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e pro-gramming model. It relies on the Hadoop Distributed File System (HDFS) as itsprimary storage system. The e�
ien
y of HDFS is 
ru
ial for the performan
eof Map/Redu
e appli
ations. We substitute the original HDFS layer of Hadoopwith a new, 
on
urren
y-optimized data storage layer based on the BlobSeerdata management servi
e. Thereby, the e�
ien
y of Hadoop is signi�
antly im-proved for data-intensive Map/Redu
e appli
ations, whi
h naturally exhibit ahigh degree of data a

ess 
on
urren
y. Moreover, BlobSeer's features (built-inversioning, its support for 
on
urrent append operations) open the possibilityfor Hadoop to further extend its fun
tionalities. We report on extensive exper-iments 
ondu
ted on the Grid'5000 testbed. The results illustrate the bene�tsof our approa
h over the original HDFS-based implementation of Hadoop.Key-words: Distributed �le systems; High-performan
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BlobSeer: augmenter la bande passantedans un 
ontexte de forte 
on
urren
epour les appli
ations Map/Redu
e sur HadoopRésumé : Hadoop est un environnement logi
iel pour la mise en ÷uvre dumodèle de programmation Map/Redu
e. Il s'appuie prin
ipalement sur le sys-tème de gestion de �
hiers distribué HDFS. L'e�
a
ité de HDFS est un pa-ramètre 
ru
ial de la performan
e des appli
ations Map/Redu
e. Nous pro-posons de rempla
er la 
ou
he HDFS de Hadoop par une nouvelle 
ou
he desto
kage des données qui soit optimisée pour une utilisation 
on
urrente. Cettenouvelle 
ou
he s'appuie sur le servi
e de gestion de données BlobSeer. Nousmontrons que l'e�
a
ité de Hadoop est ainsi améliorée de manière signi�
ativepour des appli
ations Map/Redu
e qui manipulent intensivement les données:en e�et, elles o�rent naturellement un haut degré de 
on
urren
e. De plus, lesfon
tionnalités spé
i�ques de BlobSeer (gestion intégrée des versions, supportpour les opérations �append� 
on
urrentes) permettent d'envisager d'étendreles fon
tionnalités de Hadoop. Nous rendons 
ompte d'une 
ampagne intensived'expérien
es menée sur l'instrument Grid'5000. Les résultats illustrent les bé-né�
es de notre appro
he par rapport à l'implémentation primitive de Hadoopfondée sur HDFS.Mots-
lés : Système de gestion de �
hiers distribué; système haute perfor-man
e; grande bande passante; grande é
helle; a

ès hautement 
on
urrents;appli
ations Map/Redu
e; Hadoop; BlobSeer.
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enario 3: Con
urrent appends, shared �le . . . . . . . . . . . . 164.5 Higher-level experiments with Map/Redu
e appli
ations . . . . . 175 Con
lusion 181 Introdu
tionMap/Redu
e [5℄ is a parallel programming paradigm su

essfully used by largeInternet servi
e providers to perform 
omputations on massive amounts of data.After being strongly promoted by Google, it has also been implemented bythe open sour
e 
ommunity through the Hadoop [7℄ proje
t, maintained bythe Apa
he Foundation and supported by Yahoo! and even by Google itself.This model is 
urrently getting more and more popular as a solution for rapidimplementation of distributed data-intensive appli
ations.At the 
ore of the Map/Redu
e frameworks stays a key 
omponent: thestorage layer. To enable massively parallel data pro
essing to a high degreeover a large number of nodes, the storage layer must meet a series of spe
i�
requirements (dis
ussed in Se
tion 2), that are not part of design spe
i�
ationsof traditional distributed �le systems employed in the HPC 
ommunities: these�le systems typi
ally aim at 
onforming to well-established standards su
h asPOSIX and MPI-IO. To address these requirements, spe
ialized �le systemshave been designed, su
h as HDFS [8℄, the default storage layer of Hadoop.HDFS has however some di�
ulties to sustain a high throughput in the 
aseof 
on
urrent a

esses to the same �le. Moreover, many desirable features aremissing altogether, su
h as the support for versioning and for 
on
urrent updatesto the same �le.We substitute the original data storage layer of Hadoop with a new,
on
urren
y-optimized storage layer based on BlobSeer, a data managementservi
e we developed with the goal of supporting e�
ient, �ne-grain a

ess tomassive, distributed data a

essed under heavy 
on
urren
y. By using BlobSeerRR n° 7140



4 B. Ni
olae, D. Moise, G. Antoniu, L. Bougé, M. Dorierinstead of its default storage layer, Hadoop signi�
antly improves its sustainedthroughput in s
enarios that exhibit highly 
on
urrent a

esses to shared �les.We report on extensive experimentation both with syntheti
 mi
roben
hmarksand real Map/Redu
e appli
ations. The results illustrate the bene�ts of ourapproa
h over the original HDFS-based implementation of Hadoop. Moreoverwe support additional features su
h as e�
ient 
on
urrent appends, 
on
urrentwrites at random o�sets and versioning. These features 
ould be leveraged toextend or improve fun
tionalities in future versions of Hadoop or other Map/Re-du
e frameworks.2 Spe
ialized �le systems for data-intensiveMap/Redu
e appli
ations2.1 Requirements for the storage layerMap/Redu
e appli
ations typi
ally 
run
h ever growing data sets of billions ofsmall re
ords. Storing billions of KB-sized re
ords in separate tiny �les is bothunfeasible and hard to handle, even if the storage layer would support it. Forthis reason, data sets are usually pa
ked together in huge �les whose size rea
hesthe order of several hundreds of GB.The key strength of the Map/Redu
e model is its inherently high paralleliza-tion of the 
omputation, that enables pro
essing of PB of data in a 
ouple ofhours on large 
lusters 
onsisting of several thousand nodes. This has several
onsequen
es for the storage ba
kend. Firstly, sin
e data is stored in huge �les,the 
omputation will have to pro
ess small parts of these huge �les 
on
urrently.Thus, the storage layer is expe
ted to provide e�
ient �ne-grain a

ess to the�les. Se
ondly, the storage layer must be able to sustain a high throughputin spite of heavy a

ess 
on
urren
y to the same �le, as thousands of 
lientssimultaneously a

ess data.Dealing with of huge amounts of data is di�
ult in terms of manageability.Simple mistakes that may lead to loss of data 
an have disastrous 
onsequen
essin
e gathering su
h amounts of data requires 
onsiderable e�ort investment.Versioning in this 
ontext be
omes an important feature that is expe
ted fromthe storage layer. Not only it enables rolling ba
k undesired 
hanges, but alsobran
hing a dataset into two independent datasets that 
an evolve indepen-dently. Obviously, versioning should have a minimal impa
t both on perfor-man
e and on storage spa
e overhead.Finally, another important requirement for the storage layer is its ability toexpose an interfa
e that enables the appli
ation to be data-lo
ation aware. Thisallows the s
heduler to use this information to pla
e 
omputation tasks 
loseto the data. This redu
es network tra�
, 
ontributing to a better global datathroughput.2.2 Dedi
ated �le systems for Map/Redu
eThese 
riti
al needs of data-intensive distributed appli
ations have not beenaddressed by 
lassi
al, POSIX-
ompliant distributed �le systems. Therefore,Google introdu
ed GoogleFS [6℄ as a storage ba
kend that provides the rightINRIA
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e 5abstra
tion for their Map/Redu
e data pro
essing framework. Then, other spe-
ialized �le systems emerged: 
ompanies su
h as Yahoo! and Kosmix followedthis trend by emulating the GoogleFS ar
hite
ture with the Hadoop DistributedFile System (HDFS, [8℄) and CloudStore [4℄.Essentially, GoogleFS splits �les into �xed-sized 64 MB 
hunks that aredistributed among 
hunkservers. Both metadata that des
ribes the dire
torystru
ture of the �le system, and metadata that des
ribes the 
hunk layout arestored on a 
entralized master server. Clients that need to a

ess a �le �rst
onta
t this server to obtain the lo
ation of the 
hunks that 
orrespond to therange of the �le they are interested in. Then, they dire
tly intera
t with the
orresponding 
hunkservers. GoogleFS is optimized to sustain a high through-put for 
on
urrent reads/appends from/to a single �le, by relaxing the semanti

onsisten
y requirements. It also implements support for 
heap snapshootingand bran
hing.Hadoop Map/Redu
e is a framework designed for easily writing and e�-
iently pro
essing Map/Redu
e appli
ations. The framework 
onsists of a singlemaster jobtra
ker , and multiple slave tasktra
kers , one per node. The jobtra
keris responsible for s
heduling the jobs' 
omponent tasks on the slaves, monitoringthem and re-exe
uting the failed tasks. The tasktra
kers exe
ute the tasks asdire
ted by the master. HDFS is the default storage ba
kend that ships with theHadoop framework. It was inspired by the ar
hite
ture of GoogleFS. Files arealso split in 64 MB blo
ks that are distributed among datanodes . A 
entralizednamenode is responsible to maintain both 
hunk layout and dire
tory stru
turemetadata. Read and write requests are performed by dire
t intera
tion withthe 
orresponding datanodes and do not go through the namenode.In Hadoop, reads essentially work the same way as with GoogleFS. However,HDFS has a di�erent semanti
s for 
on
urrent write a

ess: it allows only onewriter at a time, and, on
e written, data 
annot be altered, neither by overwrit-ing nor by appending. Several optimization te
hniques are used to signi�
antlyimprove data throughput. First, HDFS employs a 
lient side bu�ering me
ha-nism for small read/write a

esses. It prefet
hes data on reading. On writing,it postpones 
ommitting data after the bu�er has rea
hed at least a full 
hunksize. A
tually, su
h �ne-grain a

esses are dominant in Map/Redu
e appli
a-tions, whi
h usually manipulate small re
ords. Se
ond, Hadoop's job s
heduler(the jobtra
ker) pla
es 
omputations as 
lose as possible to the data. For thispurpose, HDFS expli
itely exposes the mapping of 
hunks over datanodes to theHadoop framework.With 
loud 
omputing be
oming more and more popular, providers su
h asAmazon started o�ering Map/Redu
e platforms as a servi
e. Amazon's initia-tive, Elasti
 MapRedu
e [2℄, employs Hadoop on their Elasti
 Compute Cloudinfrastru
ture (EC2, [1℄). The storage ba
kend used by Hadoop is Amazon'sSimple Storage Servi
e (S3, [3℄). The S3 framework was designed with sim-pli
ity in mind, to handle obje
ts that may rea
h sizes in the order of GB: theuser 
an write, read, and delete obje
ts simply identi�ed by an unique key. Thea

ess interfa
e is based on well-established standards su
h as SOAP. Careful
onsideration was invested into using de
entralized te
hniques and designingoperations in su
h way as to minimize the need for 
on
urren
y 
ontrol. A faulttolerant layer enables operations to 
ontinue with minimal interruption. Thisallows S3 to be highly s
alable. On the downside however, simpli
ity 
omes ata 
ost: S3 provides limited support for 
on
urrent a

esses to a single obje
t.RR n° 7140



6 B. Ni
olae, D. Moise, G. Antoniu, L. Bougé, M. DorierOther e�orts aim at adapting general-purpose distributed �le systems fromthe HPC 
ommunity to the needs of the Map/Redu
e appli
ations. For instan
e,PVFS (Parallel Virtual File System) and GPFS (General Parallel File System,from IBM) have been adapted to serve as a storage layer for Hadoop. GPFS [13℄is part of the shared-disk �le systems 
lass, that use a pool of blo
k-level storage,shared and distributed a
ross all the nodes in the 
luster. The shared storage
an be dire
tly a

essed by 
lients, with no intera
tion with an intermediateserver. Integrating GPFS with the Hadoop framework, involves over
omingsome limitations: GPFS supports a maximal blo
k size of 16 MB, whereasHadoop often makes use of data in 64 MB 
hunks; Hadoop's jobtra
ker must beaware of the blo
k lo
ation, while GPFS (like all parallel �le systems) exposesa POSIX interfa
e. PVFS [12℄ belongs to a se
ond 
lass of parallel �le systems,obje
t-based �le systems whi
h separate the nodes that store the data from theones that store the medatata (�le information, and �le blo
k lo
ation). When a
lient wants to a

ess a �le, it must �rst 
onta
t the metadata server and thendire
tly a

ess the data on the data servers indi
ated by the metadata server.In [14℄, it is des
ribed the way PVFS was integrated with Hadoop, by adding alayer on top of PVFS. This layer enhan
ed PVFS with some features that HDFSalready provides to the Hadoop framework: performing read-ahead bu�ering,exposing the data layout and emulating repli
ation.The above work has been a sour
e of inspiration for our approa
h. Thanks tothe spe
i�
 features of BlobSeer, we 
ould address several limitations of HDFShighlighted in it.3 BlobSeer as a 
on
urren
y-optimized �le sys-tem for HadoopIn this se
tion we introdu
e BlobSeer, a system for managing massive data in alarge-s
ale distributed 
ontext [10℄. Its e�
ient version-oriented design enableslo
k-free a

ess to data, and thereby favors s
alablity under heavy 
on
urren
y.Thanks to its de
entralized data and metadata management, it provides highdata throughput [11℄. The goal of this paper is to show how BlobSeer 
an beextended into an �lesystem for Hadoop, and thus used as an e�
ient storageba
kend for Map/Redu
e appli
ations.3.1 Design overview of BlobSeerThe goal of BlobSeer is to provide support for data-intensive distributed ap-pli
ations. No hypothesis whatsoever is made about the stru
ture of the dataat stake: they are viewed as huge, �at sequen
es of bytes, often 
alled BLOBs(Binary Large OBje
ts). We espe
ially target appli
ations that pro
ess BLOBsin a �ne-grain manner. This is the typi
al 
ase of Map/Redu
e appli
ations,indeed: workers usually a

ess pie
es of up to 64 MB from huge input �les,whose size may rea
h hundreds of GB.A 
lient of BlobSeer manipulates BLOBs by using a simple interfa
e thatallows to: 
reate a new empty BLOB; append data to an existing BLOB; read-/write a subsequen
e of bytes spe
i�ed by an o�set and a size from/to an existingBLOB. Ea
h BLOB is identi�ed by a unique id in the system. INRIA
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Figure 1: Metadata tree after writing the �rst 4 blo
ks of a BLOBVersioning is built in BlobSeer at the earliest stage of design. Ea
h time awrite or append is performed on a BLOB, a new snapshot re�e
ting the 
hangesis generated instead of overwriting any existing data. This new snapshot is la-beled with an in
remental version number, so that all past versions of the BLOB
an potentially be a

essed, at least as long as they have not been garbaged forthe sake of storage spa
e.The version numbers are assigned and managed by the system. In orderto read a part of the BLOB, the 
lient must spe
ify both the unique id of theBLOB and the snapshot version it desires to read from. A spe
ial 
all allowsthe 
lient to �nd out the latest version of a parti
ular BLOB, but the 
lient isallowed to read any past version of the BLOB.Although ea
h write or append generates a new version, only the di�erentialpat
h is a
tually stored, so that storage spa
e is saved at far as possible. Thenew snapshot shares all unmodi�ed data and most of the asso
iated metadatawith the previous versions, as we will see further in this se
tion. Su
h an imple-mentation further fa
ilitates the implementation of advan
ed features su
h asrollba
k and bran
hing, sin
e data and metadata 
orresponding to past versionsremain available in the system and 
an easily be a

essed.The goal of BlobSeer is to sustain high throughput under heavy a

ess 
on-
urren
y in reading, writing and appending. This is a
hieved thanks to the
ombination of various te
hniques, in
luding: data striping, distributed meta-data, version-based design, lo
k-free data a

ess.Data striping. BlobSeer relies on striping: ea
h BLOB is made up of blo
ksof a �xed size. To optimize BlobSeer for Map/Redu
e appli
ations, we set thissize to the size of the data pie
e a Map/Redu
e worker is supposed to pro
ess(i.e., 64 MB in the experiments below with Hadoop, equal to the 
hunk sizein HDFS). These blo
ks are distributed among the storage nodes. We use aload balan
ing strategy that aims at evenly distributing the blo
ks among thesenodes. As des
ribed in Se
tion 4.3, this has a major positive impa
t in sustaininga high throughput when many 
on
urrent readers a

ess di�erent parts of thesame �le.Distributed metadata. A BLOB is a

essed by spe
ifying a version numberand a range of bytes delimited by an o�set and a size. BlobSeer manages addi-tional metadata to map a given range and a version to the physi
al nodes wherethe 
orresponding blo
ks are lo
ated. We organize metadata as a distributedRR n° 7140



8 B. Ni
olae, D. Moise, G. Antoniu, L. Bougé, M. Doriersegment tree [15℄: one su
h tree is asso
iated to ea
h version of a given blob id.A segment tree is a binary tree in whi
h ea
h node is asso
iated to a range ofthe blob, delimited by o�set and size. We say that the node 
overs the range(o�set, size). The root 
overs the whole BLOB. For ea
h node that is not a leaf,the left 
hild 
overs the �rst half of the range, and the right 
hild 
overs the se
-ond half. Ea
h leaf 
overs a single blo
k of the BLOB. Figure 1 illustrates su
ha metadata tree for a 4-blo
k. To favor e�
ient 
on
urrent a

ess to metadata,tree nodes are distributed: they are stored on the metadata providers using aDHT (Distributed Hash Table). Ea
h tree node is identi�ed in the DHT byits version and by the range spe
i�ed through the o�set and the size it 
overs.Su
h a metadata tree is 
reated when the �rst blo
ks of the blob are written,for the range 
overed by those blo
ks. Then, to avoid the overhead (in time andspa
e!) of rebuilding su
h a tree for the subsequent updates, we 
reate new treenodes only for the ranges that do interse
t with the range of the update.Note that metadata de
entralization has a signi�
ant impa
t on the globalthroughput, as demonstrated in [11℄: it avoids the bottlene
k 
reated by 
on-
urrent a

esses in the 
ase of a 
entralized metadata server in most distributed�le systems, in
luding HDFS. A detailed des
ription of the algorithms we useto manage metadata 
an be found in [10℄: due to spa
e 
onstraints, we will notdevelop them further in this paper.Version-based, lo
k-free, 
on
urren
y-optimized data a

ess. Blob-Seer relies on a versioning-based 
on
urren
y 
ontrol algorithm that maximizesthe number of operations performed in parallel in the system. It is done byavoiding syn
hronization as mu
h as possible, both at the data and metadatalevels. The key idea is amazingly simple: no existing data or metadata is evermodi�ed! First, any writer or appender writes its new data blo
ks, by storingthe di�erential pat
h. Then, in a se
ond phase, the version number is allo
atedand the new metadata referring to these blo
ks are generated. The �rst phase
onsists in a
tually writing the new data on the distributed storage nodes. The
on
urrent writers 
an pro
eed with full parallelism, without any syn
hroniza-tion. In the se
ond phase, the new metadata are then �weaved� together withthe metadata of the versions with a lower number. The 
ru
ial observation isthat this se
ond phase 
an also be mostly 
on
urrent. The only global syn
hro-nization requirement is that the order in whi
h the 
ompletion of the 
on
urrentwrites o

urs must respe
t the order in whi
h the version numbers have beenassigned. This is transparently ensured by the system, without requiring anyexpli
it syn
hronization by the user. Thereby, the algorithm 
reates the illusionof a fully independent snapshot generation. This allows write/write 
on
urren
yat data level, while still preserving serialization and atomi
ity.Sin
e ea
h writer or appender generates new data/metadata and never modi-�es existing data/metadata, readers are 
ompletely de
oupled from them. Read-ers 
an thus pro
eed with full 
on
urren
y with respe
t to writers and appenders(and vi
e-versa), both for data and metadata a

ess. We 
an thus 
laim thatour approa
h supports read/read, read/write and write/write 
on
urren
y bydesign. This signi�
antly overpasses the 
apabilities of HDFS, whi
h only al-lows a single writer to pro
eed at a time. The experimental results presented inSe
tion 4 
learly support our 
laim. INRIA
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Figure 2: BlobSeer's ar
hite
ture. The BSFS layer enables Hadoop to use Blob-Seer as a storage ba
kend through a �le system interfa
e.3.2 Integrating BlobSeer with HadoopThe Hadoop Map/Redu
e framework a

esses its default storage ba
kend(HDFS) through a 
lean, spe
i�
 Java API. This API exposes the basi
 op-erations of a �le system: read, write, append, et
. To make Hadoop bene�tfrom BlobSeer's properties, we implemented this API on top of BlobSeer. We
all this higher layer the BlobSeer File System (BSFS): it enables BlobSeer toa
t as a storage ba
kend �le system for Hadoop. To enable a fair 
omparison ofBSFS with HDFS, we addressed several performan
e-oriented issues highlightedin [14℄. They are brie�y dis
ussed below.File system namespa
e. The Hadoop framework expe
ts a 
lassi
al hierar-
hi
al dire
tory stru
ture, whereas BlobSeer provides a �at stru
ture for BLOBs.For this purpose, we had to design and implement a spe
ialized namespa
emanager, whi
h is responsible for maintaining a �le system namespa
e, and formapping �les to BLOBs. For the sake of simpli
ity, this entity is 
entralized.Careful 
onsideration was given to minimize the intera
tion with this namespa
emanager, in order to fully bene�t from the de
entralized metadata managements
heme of BlobSeer. Our implementation of Hadoop's �le system API onlyintera
ts with it for operations like �le opening and �le/dire
tory 
reation/dele-tion/renaming. A

ess to the a
tual data is performed by a dire
t intera
tionwith BlobSeer through read/write/append operations on the asso
iated BLOB,whi
h fully bene�t from BlobSeer's e�
ient support for 
on
urren
y.Data prefet
hing. Hadoop manipulates data sequentially in small 
hunks ofa few KB (usually, 4 KB) at a time. To optimize throughput, HDFS implementsa 
a
hing me
hanism that prefet
hes data for reads, and delays 
ommittingdata for writes. Thereby, physi
al reads and writes are performed with datasizes large enough to 
ompensate for network tra�
 overhead. We implementeda similar 
a
hing me
hanism in BSFS. It prefet
hes a whole blo
k when theRR n° 7140



10 B. Ni
olae, D. Moise, G. Antoniu, L. Bougé, M. Dorierrequested data is not already 
a
hed, and delays 
ommitting writes until awhole blo
k has been �lled in the 
a
he.A�nity s
heduling: exposing data distribution. In a typi
al Hadoopdeployment, the same physi
al nodes a
t both as storage elements and as 
om-putation workers. Therefore, the Hadoop s
heduler strives at pla
ing the 
om-putation as 
lose as possible to the data: this has a major impa
t on the globaldata throughput, given the huge volume of data being pro
essed. To enable thiss
heduling poli
y, Hadoop's �le system API exposes a 
all that allows Hadoopto learn how the requested data is split into blo
ks, and where those blo
ksare stored. We address this point by extending BlobSeer with a new primitive.Given a spe
i�ed BLOB id, version, o�set and size, it returns the list of blo
ksthat make up the requested range, and the addresses of the physi
al nodes thatstore those blo
ks. Then, we simply map Hadoop's 
orresponding �le system
all to this primitive provided by BlobSeer.3.3 BlobSeer: detailed ar
hite
tureBlobSeer 
onsists of a series of distributed 
ommuni
ating pro
esses. Figure 2illustrates the pro
esses and their intera
tions between them.Clients 
reate, read, write and append data from/to BLOBs. Clients 
ana

ess the BLOBs with full 
on
urren
y, even if they all a

ess the sameBLOB.Data providers physi
ally store the blo
ks generated by appends and writes.New data providers may dynami
ally join and leave the system. In the
ontext of Hadoop Map/Redu
e, the nodes hosting data providers typi-
ally also a
t as 
omputing elements as well. This enables them to bene�tfrom the s
heduling strategy of Hadoop, whi
h aims at pla
ing the 
om-putation as 
lose as possible to the data.The provider manager keeps information about the available storage spa
eand s
hedules the pla
ement of newly generated blo
ks. For ea
h su
hblo
k to be stored, it sele
ts the data providers a

ording to a load bal-an
ing strategy that aims at evenly distributing the blo
ks a
ross dataproviders.Metadata providers physi
ally store the metadata that allows identifying theblo
ks that make up a snapshot version. We use a distributed metadatamanagement s
heme to enhan
e 
on
urrent a

ess to metadata. The nodeshosting metadata providers may a
t as 
omputing elements as well.The version manager is in 
harge of assigning snapshot version numbers insu
h a way that serialization and atomi
ity of writes and appends is guar-anteed. It is typi
ally hosted on a dedi
ated node.The namespa
e manager is not part of the BlobSeer. It is an additionalentity introdu
ed for BSFS, the higher-level �le system layer. It maintainsa �le system namespa
e, and maps �les in the namespa
e to BLOBs. Itis typi
ally hosted on a dedi
ated node. INRIA
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urren
y for Map/Redu
e 113.4 Zooming on readsTo read data, the 
lient �rst needs to �nd out the BLOB 
orresponding to therequested �le. This information is typi
aly available lo
ally (as it has typi
allybeen requested from the namespa
e manager when the �le was opened). Thenthe 
lient must spe
ify the version number it desires to read from, as well asthe o�set and size of the range to be read. The 
lient may also 
all a spe
ialprimitive �rst, to �nd out the latest version available in the system at the timethis primitive was invoked. In pra
ti
e, sin
e Hadoop's �le system API does notsupport versioning yet, this 
all is always issued in the 
urrent implementation.Next, the read operation in BSFS follows BlobSeer's sequen
e of steps forreading a range within a BLOB. The 
orresponding distributed algorithm, de-s
ribing the intera
tions between the 
lient, the version manager, the distributeddata and metadata providers are presented and dis
ussed in detail in [10℄. Themain global steps 
an be summarized as follows. The 
lient queries the ver-sion manager about the requested version of the BLOB. The version managerforwards the query to the metadata providers, whi
h send to the 
lient the meta-data that 
orresponds to the blo
ks that make up the requested range. Whenthe lo
ation of all these blo
ks was determined, the 
lient fet
hes the blo
ksfrom the data providers. These requests are sent asyn
hronously and pro
essedin parallel by the data providers. Note that the �rst and the last blo
k in the se-quen
e of blo
ks for the requested range may not need to be fet
hed 
ompletely,as the requested range may be unaligned to full blo
ks. In this 
ase, the 
lientfet
hes only the required parts of the extremal blo
ks.3.5 Zooming on writesTo write data, the 
lient �rst splits the data to be written into a list of blo
ksthat 
orrespond to the requested range. Then, it 
onta
ts the provider manager,requesting a list of providers 
apable of storing the blo
ks: one provider forea
h blo
k. Blo
ks are then written in parallel to the providers allo
ated by theprovider manager. If, for some reason, writing of a blo
k fails, then the wholewrite fails. Otherwise the 
lient pro
eeds by 
onta
ting the version managerto announ
e its intent to update the BLOB. As highlighted in Se
tion 3.1,
on
urrent writers of di�erent blo
ks of the same �le 
an perform this �rst stepwith full parallelism. Subsequently, the version manager assigns to ea
h writerequest a new snapshot version number. This number is used by the 
lient togenerate new metadata, weave it together with existing metadata, and store iton the distributed metadata providers, in order to 
reate the illusion of a newstandalone snapshot.Note that the term �existing metadata� 
overs two 
ases. First, it refersto metadata 
orresponding to previous, 
ompleted writes. But it also refersto metadata generated by still a
tive 
on
urrent writers that were assigneda lower version number (i.e., they have written the data, but they have not�nished writing the metadata)! In parti
ular, su
h 
on
urrent writers mightbe in the pro
ess of generating and writing metadata, on whi
h the 
lient shalldepend when weaving its own metadata. To deal with this situation, the versionmanager hints the 
lient on su
h dependen
ies. In some sense, the 
lient is ableto predi
t the values 
orresponding to the metadata that is being written by the
on
urrent writers that are still in progress. It 
an thus pro
eed 
on
urrentlyRR n° 7140



12 B. Ni
olae, D. Moise, G. Antoniu, L. Bougé, M. Dorierwith the other writers, rather than waiting for them to �nish writing theirmetadata. The reader 
an refer to [10℄ for further details on how we handlemetadata for 
on
urrent writers.On
e metadata was su

essfully written to the metadata providers, the 
lientnoti�es the version manager of su

ess, and returns to the user. Observe thatthe version manager needs to keep tra
k of all writers 
on
urrently a
tive, anddelay 
ompleting a new snapshot version until all writers that were assigned alower version number reported su

ess. The detailed algorithm for writing isprovided in [10℄.The append operation is identi
al to the write operation, ex
ept for a singledi�eren
e: the o�set of the range to be appended is unknown at the time theappend is issued. It is eventually �xed by the version manager at the time theversion number is assigned. It is set to the size of the snapshot 
orresponding tothe pre
eding version number. Again, observe that the writing of this snapshotmay still be in progress.4 Experimental evaluationPlatform des
ription. To evaluate the bene�ts of using BlobSeer as the stor-age ba
kend for Map/Redu
e appli
ations we used Yahoo!'s release of Hadoopv.0.20.0 (whi
h is essentially the main release of Hadoop with some minorpat
hes designed to enable Hadoop to run on the Yahoo! produ
tion 
lusters).We 
hose this release be
ause it is freely available and enables us to experi-ment with a framework that is both stable and used in produ
tion on Yahoo!'s
lusters.We performed our experiments on the Grid'5000 [9℄ testbed, a re
on�gurable,
ontrollable and monitorable experimental Grid platform gathering 9 sites ge-ographi
ally distributed in Fran
e. We used the 
lusters lo
ated in Sophia-Antipolis, Orsay and Lille. Ea
h experiment was 
arried out within a singlesu
h 
luster. The nodes are out�tted with x86_64 CPUs and 4 GB of RAMfor the Rennes and Sophia 
lusters (2 GB for the 
luster lo
ated in Orsay).Intra
luster bandwidth is 1 Gbit/s (measured: 117.5 MB/s for TCP so
ketswith MTU = 1500 B), intra
luster laten
y is 0.1 ms. A signi�
ant e�ort wasinvested in preparing the experimental setup, by de�ning an automated deploy-ment pro
ess for the Hadoop framework both when using BlobSeer and HDFSas the storage ba
kend. We had to over
ome nontrivial node management and
on�guration issues to rea
h this point.Overview of the experiments. In a �rst phase, we have implemented a setof mi
roben
hmarks that write/read and append data to �les through Hadoop's�le system API and have measured the a
hieved throughput as more and more
on
urrent 
lients a

ess the �le system. This syntheti
 setup has enabled us to
ontrol the a

ess pattern to the �le system and fo
us on di�erent s
enarios thatexhibit parti
ular a

ess patterns. We 
an thus dire
tly 
ompare the respe
tivebehavior of BSFS and HDFS in these parti
ular syntheti
 s
enarios.In a se
ond phase, our goal was to get a feeling of the impa
t of BlobSeerat the appli
ation level. We have run two standard Map/Redu
e appli
ationsfrom the Hadoop release, both with BSFS and with HDFS. We have evaluatedthe impa
t of using BSFS instead of HDFS on the total job exe
ution time asINRIA
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(b) Load-balan
ing evaluationFigure 3: Single writer resultsthe number of available Map/Redu
e workers progressively in
reases. Note thatHadoop Map/Redu
e appli
ations run out-of-the-box in an environment whereHadoop uses BlobSeer as a storage ba
kend, just like in the original, unmodi�edenvironment of Hadoop. This was made possible thanks to the Java �le systeminterfa
e we provided with BSFS, on top of BlobSeer.4.1 Mi
roben
hmarksWe have �rst de�ned several s
enarios aiming at evaluating the throughputa
hieved by BSFS and HDFS when the distributed �le system is a

essed bya single 
lient or by multiple, 
on
urrent 
lients, a

ording to several spe
i�
a

ess patterns. In this paper we have fo
used the following patterns, oftenexhibited by Map/Redu
e appli
ations:� a single pro
ess writing a huge distributed �le;� 
on
urrent readers reading di�erent parts of the same huge �le;� 
on
urrent writers appending data to the same huge �le.The aim of these experiments is of 
ourse to evaluate whi
h bene�ts 
an beexpe
ted when using a 
on
urren
y-optimized storage servi
e su
h as BlobSeerfor highly-parallel Map-Redu
e appli
ations generating su
h a

ess patterns.The relevan
e of these patterns is dis
ussed in the following subse
tions, forea
h s
enario. Additional s
enarios with other di�erent a

ess patterns are
urrently under investigation.In ea
h s
enario, we �rst measure the throughput a
hieved when a single
lient performs a set of operations on the �le system. Then, we gradually in-
rease the number of 
lients performing the same operation 
on
urrently andmeasure the average throughput per 
lient. For any �xed number N of 
on-
urrent 
lients, the experiment 
onsists in two phases: we deploy of HDFS(respe
tively BSFS) on a given setup, then we run the test s
enario.In the deployment phase, HDFS (respe
tively BSFS) is deployed on 270 ma-
hines from the same 
luster of Grid'5000. For HDFS, we deploy one namenodeon a dedi
ated ma
hine; the remaining nodes are used for the datanodes (onedatanode per ma
hine). On the same number of nodes, we deploy BSFS asRR n° 7140



14 B. Ni
olae, D. Moise, G. Antoniu, L. Bougé, M. Dorierfollows: one version manager, one provider manager, one node for the names-pa
e manager, 20 metadata providers; the remaining nodes are used as dataproviders. Ea
h entity is deployed on a a separate, dedi
ated ma
hine.For the measurement phase, a subset of N ma
hines is 
hosen from theset of ma
hines where datanodes/providers are running. The 
lients are thenlaun
hed simultaneously on this subset of ma
hines, individual throughput is
olle
ted and is then averaged. These steps are repeated 5 times for bettera

ura
y (whi
h is enough, as the 
orresponding standard deviation proved tobe low).4.2 S
enario 1: single writer, single �leWe �rst measure the performan
e of HDFS/BSFS when a single 
lient writes a�le whose size gradually in
reases. This test 
onsists in sequentially writing aunique �le of N×64 MB, in blo
ks of 64 MB (N goes from 1 to 246). The size ofHDFS's 
hunks is 64MB, and so is the blo
k size 
on�gured with BlobSeer in this
ase. The goal of this experiment is to 
ompare the blo
k allo
ation strategiesthat HDFS and BSFS use in distributing the data a
ross datanodes (respe
tivelydata providers). The poli
y used by HDFS 
onsists in writing lo
ally whenever awrite is initiated on a datanode. To enable a fair 
omparison, we 
hose to alwaysdeploy 
lients on nodes where no datanode has previously been deployed. Thisway, we make sure that HDFS will distribute the data among the datanodes ,instead of lo
ally storing the whole �le. BlobSeer's default strategy 
onsistsin allo
ating the 
orresponding blo
ks on remote providers in a round-robinfashion.We measure the write throughput for both HDFS and BSFS: the results
an be seen on Figure 3(a). BSFS a
hieves a signi�
antly higher throughputthan HDFS, whi
h is a result of the balan
ed, round-robin blo
k distributionstrategy used by BlobSeer. A high throughput is sustained by BSFS even whenthe �le size in
reases (up to 16 GB). To evaluate of the load balan
ing in bothHDFS and BSFS, we 
hose to 
ompute the Manhattan distan
e to an ideallybalan
ed system where all data providers/datanodes store the same number ofblo
ks/
hunks. To 
al
ulate this distan
e, we represent the data layout in ea
h
ase by a ve
tor whose size is equal to the number of data providers/datanodes ;the elements of the ve
tor represent the number of blo
ks/
hunks stored byea
h provider/datanode. We 
ompute 3 su
h ve
tors: one for HDFS, one forBSFS and one for a perfe
tly balan
ed system (where all elements have thesame value: the total number of blo
ks/
hunks divided by the total number ofstorage nodes. We then 
ompute the distan
e between the �ideal� ve
tor and theHDFS (respe
tively BSFS). As shown on Figure 3(b), as the �le size (and thus,the number of blo
ks) in
reases, both BSFS and HDFS be
ome unbalan
ed.However, BSFS remains mu
h 
loser to a perfe
tly balan
ed system, and itmanages to distribute the blo
ks almost evenly to the providers, even in the
ase of a large �le. As far as we 
an tell, this 
an be explained by the fa
t thatthe blo
k allo
ation poli
y in HDFS mainly takes into a

ount data lo
alityand does not aim at perfe
tly balan
ing the data distribution. A global load-balan
ing of the system is done for Map/Redu
e appli
ations when the tasks areassigned to nodes. During this experiment, we 
ould noti
e that in HDFS thereare datanodes that do not store any blo
k, whi
h explains the in
reasing 
urveINRIA
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Figure 4: Performan
e of HDFS and BSFS when 
on
urrent 
lients read froma single �leshown in �gure 3(b). As we will see in the next experiments, a balan
ed datadistribution has a signi�
ant impa
t on the overall data a

ess performan
e.4.3 S
enario 2: 
on
urrent reads, shared �leIn this s
enario, for ea
h given number N of 
lients varying from 1 to 250, weexe
uted the experiment in two steps. First, we performed a boot-up phase,where a single 
lient writes a �le of N × 64 MB, right after the deploymentof HDFS/BSFS. Se
ond, N 
lients read parts from the �le 
on
urrently; ea
h
lient reads a di�erent 64 MB 
hunk sequentially, using �ner-grain blo
ks of4 KB. This pattern where multiple readers request data in 
hunks of 4 KB isvery 
ommon in the �map� phase of a Hadoop Map/Redu
e appli
ation, wherethe mappers read the input �le in order to parse the (key, value) pairs.For this s
enario, we ran two experiments in whi
h we varied the data layoutfor HDFS. The �rst experiment 
orresponds to the 
ase where the �le read byall 
lients is entirely stored by a single datanode This 
orresponds to the 
asewhere the �le has previously been entirely written by a 
lient 
olo
ated with adatanode (as explained in the previous s
enario). Thus, all 
lients subsequentlyread the data stored by one node, whi
h will lead to a very poor performan
eof HDFS. We do not represent these results here. In order to a
hieve a morefair 
omparison where the �le is distributed on multiple nodes both in HDFSand in BSFS, we 
hose to exe
ute a se
ond experiment. Here, the boot-upphase is performed on a dedi
ated node (no datanode is deployed on that node).By doing so, HDFS will spread the �le in a more balan
ed way on multipleremote datanodes and the reads will be performed remotely for both BSFS andHDFS. This s
enario also o�ers an a

urate simulation of the �rst phase of aMap/Redu
e appli
ation, when the mappers are assigned to nodes. The HDFSjob s
heduler tries to assign ea
h map task to the node that stores the 
hunk thetask will pro
ess; these tasks are 
alled lo
al maps. The s
heduler also tries toa
hieve a global load-balan
ing of the system, therefore not all the assignmentswill be lo
al. The tasks running on a di�erent node than the one storing itsinput data, are 
alled remote maps : they will read the data remotely.The results obtained in the se
ond experiment are presented on Figure 4.BSFS performs signi�
antly better than HDFS, and moreover, it is able todeliver the same throughput even when the number of 
lients in
reases. Thisis a dire
t 
onsequen
e of how balan
ed is the blo
k distribution for that �le.RR n° 7140
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Figure 5: Performan
e of BSFS when 
on
urrent 
lients append to the same �leThe superior load balan
ing strategy used by BlobSeer when writing the �le hasa positive impa
t on the performan
e of 
on
urrent reads, whereas the HDFSsu�ers from the poor distribution of the �le 
hunks.4.4 S
enario 3: Con
urrent appends, shared �leWe now fo
us on another s
enario, where 
on
urrent 
lients append data to thesame �le. This s
enario is also useful in the 
ontext of Map/Redu
e appli
ations,as it is for a wide range of data-intensive appli
ations in general. For instan
e,the possibility of running 
on
urrent appends 
an improve the performan
eof a simple operation su
h as 
opying a large distributed �le. This 
an bedone in parallel by multiple 
lients whi
h read di�erent parts of the �le, then
on
urrently append the data to the destination �le. Moreover, if 
on
urrentappend operations are enabled, Map/Redu
e workers 
an write the output ofthe redu
e phase to the same �le, instead of 
reating many output �les, as it is
urrently done in Hadoop.Despite its obvious usefulness, this feature is not available with Hadoop's �lesystem: Hadoop has not been optimized for su
h a s
enario. As BlobSeer pro-vides support for e�
ient, 
on
urrent appends by design, we have implementedthe append operation in BSFS and evaluated the aggregated throughput asthe number of 
lients varies from 1 to 250. We 
ould not perform the sameexperiment for HDFS, sin
e it does not implement the append operation.Figure 5 illustrates the aggregated throughput obtained when multiple
lients 
on
urrently append data to the same BSFS �le. These good results 
anbe obtained thanks to BlobSeer, whi
h is optimized for 
on
urrent appends.Note that these results also give an idea about the performan
e of 
on
urrentwrites to the same �le. In BlobSeer, the append operation is implemented asa spe
ial 
ase of the write operation where the write o�set is impli
itly equalto the 
urrent �le size: the underlying algorithms are a
tually identi
al. Thesame experiment performed with writes instead of appends, leads to very similarresults.
INRIA
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(b) Distributed grep: Job 
ompletion timewhen in
reasing the size of the input textto be sear
hedFigure 6: Bene�ts of using BSFS instead of HDFS as a storage layer in Hadoop:impa
t on the performan
e of Map/Redu
e appli
ations4.5 Higher-level experiments with Map/Redu
e appli
a-tionsIn order to evaluate how well BSFS and HDFS perform in the role of storagelayers for real Map/Redu
e appli
ations, we sele
ted two standard Map/Redu
eappli
ations that are part of Yahoo!'s Hadoop release.The �rst appli
ation, RandomTextWriter, is representative of a distributedjob 
onsisting in a large number of tasks ea
h of whi
h needs to write a largeamount of output data (with no intera
tion among the tasks). The appli
ationlaun
hes a �xed number of mappers, ea
h of whi
h generates a huge sequen
e ofrandom senten
es formed from a list of prede�ned words. The redu
e phase ismissing altogether: the output of ea
h of the mappers is stored as a separate �lein the �le system. The a

ess pattern generated by this appli
ation 
orrespondsto 
on
urrent, massively parallel writes, ea
h of them writing to a di�erent �le.To 
ompare the performan
e of BSFS vs. HDFS in su
h a s
enario, we 
o-deploy a Hadoop tasktra
ker with a datanode in the 
ase of HDFS (with a dataprovider in the 
ase of BSFS) on the same physi
al ma
hine, for a total of 50ma
hines. The other entities for Hadoop, HDFS (namenode, jobtra
ker) and forBSFS (version manager, provider manager, namespa
e manager) are deployedon separate dedi
ated nodes. For BlobSeer, 10 metadata providers are deployedon dedi
ated ma
hines as well.We �x the total output size of the job to amount to 6.4 GB worth of generatedtext and vary the size generated by ea
h mapper from 128 MB (
orresponding to50 parallel mappers) to 6.4 GB (
orresponding to a single mapper), and measurethe job 
ompletion time in ea
h 
ase.Results obtained are displayed on Figure 6(a). Observe the relative gain ofBSFS over HDFS ranges from 7 % for 50 parallel mappers to 11 % for a singlemapper. The 
ase of a single mapper 
learly favours BSFS and is 
onsistent withour �ndings for the syntheti
 ben
hmark in whi
h we explained the respe
tivebehavior of BSFS and HDFS when a single pro
ess writes a huge �le. Therelative di�eren
e is smaller than in the 
ase of the syntheti
 ben
hmark be
ausehere the total job exe
ution time in
ludes some 
omputation time (generationRR n° 7140



18 B. Ni
olae, D. Moise, G. Antoniu, L. Bougé, M. Dorierof random text). This 
omputation time is the same for both HDFS and BSFSand takes a signi�
ant part of the total exe
ution time.The se
ond appli
ation we 
onsider is distributed grep. It is representative ofa distributed job where huge input data needs to be pro
essed in order to obtainsome statisti
s. The appli
ation s
ans a huge text input �le for o

urren
es ofa parti
ular expression and 
ounts the number of lines where the expressiono

urs. Mappers simply output the value of these 
ounters, then the redu
erssum up the all the outputs of the mappers to obtain the �nal result. The a

esspattern generated by this appli
ation 
orresponds to 
on
urrent reads from thesame shared �le.In this s
enario we 
o-deploy a tasktra
ker with a HDFS datanode (with aBlobSeer data provider, respe
tively), on a total of 150 nodes. We deploy all
entralized entities (version manager, provider manager, namespa
e manager,namenode, et
) on dedi
ated nodes. Also, 20 Metadata providers are deployedon dedi
ated nodes for BlobSeer.We �rst write a huge input �le to HDFS and BSFS respe
tively. In the 
aseof HDFS, the �le is written from a node that is not 
olo
ated with a datanode, inorder to avoid the s
enario where HDFS writes all data blo
ks lo
ally. This givesHDFS the 
han
e to perform some load-balan
ing of data blo
ks. Then we runthe distributed grep Map/Redu
e appli
ation and measure the job 
ompletiontime. We vary the size of the input �le from 6.4 GB to 12.8 GB in in
rementsof 1.6 GB. Sin
e a Hadoop data blo
k is 64 MB large and sin
e usually Hadoopassigns a single mapper to pro
ess su
h a data blo
k, this roughly 
orrespondsto varying the number of 
on
urrent mappers from 100 to 200.Results obtained are represented in Figure 6(b). As 
an be observed BSFSoutperforms HDFS by 35 % for 6.4 GB and the gap steadily in
reases to 38 %for 12.8 GB. This behavior is 
onsistent with the results obtained for the syn-theti
 ben
hmark where 
on
urrent pro
esses read from the same �le. Again,the relative di�eren
e is smaller than in the syntheti
 ben
hmark be
ause thejob 
ompletion time a

ounts for both the 
omputation time and the I/O trans-fer time. Note however the high impa
t of I/O in su
h appli
ations that s
anthrough the data for spe
i�
 patterns: the bene�ts of supporting e�
ient 
on-
urrent reads from the same �le at the level of the underlying distributed �lesystem are de�nitely signi�
ant.5 Con
lusionThe e�
ien
y of the Hadoop framework is a dire
t fun
tion of that of its datastorage layer. This work demonstrates that it is possible to enhan
e it by repla
-ing the default Hadoop Distributed File System (HDFS) layer by another layer,built along di�erent design prin
iples. We introdu
e our BlobSeer system, whi
his spe
i�
ally optimized toward e�
ient, �ne-grain a

ess to massive, distributeddata a

essed under heavy 
on
urren
y. Thank to this new BlobSeer-based FileSystem (BSFS) layer, the sustained throughput of Hadoop is signi�
antly im-proved in s
enarios that exhibit highly 
on
urrent a

esses to shared �les. More-over, BSFS supports additional features su
h as e�
ient 
on
urrent appends,
on
urrent writes at random o�sets and versioning. These features 
ould beleveraged to extend or improve fun
tionalities in future versions of Hadoop orother Map/Redu
e frameworks. We list below several interesting perspe
tives.INRIA
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e 19Leveraging versioning. Although in most real Map/Redu
e appli
ations,data is mostly appended rather than overwritten, Hadoop's �le system API doesnot implement append. Sin
e BlobSeer supports arbitrarily 
on
urrent writesas well as appends, this opens a high potential for very promising improvementsof Map/Redu
e framework implementations, in
luding Hadoop. Versioning 
anbe leveraged to optimize more 
omplex Map/Redu
e work�ows, in whi
h theoutput of one Map/Redu
e is the input of another. In many su
h s
enarios,datasets are only lo
ally altered from one Map/Redu
e pass to another: writingparts of the dataset while still being able to a

ess the original dataset (thanksto versioning) 
ould save a lot of temporary storage spa
e.Fault toleran
e. An important aspe
t we did not dis
uss in this paper isfault toleran
e. For this, we 
urrently rely on 
lassi
al me
hanisms. At datalevel, we employ a simple repli
ation me
hanism that allows the user to spe
ify arepli
ation level for ea
h BLOB. A write operation a
tually writes its respe
tiveblo
ks to a number of providers equal to that repli
ation level. The metadata isstored in a DHT (formed by the metadata providers), whi
h is resilient to faultsby 
onstru
tion. The 
entralized managers represent single points of failure asis the 
ase with the namenode of HDFS. Overall, fault-toleran
e s
hemes 
ur-rently used in BlobSeer are however rather minimal. We are 
urrently exploringways to repla
e them with distributed, fault-tolerant me
hanisms, while stillpreserving a high-throughput for data a

ess.Se
urity. We did not address se
urity issues in this paper, as most of thetime Hadoop deployments are exploited within private, trusted 
lusters ownedby big 
ompanies, su
h as Google and Yahoo!: for now, we pla
e ourselves inthe same 
ontext, therefore the se
urity assumptions are basi
ally the sameas for Hadoop's built-in �le system. In the 
ase where Hadoop would run asa Map/Redu
e 
loud servi
e, possibly relying on externalized, virtualized re-sour
es from other 
loud 
omputing servi
e providers (su
h as Amazon), these
urity 
onstraints would be di�erent. It then be
omes 
ru
ial to guaranteedata priva
y and data a

ess 
ontrol for multiple users, a

ording to a 
ontra
t.We plan to explore these issues in the near future.Referen
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