Se
urity. We did not address se
urity issues in this paper, as most of thetime Hadoop deployments are exploited within private, trusted
lusters ownedby big
ompanies, su
h as Google and Yahoo!: for now, we pla
e ourselves inthe same
ontext, therefore the se
urity assumptions are basi
ally the sameas for Hadoop's built-in �le system. In the
ase where Hadoop would run asa Map/Redu
e
loud servi
e, possibly relying on externalized, virtualized re-sour
es from other
loud
omputing servi
e providers (su
h as Amazon), these
urity
onstraints would be di�erent. It then be
omes
ru
ial to guaranteedata priva
y and data a

ess
ontrol for multiple users, a

ording to a
ontra
t.We plan to explore these issues in the near future.Referen
es[1℄ Amazon Elasti
 Compute Cloud (EC2). http://aws.amazon.
om/e
2/.[2℄ Amazon Elasti
 Map Redu
e. http://aws.amazon.
om/elasti
mapredu
e/.[3℄ Amazon Simple Storage Servi
e (S3). http://aws.amazon.
om/s3/.[4℄ Kosmix CloudStore Distributed File System. http://kosmosfs.sour
eforge.net/index.html.[5℄ Je�rey Dean and Sanjay Ghemawat. MapRedu
e: simpli�ed data pro
ess-ing on large
lusters. Communi
ations of the ACM, 51(1):107�113, 2008.[6℄ Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. The google �lesystem. SIGOPS - Operating Systems Review, 37(5):29�43, 2003.RR n° 7140

20 B. Ni
olae, D. Moise, G. Antoniu, L. Bougé, M. Dorier[7℄ The Apa
he Hadoop Proje
t. http://www.hadoop.org.[8℄ HDFS. The Hadoop Distributed File System. http://hadoop.apa
he.org/
ommon/do
s/r0.20.1/hdfs_design.html.[9℄ Yvon Jégou, Stephane Lantéri, Julien Ledu
, Melab Noredine, GuillaumeMornet, Raymond Namyst, Pas
ale Primet, Benjamin Quetier, OlivierRi
hard, El-Ghazali Talbi, and Tou
he Iréa. Grid'5000: a large s
aleand highly re
on�gurable experimental grid testbed. International Journalof High Performan
e Computing Appli
ations, 20(4):481�494, November2006.[10℄ Bogdan Ni
olae, Gabriel Antoniu, and Lu
 Bougé. BlobSeer: How to en-able e�
ient versioning for large obje
t storage under heavy a

ess
on-
urren
y. In Pro
. 2nd Workshop on Data Management in Peer-to-PeerSystems (DAMAP'2009), Saint Petersburg, Russia, Mar
h 2009. Held in
onjun
tion with EDBT'2009.[11℄ Bogdan Ni
olae, Gabriel Antoniu, and Lu
 Bougé. Enabling high datathroughput in desktop grids through de
entralized data and metadata man-agement: The blobseer approa
h. In Pro
. 15th International Euro-ParConferen
e on Parallel Pro
essing (Euro-Par '09), volume 5704 of Le
t.Notes in Comp. S
ien
e, pages 404�416, Delft, The Netherlands, 2009.Springer-Verlag.[12℄ PVFS. Parallel virtual �le system, version 2. http://pvfs2.org/.[13℄ Frank B. S
hmu
k and Roger L. Haskin. GPFS: A shared-disk �le systemfor large
omputing
lusters. In FAST '02: Pro
eedings of the Conferen
eon File and Storage Te
hnologies, pages 231�244. USENIX Asso
iation,2002.[14℄ Garth Gibson Wittawat Tantisiriroj, Swapnil Patil. Data-intensive �le sys-tems for internet servi
es: A rose by any other name... Te
hni
al ReportUCB/EECS-2008-99, Parallel Data Laboratory, O
tober 2008.[15℄ C. Zheng, G. Shen, S. Li, and S. Shenker. Distributed Segment Tree:Support range query and
over query over DHT. In Pro
eedings of the FifthInternational Workshop on Peer-to-Peer Systems (IPTPS), Santa Barbara,California, 2006.

INRIA

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

