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BlobSeer: augmenter la bande passante
dans un contexte de forte concurrence
pour les applications Map/Reduce sur Hadoop

Résumé : Hadoop est un environnement logiciel pour la mise en ceuvre du
modéle de programmation Map/Reduce. Il s’appuie principalement sur le sys-
téme de gestion de fichiers distribué HDFS. L’efficacité de HDFS est un pa-
ramétre crucial de la performance des applications Map/Reduce. Nous pro-
posons de remplacer la couche HDFS de Hadoop par une nouvelle couche de
stockage des données qui soit optimisée pour une utilisation concurrente. Cette
nouvelle couche s’appuie sur le service de gestion de données BlobSeer. Nous
montrons que l'efficacité de Hadoop est ainsi améliorée de maniére significative
pour des applications Map/Reduce qui manipulent intensivement les données:
en effet, elles offrent naturellement un haut degré de concurrence. De plus, les
fonctionnalités spécifiques de BlobSeer (gestion intégrée des versions, support
pour les opérations “append” concurrentes) permettent d’envisager d’étendre
les fonctionnalités de Hadoop. Nous rendons compte d’une campagne intensive
d’expériences menée sur 'instrument Grid’5000. Les résultats illustrent les bé-
néfices de notre approche par rapport a I'implémentation primitive de Hadoop
fondée sur HDFS.

Mots-clés : Systéme de gestion de fichiers distribué; systéme haute perfor-
mance; grande bande passante; grande échelle; accés hautement concurrents;
applications Map/Reduce; Hadoop; BlobSeer.
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1 Introduction

Map/Reduce [5] is a parallel programming paradigm successfully used by large
Internet service providers to perform computations on massive amounts of data.
After being strongly promoted by Google, it has also been implemented by
the open source community through the Hadoop [7] project, maintained by
the Apache Foundation and supported by Yahoo! and even by Google itself.
This model is currently getting more and more popular as a solution for rapid
implementation of distributed data-intensive applications.

At the core of the Map/Reduce frameworks stays a key component: the
storage layer. To enable massively parallel data processing to a high degree
over a large number of nodes, the storage layer must meet a series of specific
requirements (discussed in Section 2), that are not part of design specifications
of traditional distributed file systems employed in the HPC communities: these
file systems typically aim at conforming to well-established standards such as
POSIX and MPI-IO. To address these requirements, specialized file systems
have been designed, such as HDFS [8], the default storage layer of Hadoop.
HDFS has however some difficulties to sustain a high throughput in the case
of concurrent accesses to the same file. Moreover, many desirable features are
missing altogether, such as the support for versioning and for concurrent updates
to the same file.

We substitute the original data storage layer of Hadoop with a new,
concurrency-optimized storage layer based on BlobSeer, a data management
service we developed with the goal of supporting efficient, fine-grain access to
massive, distributed data accessed under heavy concurrency. By using BlobSeer
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instead of its default storage layer, Hadoop significantly improves its sustained
throughput in scenarios that exhibit highly concurrent accesses to shared files.
We report on extensive experimentation both with synthetic microbenchmarks
and real Map/Reduce applications. The results illustrate the benefits of our
approach over the original HDFS-based implementation of Hadoop. Moreover
we support additional features such as efficient concurrent appends, concurrent
writes at random offsets and versioning. These features could be leveraged to
extend or improve functionalities in future versions of Hadoop or other Map/Re-
duce frameworks.

2 Specialized file systems for data-intensive
Map/Reduce applications

2.1 Requirements for the storage layer

Map/Reduce applications typically crunch ever growing data sets of billions of
small records. Storing billions of KB-sized records in separate tiny files is both
unfeasible and hard to handle, even if the storage layer would support it. For
this reason, data sets are usually packed together in huge files whose size reaches
the order of several hundreds of GB.

The key strength of the Map/Reduce model is its inherently high paralleliza-
tion of the computation, that enables processing of PB of data in a couple of
hours on large clusters consisting of several thousand nodes. This has several
consequences for the storage backend. Firstly, since data is stored in huge files,
the computation will have to process small parts of these huge files concurrently.
Thus, the storage layer is expected to provide efficient fine-grain access to the
files. Secondly, the storage layer must be able to sustain a high throughput
in spite of heavy access concurrency to the same file, as thousands of clients
simultaneously access data.

Dealing with of huge amounts of data is difficult in terms of manageability.
Simple mistakes that may lead to loss of data can have disastrous consequences
since gathering such amounts of data requires considerable effort investment.
Versioning in this context becomes an important feature that is expected from
the storage layer. Not only it enables rolling back undesired changes, but also
branching a dataset into two independent datasets that can evolve indepen-
dently. Obviously, versioning should have a minimal impact both on perfor-
mance and on storage space overhead.

Finally, another important requirement for the storage layer is its ability to
expose an interface that enables the application to be data-location aware. This
allows the scheduler to use this information to place computation tasks close
to the data. This reduces network traffic, contributing to a better global data
throughput.

2.2 Dedicated file systems for Map/Reduce

These critical needs of data-intensive distributed applications have not been
addressed by classical, POSIX-compliant distributed file systems. Therefore,
Google introduced GoogleFS [6] as a storage backend that provides the right
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abstraction for their Map/Reduce data processing framework. Then, other spe-
cialized file systems emerged: companies such as Yahoo! and Kosmix followed
this trend by emulating the GoogleFS architecture with the Hadoop Distributed
File System (HDFS, [8]) and CloudStore [4].

Essentially, GoogleFS splits files into fixed-sized 64 MB chunks that are
distributed among chunkservers. Both metadata that describes the directory
structure of the file system, and metadata that describes the chunk layout are
stored on a centralized master server. Clients that need to access a file first
contact this server to obtain the location of the chunks that correspond to the
range of the file they are interested in. Then, they directly interact with the
corresponding chunkservers. GoogleFS is optimized to sustain a high through-
put for concurrent reads/appends from/to a single file, by relaxing the semantic
consistency requirements. It also implements support for cheap snapshooting
and branching.

Hadoop Map/Reduce is a framework designed for easily writing and effi-
ciently processing Map/Reduce applications. The framework consists of a single
master jobtracker, and multiple slave tasktrackers, one per node. The jobtracker
is responsible for scheduling the jobs’ component tasks on the slaves, monitoring
them and re-executing the failed tasks. The tasktrackers execute the tasks as
directed by the master. HDFS is the default storage backend that ships with the
Hadoop framework. It was inspired by the architecture of GoogleFS. Files are
also split in 64 MB blocks that are distributed among datanodes. A centralized
namenode is responsible to maintain both chunk layout and directory structure
metadata. Read and write requests are performed by direct interaction with
the corresponding datanodes and do not go through the namenode.

In Hadoop, reads essentially work the same way as with GoogleFS. However,
HDFS has a different semantics for concurrent write access: it allows only one
writer at a time, and, once written, data cannot be altered, neither by overwrit-
ing nor by appending. Several optimization techniques are used to significantly
improve data throughput. First, HDFS employs a client side buffering mecha-
nism for small read/write accesses. It prefetches data on reading. On writing,
it postpones committing data after the buffer has reached at least a full chunk
size. Actually, such fine-grain accesses are dominant in Map/Reduce applica-
tions, which usually manipulate small records. Second, Hadoop’s job scheduler
(the jobtracker) places computations as close as possible to the data. For this
purpose, HDFS explicitely exposes the mapping of chunks over datanodes to the
Hadoop framework.

With cloud computing becoming more and more popular, providers such as
Amazon started offering Map/Reduce platforms as a service. Amazon’s initia-
tive, Elastic MapReduce [2], employs Hadoop on their Elastic Compute Cloud
infrastructure (EC2, [1]). The storage backend used by Hadoop is Amazon’s
Simple Storage Service (S3, [3]). The S3 framework was designed with sim-
plicity in mind, to handle objects that may reach sizes in the order of GB: the
user can write, read, and delete objects simply identified by an unique key. The
access interface is based on well-established standards such as SOAP. Careful
consideration was invested into using decentralized techniques and designing
operations in such way as to minimize the need for concurrency control. A fault
tolerant layer enables operations to continue with minimal interruption. This
allows S3 to be highly scalable. On the downside however, simplicity comes at
a cost: S3 provides limited support for concurrent accesses to a single object.
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Other efforts aim at adapting general-purpose distributed file systems from
the HPC community to the needs of the Map /Reduce applications. For instance,
PVFS (Parallel Virtual File System) and GPFS (General Parallel File System,
from IBM) have been adapted to serve as a storage layer for Hadoop. GPFS [13]
is part of the shared-disk file systems class, that use a pool of block-level storage,
shared and distributed across all the nodes in the cluster. The shared storage
can be directly accessed by clients, with no interaction with an intermediate
server. Integrating GPFS with the Hadoop framework, involves overcoming
some limitations: GPFS supports a maximal block size of 16 MB, whereas
Hadoop often makes use of data in 64 MB chunks; Hadoop’s jobtracker must be
aware of the block location, while GPFS (like all parallel file systems) exposes
a POSIX interface. PVFS [12] belongs to a second class of parallel file systems,
object-based file systems which separate the nodes that store the data from the
ones that store the medatata (file information, and file block location). When a
client wants to access a file, it must first contact the metadata server and then
directly access the data on the data servers indicated by the metadata server.
In [14], it is described the way PVFS was integrated with Hadoop, by adding a
layer on top of PVFS. This layer enhanced PVFS with some features that HDFS
already provides to the Hadoop framework: performing read-ahead buffering,
exposing the data layout and emulating replication.

The above work has been a source of inspiration for our approach. Thanks to
the specific features of BlobSeer, we could address several limitations of HDFS
highlighted in it.

3 BlobSeer as a concurrency-optimized file sys-
tem for Hadoop

In this section we introduce BlobSeer, a system for managing massive data in a
large-scale distributed context [10]. Its efficient version-oriented design enables
lock-free access to data, and thereby favors scalablity under heavy concurrency.
Thanks to its decentralized data and metadata management, it provides high
data throughput [11]. The goal of this paper is to show how BlobSeer can be
extended into an filesystem for Hadoop, and thus used as an efficient storage
backend for Map/Reduce applications.

3.1 Design overview of BlobSeer

The goal of BlobSeer is to provide support for data-intensive distributed ap-
plications. No hypothesis whatsoever is made about the structure of the data
at stake: they are viewed as huge, flat sequences of bytes, often called BLOBs
(Binary Large OBjects). We especially target applications that process BLOBs
in a fine-grain manner. This is the typical case of Map/Reduce applications,
indeed: workers usually access pieces of up to 64 MB from huge input files,
whose size may reach hundreds of GB.

A client of BlobSeer manipulates BLOBs by using a simple interface that
allows to: create a new empty BLOB; append data to an existing BLOB; read-
/write a subsequence of bytes specified by an offset and a size from /to an existing
BLOB. Each BLOB is identified by a unique id in the system.
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Figure 1: Metadata tree after writing the first 4 blocks of a BLOB

Versioning is built in BlobSeer at the earliest stage of design. Each time a
write or append is performed on a BLOB, a new snapshot reflecting the changes
is generated instead of overwriting any existing data. This new snapshot is la-
beled with an incremental version number, so that all past versions of the BLOB
can potentially be accessed, at least as long as they have not been garbaged for
the sake of storage space.

The version numbers are assigned and managed by the system. In order
to read a part of the BLOB, the client must specify both the unique id of the
BLOB and the snapshot version it desires to read from. A special call allows
the client to find out the latest version of a particular BLOB, but the client is
allowed to read any past version of the BLOB.

Although each write or append generates a new version, only the differential
patch is actually stored, so that storage space is saved at far as possible. The
new snapshot shares all unmodified data and most of the associated metadata
with the previous versions, as we will see further in this section. Such an imple-
mentation further facilitates the implementation of advanced features such as
rollback and branching, since data and metadata corresponding to past versions
remain available in the system and can easily be accessed.

The goal of BlobSeer is to sustain high throughput under heavy access con-
currency in reading, writing and appending. This is achieved thanks to the
combination of various techniques, including: data striping, distributed meta-
data, version-based design, lock-free data access.

Data striping. BlobSeer relies on striping: each BLOB is made up of blocks
of a fixed size. To optimize BlobSeer for Map/Reduce applications, we set this
size to the size of the data piece a Map/Reduce worker is supposed to process
(i.e., 64 MB in the experiments below with Hadoop, equal to the chunk size
in HDFS). These blocks are distributed among the storage nodes. We use a
load balancing strategy that aims at evenly distributing the blocks among these
nodes. As described in Section 4.3, this has a major positive impact in sustaining
a high throughput when many concurrent readers access different parts of the
same file.

Distributed metadata. A BLOB is accessed by specifying a version number
and a range of bytes delimited by an offset and a size. BlobSeer manages addi-
tional metadata to map a given range and a version to the physical nodes where
the corresponding blocks are located. We organize metadata as a distributed
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segment tree [15]: one such tree is associated to each version of a given blob id.
A segment tree is a binary tree in which each node is associated to a range of
the blob, delimited by offset and size. We say that the node covers the range
(offset, size). The root covers the whole BLOB. For each node that is not a leaf,
the left child covers the first half of the range, and the right child covers the sec-
ond half. Each leaf covers a single block of the BLOB. Figure 1 illustrates such
a metadata tree for a 4-block. To favor efficient concurrent access to metadata,
tree nodes are distributed: they are stored on the metadata providers using a
DHT (Distributed Hash Table). Each tree node is identified in the DHT by
its version and by the range specified through the offset and the size it covers.
Such a metadata tree is created when the first blocks of the blob are written,
for the range covered by those blocks. Then, to avoid the overhead (in time and
space!) of rebuilding such a tree for the subsequent updates, we create new tree
nodes only for the ranges that do intersect with the range of the update.

Note that metadata decentralization has a significant impact on the global
throughput, as demonstrated in [11]: it avoids the bottleneck created by con-
current accesses in the case of a centralized metadata server in most distributed
file systems, including HDFS. A detailed description of the algorithms we use
to manage metadata can be found in [10]: due to space constraints, we will not
develop them further in this paper.

Version-based, lock-free, concurrency-optimized data access. Blob-
Seer relies on a versioning-based concurrency control algorithm that maximizes
the number of operations performed in parallel in the system. It is done by
avoiding synchronization as much as possible, both at the data and metadata
levels. The key idea is amazingly simple: no existing data or metadata is ever
modified! First, any writer or appender writes its new data blocks, by storing
the differential patch. Then, in a second phase, the version number is allocated
and the new metadata referring to these blocks are generated. The first phase
consists in actually writing the new data on the distributed storage nodes. The
concurrent writers can proceed with full parallelism, without any synchroniza-
tion. In the second phase, the new metadata are then “weaved” together with
the metadata of the versions with a lower number. The crucial observation is
that this second phase can also be mostly concurrent. The only global synchro-
nization requirement is that the order in which the completion of the concurrent
writes occurs must respect the order in which the version numbers have been
assigned. This is transparently ensured by the system, without requiring any
explicit synchronization by the user. Thereby, the algorithm creates the illusion
of a fully independent snapshot generation. This allows write/write concurrency
at data level, while still preserving serialization and atomicity.

Since each writer or appender generates new data/metadata and never modi-
fies existing data/metadata, readers are completely decoupled from them. Read-
ers can thus proceed with full concurrency with respect to writers and appenders
(and vice-versa), both for data and metadata access. We can thus claim that
our approach supports read/read, read/write and write/write concurrency by
design. This significantly overpasses the capabilities of HDFS, which only al-
lows a single writer to proceed at a time. The experimental results presented in
Section 4 clearly support our claim.
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Figure 2: BlobSeer’s architecture. The BSFS layer enables Hadoop to use Blob-
Seer as a storage backend through a file system interface.

3.2 Integrating BlobSeer with Hadoop

The Hadoop Map/Reduce framework accesses its default storage backend
(HDFS) through a clean, specific Java API. This API exposes the basic op-
erations of a file system: read, write, append, etc. To make Hadoop benefit
from BlobSeer’s properties, we implemented this API on top of BlobSeer. We
call this higher layer the BlobSeer File System (BSFS): it enables BlobSeer to
act as a storage backend file system for Hadoop. To enable a fair comparison of
BSFS with HDFS, we addressed several performance-oriented issues highlighted
in [14]. They are briefly discussed below.

File system namespace. The Hadoop framework expects a classical hierar-
chical directory structure, whereas BlobSeer provides a flat structure for BLOBs.
For this purpose, we had to design and implement a specialized namespace
manager, which is responsible for maintaining a file system namespace, and for
mapping files to BLOBs. For the sake of simplicity, this entity is centralized.
Careful consideration was given to minimize the interaction with this namespace
manager, in order to fully benefit from the decentralized metadata management
scheme of BlobSeer. Our implementation of Hadoop’s file system API only
interacts with it for operations like file opening and file/directory creation/dele-
tion/renaming. Access to the actual data is performed by a direct interaction
with BlobSeer through read/write/append operations on the associated BLOB,
which fully benefit from BlobSeer’s efficient support for concurrency.

Data prefetching. Hadoop manipulates data sequentially in small chunks of
a few KB (usually, 4 KB) at a time. To optimize throughput, HDFS implements
a caching mechanism that prefetches data for reads, and delays committing
data for writes. Thereby, physical reads and writes are performed with data
sizes large enough to compensate for network traffic overhead. We implemented
a similar caching mechanism in BSFS. It prefetches a whole block when the
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requested data is not already cached, and delays committing writes until a
whole block has been filled in the cache.

Affinity scheduling: exposing data distribution. In a typical Hadoop
deployment, the same physical nodes act both as storage elements and as com-
putation workers. Therefore, the Hadoop scheduler strives at placing the com-
putation as close as possible to the data: this has a major impact on the global
data throughput, given the huge volume of data being processed. To enable this
scheduling policy, Hadoop’s file system API exposes a call that allows Hadoop
to learn how the requested data is split into blocks, and where those blocks
are stored. We address this point by extending BlobSeer with a new primitive.
Given a specified BLOB id, version, offset and size, it returns the list of blocks
that make up the requested range, and the addresses of the physical nodes that
store those blocks. Then, we simply map Hadoop’s corresponding file system
call to this primitive provided by BlobSeer.

3.3 BlobSeer: detailed architecture

BlobSeer consists of a series of distributed communicating processes. Figure 2
illustrates the processes and their interactions between them.

Clients create, read, write and append data from/to BLOBs. Clients can
access the BLOBs with full concurrency, even if they all access the same
BLOB.

Data providers physically store the blocks generated by appends and writes.
New data providers may dynamically join and leave the system. In the
context of Hadoop Map/Reduce, the nodes hosting data providers typi-
cally also act as computing elements as well. This enables them to benefit
from the scheduling strategy of Hadoop, which aims at placing the com-
putation as close as possible to the data.

The provider manager keeps information about the available storage space
and schedules the placement of newly generated blocks. For each such
block to be stored, it selects the data providers according to a load bal-
ancing strategy that aims at evenly distributing the blocks across data
providers.

Metadata providers physically store the metadata that allows identifying the
blocks that make up a snapshot version. We use a distributed metadata
management scheme to enhance concurrent access to metadata. The nodes
hosting metadata providers may act as computing elements as well.

The version manager is in charge of assigning snapshot version numbers in
such a way that serialization and atomicity of writes and appends is guar-
anteed. It is typically hosted on a dedicated node.

The namespace manager is not part of the BlobSeer. It is an additional
entity introduced for BSFS, the higher-level file system layer. It maintains
a file system namespace, and maps files in the namespace to BLOBs. It
is typically hosted on a dedicated node.

INRIA
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3.4 Zooming on reads

To read data, the client first needs to find out the BLOB corresponding to the
requested file. This information is typicaly available locally (as it has typically
been requested from the namespace manager when the file was opened). Then
the client must specify the version number it desires to read from, as well as
the offset and size of the range to be read. The client may also call a special
primitive first, to find out the latest version available in the system at the time
this primitive was invoked. In practice, since Hadoop’s file system API does not
support versioning yet, this call is always issued in the current implementation.

Next, the read operation in BSFS follows BlobSeer’s sequence of steps for
reading a range within a BLOB. The corresponding distributed algorithm, de-
scribing the interactions between the client, the version manager, the distributed
data and metadata providers are presented and discussed in detail in [10]. The
main global steps can be summarized as follows. The client queries the ver-
sion manager about the requested version of the BLOB. The version manager
forwards the query to the metadata providers, which send to the client the meta-
data that corresponds to the blocks that make up the requested range. When
the location of all these blocks was determined, the client fetches the blocks
from the data providers. These requests are sent asynchronously and processed
in parallel by the data providers. Note that the first and the last block in the se-
quence of blocks for the requested range may not need to be fetched completely,
as the requested range may be unaligned to full blocks. In this case, the client
fetches only the required parts of the extremal blocks.

3.5 Zooming on writes

To write data, the client first splits the data to be written into a list of blocks
that correspond to the requested range. Then, it contacts the provider manager,
requesting a list of providers capable of storing the blocks: one provider for
each block. Blocks are then written in parallel to the providers allocated by the
provider manager. If, for some reason, writing of a block fails, then the whole
write fails. Otherwise the client proceeds by contacting the version manager
to announce its intent to update the BLOB. As highlighted in Section 3.1,
concurrent writers of different blocks of the same file can perform this first step
with full parallelism. Subsequently, the version manager assigns to each write
request a new snapshot version number. This number is used by the client to
generate new metadata, weave it together with existing metadata, and store it
on the distributed metadata providers, in order to create the illusion of a new
standalone snapshot.

Note that the term “existing metadata” covers two cases. First, it refers
to metadata corresponding to previous, completed writes. But it also refers
to metadata generated by still active concurrent writers that were assigned
a lower version number (i.e., they have written the data, but they have not
finished writing the metadata)! In particular, such concurrent writers might
be in the process of generating and writing metadata, on which the client shall
depend when weaving its own metadata. To deal with this situation, the version
manager hints the client on such dependencies. In some sense, the client is able
to predict the values corresponding to the metadata that is being written by the
concurrent writers that are still in progress. It can thus proceed concurrently
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with the other writers, rather than waiting for them to finish writing their
metadata. The reader can refer to [10] for further details on how we handle
metadata for concurrent writers.

Once metadata was successfully written to the metadata providers, the client
notifies the version manager of success, and returns to the user. Observe that
the version manager needs to keep track of all writers concurrently active, and
delay completing a new snapshot version until all writers that were assigned a
lower version number reported success. The detailed algorithm for writing is
provided in [10].

The append operation is identical to the write operation, except for a single
difference: the offset of the range to be appended is unknown at the time the
append is issued. It is eventually fixed by the version manager at the time the
version number is assigned. It is set to the size of the snapshot corresponding to
the preceding version number. Again, observe that the writing of this snapshot
may still be in progress.

4 Experimental evaluation

Platform description. To evaluate the benefits of using BlobSeer as the stor-
age backend for Map/Reduce applications we used Yahoo!’s release of Hadoop
v.0.20.0 (which is essentially the main release of Hadoop with some minor
patches designed to enable Hadoop to run on the Yahoo! production clusters).
We chose this release because it is freely available and enables us to experi-
ment with a framework that is both stable and used in production on Yahoo!’s
clusters.

We performed our experiments on the Grid’5000 [9] testbed, a reconfigurable,
controllable and monitorable experimental Grid platform gathering 9 sites ge-
ographically distributed in France. We used the clusters located in Sophia-
Antipolis, Orsay and Lille. Each experiment was carried out within a single
such cluster. The nodes are outfitted with x86 64 CPUs and 4 GB of RAM
for the Rennes and Sophia clusters (2 GB for the cluster located in Orsay).
Intracluster bandwidth is 1 Gbit/s (measured: 117.5 MB/s for TCP sockets
with MTU — 1500 B), intracluster latency is 0.1 ms. A significant effort was
invested in preparing the experimental setup, by defining an automated deploy-
ment process for the Hadoop framework both when using BlobSeer and HDFS
as the storage backend. We had to overcome nontrivial node management and
configuration issues to reach this point.

Overview of the experiments. In a first phase, we have implemented a set
of microbenchmarks that write/read and append data to files through Hadoop’s
file system API and have measured the achieved throughput as more and more
concurrent clients access the file system. This synthetic setup has enabled us to
control the access pattern to the file system and focus on different scenarios that
exhibit particular access patterns. We can thus directly compare the respective
behavior of BSFS and HDFS in these particular synthetic scenarios.

In a second phase, our goal was to get a feeling of the impact of BlobSeer
at the application level. We have run two standard Map/Reduce applications
from the Hadoop release, both with BSFS and with HDFS. We have evaluated
the impact of using BSFS instead of HDFS on the total job execution time as

INRIA



BlobSeer: High Throughput under Heavy Concurrency for Map/Reduce 13

8 500
g
=] < 400
ks 2 300
g’) =]
2 S 200
£ (]
= o 100 §
o
. . . . . . . . 8 0 Sl . . . . . .
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
File size (GB) File size (GB)
(a) Performance of HDFS and BSFS when (b) Load-balancing evaluation

a single client writes to a single file

Figure 3: Single writer results

the number of available Map /Reduce workers progressively increases. Note that
Hadoop Map/Reduce applications run out-of-the-box in an environment where
Hadoop uses BlobSeer as a storage backend, just like in the original, unmodified
environment of Hadoop. This was made possible thanks to the Java file system
interface we provided with BSFS, on top of BlobSeer.

4.1 Microbenchmarks

We have first defined several scenarios aiming at evaluating the throughput
achieved by BSFS and HDFS when the distributed file system is accessed by
a single client or by multiple, concurrent clients, according to several specific
access patterns. In this paper we have focused the following patterns, often
exhibited by Map/Reduce applications:

e a single process writing a huge distributed file;
e concurrent readers reading different parts of the same huge file;
e concurrent writers appending data to the same huge file.

The aim of these experiments is of course to evaluate which benefits can be
expected when using a concurrency-optimized storage service such as BlobSeer
for highly-parallel Map-Reduce applications generating such access patterns.
The relevance of these patterns is discussed in the following subsections, for
each scenario. Additional scenarios with other different access patterns are
currently under investigation.

In each scenario, we first measure the throughput achieved when a single
client performs a set of operations on the file system. Then, we gradually in-
crease the number of clients performing the same operation concurrently and
measure the average throughput per client. For any fixed number N of con-
current clients, the experiment consists in two phases: we deploy of HDFS
(respectively BSFS) on a given setup, then we run the test scenario.

In the deployment phase, HDFS (respectively BSFS) is deployed on 270 ma-
chines from the same cluster of Grid’5000. For HDFS, we deploy one namenode
on a dedicated machine; the remaining nodes are used for the datanodes (one
datanode per machine). On the same number of nodes, we deploy BSFS as
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follows: one version manager, one provider manager, one node for the names-
pace manager, 20 metadata providers; the remaining nodes are used as data
providers. Each entity is deployed on a a separate, dedicated machine.

For the measurement phase, a subset of N machines is chosen from the
set of machines where datanodes/providers are running. The clients are then
launched simultaneously on this subset of machines, individual throughput is
collected and is then averaged. These steps are repeated 5 times for better
accuracy (which is enough, as the corresponding standard deviation proved to
be low).

4.2 Scenario 1: single writer, single file

We first measure the performance of HDFS/BSFS when a single client writes a
file whose size gradually increases. This test consists in sequentially writing a
unique file of N x 64 MB, in blocks of 64 MB (N goes from 1 to 246). The size of
HDFS’s chunks is 64 MB, and so is the block size configured with BlobSeer in this
case. The goal of this experiment is to compare the block allocation strategies
that HDF'S and BSF'S use in distributing the data across datanodes (respectively
data providers). The policy used by HDF'S consists in writing locally whenever a
write is initiated on a datanode. To enable a fair comparison, we chose to always
deploy clients on nodes where no datanode has previously been deployed. This
way, we make sure that HDFS will distribute the data among the datanodes,
instead of locally storing the whole file. BlobSeer’s default strategy consists
in allocating the corresponding blocks on remote providers in a round-robin
fashion.

We measure the write throughput for both HDFS and BSFS: the results
can be seen on Figure 3(a). BSFS achieves a significantly higher throughput
than HDFS, which is a result of the balanced, round-robin block distribution
strategy used by BlobSeer. A high throughput is sustained by BSFS even when
the file size increases (up to 16 GB). To evaluate of the load balancing in both
HDFS and BSFS, we chose to compute the Manhattan distance to an ideally
balanced system where all data providers/datanodes store the same number of
blocks/chunks. To calculate this distance, we represent the data layout in each
case by a vector whose size is equal to the number of data providers/datanodes;
the elements of the vector represent the number of blocks/chunks stored by
each provider/datanode. We compute 3 such vectors: one for HDFS, one for
BSFS and one for a perfectly balanced system (where all elements have the
same value: the total number of blocks/chunks divided by the total number of
storage nodes. We then compute the distance between the “ideal” vector and the
HDFS (respectively BSFS). As shown on Figure 3(b), as the file size (and thus,
the number of blocks) increases, both BSFS and HDFS become unbalanced.
However, BSFS remains much closer to a perfectly balanced system, and it
manages to distribute the blocks almost evenly to the providers, even in the
case of a large file. As far as we can tell, this can be explained by the fact that
the block allocation policy in HDFS mainly takes into account data locality
and does not aim at perfectly balancing the data distribution. A global load-
balancing of the system is done for Map/Reduce applications when the tasks are
assigned to nodes. During this experiment, we could notice that in HDFS there
are datanodes that do not store any block, which explains the increasing curve
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Figure 4: Performance of HDFS and BSFS when concurrent clients read from
a single file

shown in figure 3(b). As we will see in the next experiments, a balanced data
distribution has a significant impact on the overall data access performance.

4.3 Scenario 2: concurrent reads, shared file

In this scenario, for each given number N of clients varying from 1 to 250, we
executed the experiment in two steps. First, we performed a boot-up phase,
where a single client writes a file of N x 64 MB, right after the deployment
of HDFS/BSFS. Second, N clients read parts from the file concurrently; each
client reads a different 64 MB chunk sequentially, using finer-grain blocks of
4 KB. This pattern where multiple readers request data in chunks of 4 KB is
very common in the “map” phase of a Hadoop Map/Reduce application, where
the mappers read the input file in order to parse the (key, value) pairs.

For this scenario, we ran two experiments in which we varied the data layout
for HDFS. The first experiment corresponds to the case where the file read by
all clients is entirely stored by a single datanode This corresponds to the case
where the file has previously been entirely written by a client colocated with a
datanode (as explained in the previous scenario). Thus, all clients subsequently
read the data stored by one node, which will lead to a very poor performance
of HDFS. We do not represent these results here. In order to achieve a more
fair comparison where the file is distributed on multiple nodes both in HDFS
and in BSFS, we chose to execute a second experiment. Here, the boot-up
phase is performed on a dedicated node (no datanode is deployed on that node).
By doing so, HDFS will spread the file in a more balanced way on multiple
remote datanodes and the reads will be performed remotely for both BSFS and
HDFS. This scenario also offers an accurate simulation of the first phase of a
Map/Reduce application, when the mappers are assigned to nodes. The HDFS
job scheduler tries to assign each map task to the node that stores the chunk the
task will process; these tasks are called local maps. The scheduler also tries to
achieve a global load-balancing of the system, therefore not all the assignments
will be local. The tasks running on a different node than the one storing its
input data, are called remote maps: they will read the data remotely.

The results obtained in the second experiment are presented on Figure 4.
BSFS performs significantly better than HDFS, and moreover, it is able to
deliver the same throughput even when the number of clients increases. This
is a direct consequence of how balanced is the block distribution for that file.
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Figure 5: Performance of BSF'S when concurrent clients append to the same file

The superior load balancing strategy used by BlobSeer when writing the file has
a positive impact on the performance of concurrent reads, whereas the HDFS
suffers from the poor distribution of the file chunks.

4.4 Scenario 3: Concurrent appends, shared file

We now focus on another scenario, where concurrent clients append data to the
same file. This scenario is also useful in the context of Map/Reduce applications,
as it is for a wide range of data-intensive applications in general. For instance,
the possibility of running concurrent appends can improve the performance
of a simple operation such as copying a large distributed file. This can be
done in parallel by multiple clients which read different parts of the file, then
concurrently append the data to the destination file. Moreover, if concurrent
append operations are enabled, Map/Reduce workers can write the output of
the reduce phase to the same file, instead of creating many output files, as it is
currently done in Hadoop.

Despite its obvious usefulness, this feature is not available with Hadoop’s file
system: Hadoop has not been optimized for such a scenario. As BlobSeer pro-
vides support for efficient, concurrent appends by design, we have implemented
the append operation in BSFS and evaluated the aggregated throughput as
the number of clients varies from 1 to 250. We could not perform the same
experiment for HDFS, since it does not implement the append operation.

Figure 5 illustrates the aggregated throughput obtained when multiple
clients concurrently append data to the same BSFS file. These good results can
be obtained thanks to BlobSeer, which is optimized for concurrent appends.

Note that these results also give an idea about the performance of concurrent
writes to the same file. In BlobSeer, the append operation is implemented as
a special case of the write operation where the write offset is implicitly equal
to the current file size: the underlying algorithms are actually identical. The
same experiment performed with writes instead of appends, leads to very similar
results.
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Figure 6: Benefits of using BSFS instead of HDFS as a storage layer in Hadoop:
impact on the performance of Map/Reduce applications

4.5 Higher-level experiments with Map/Reduce applica-
tions

In order to evaluate how well BSFS and HDFS perform in the role of storage
layers for real Map/Reduce applications, we selected two standard Map/Reduce
applications that are part of Yahoo!’s Hadoop release.

The first application, Random Text Writer, is representative of a distributed
job consisting in a large number of tasks each of which needs to write a large
amount of output data (with no interaction among the tasks). The application
launches a fixed number of mappers, each of which generates a huge sequence of
random sentences formed from a list of predefined words. The reduce phase is
missing altogether: the output of each of the mappers is stored as a separate file
in the file system. The access pattern generated by this application corresponds
to concurrent, massively parallel writes, each of them writing to a different file.

To compare the performance of BSFS vs. HDFS in such a scenario, we co-
deploy a Hadoop tasktracker with a datanode in the case of HDFS (with a data
provider in the case of BSFS) on the same physical machine, for a total of 50
machines. The other entities for Hadoop, HDFS (namenode, jobtracker) and for
BSFS (version manager, provider manager, namespace manager) are deployed
on separate dedicated nodes. For BlobSeer, 10 metadata providers are deployed
on dedicated machines as well.

We fix the total output size of the job to amount to 6.4 GB worth of generated
text and vary the size generated by each mapper from 128 MB (corresponding to
50 parallel mappers) to 6.4 GB (corresponding to a single mapper), and measure
the job completion time in each case.

Results obtained are displayed on Figure 6(a). Observe the relative gain of
BSFS over HDFS ranges from 7 % for 50 parallel mappers to 11 % for a single
mapper. The case of a single mapper clearly favours BSFS and is consistent with
our findings for the synthetic benchmark in which we explained the respective
behavior of BSFS and HDFS when a single process writes a huge file. The
relative difference is smaller than in the case of the synthetic benchmark because
here the total job execution time includes some computation time (generation
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of random text). This computation time is the same for both HDFS and BSFS
and takes a significant part of the total execution time.

The second application we consider is distributed grep. It is representative of
a distributed job where huge input data needs to be processed in order to obtain
some statistics. The application scans a huge text input file for occurrences of
a particular expression and counts the number of lines where the expression
occurs. Mappers simply output the value of these counters, then the reducers
sum up the all the outputs of the mappers to obtain the final result. The access
pattern generated by this application corresponds to concurrent reads from the
same shared file.

In this scenario we co-deploy a tasktracker with a HDFS datanode (with a
BlobSeer data provider, respectively), on a total of 150 nodes. We deploy all
centralized entities (version manager, provider manager, namespace manager,
namenode, etc) on dedicated nodes. Also, 20 Metadata providers are deployed
on dedicated nodes for BlobSeer.

We first write a huge input file to HDFS and BSFS respectively. In the case
of HDFS, the file is written from a node that is not colocated with a datanode, in
order to avoid the scenario where HDFS writes all data blocks locally. This gives
HDFS the chance to perform some load-balancing of data blocks. Then we run
the distributed grep Map/Reduce application and measure the job completion
time. We vary the size of the input file from 6.4 GB to 12.8 GB in increments
of 1.6 GB. Since a Hadoop data block is 64 MB large and since usually Hadoop
assigns a single mapper to process such a data block, this roughly corresponds
to varying the number of concurrent mappers from 100 to 200.

Results obtained are represented in Figure 6(b). As can be observed BSFS
outperforms HDFS by 35 % for 6.4 GB and the gap steadily increases to 38 %
for 12.8 GB. This behavior is consistent with the results obtained for the syn-
thetic benchmark where concurrent processes read from the same file. Again,
the relative difference is smaller than in the synthetic benchmark because the
job completion time accounts for both the computation time and the I/O trans-
fer time. Note however the high impact of I/O in such applications that scan
through the data for specific patterns: the benefits of supporting efficient con-
current reads from the same file at the level of the underlying distributed file
system are definitely significant.

5 Conclusion

The efficiency of the Hadoop framework is a direct function of that of its data
storage layer. This work demonstrates that it is possible to enhance it by replac-
ing the default Hadoop Distributed File System (HDFS) layer by another layer,
built along different design principles. We introduce our BlobSeer system, which
is specifically optimized toward efficient, fine-grain access to massive, distributed
data accessed under heavy concurrency. Thank to this new BlobSeer-based File
System (BSFS) layer, the sustained throughput of Hadoop is significantly im-
proved in scenarios that exhibit highly concurrent accesses to shared files. More-
over, BSFS supports additional features such as efficient concurrent appends,
concurrent writes at random offsets and versioning. These features could be
leveraged to extend or improve functionalities in future versions of Hadoop or
other Map/Reduce frameworks. We list below several interesting perspectives.
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Leveraging versioning. Although in most real Map/Reduce applications,
data is mostly appended rather than overwritten, Hadoop’s file system API does
not implement append. Since BlobSeer supports arbitrarily concurrent writes
as well as appends, this opens a high potential for very promising improvements
of Map/Reduce framework implementations, including Hadoop. Versioning can
be leveraged to optimize more complex Map/Reduce workflows, in which the
output of one Map/Reduce is the input of another. In many such scenarios,
datasets are only locally altered from one Map/Reduce pass to another: writing
parts of the dataset while still being able to access the original dataset (thanks
to versioning) could save a lot of temporary storage space.

Fault tolerance. An important aspect we did not discuss in this paper is
fault tolerance. For this, we currently rely on classical mechanisms. At data
level, we employ a simple replication mechanism that allows the user to specify a
replication level for each BLOB. A write operation actually writes its respective
blocks to a number of providers equal to that replication level. The metadata is
stored in a DHT (formed by the metadata providers), which is resilient to faults
by construction. The centralized managers represent single points of failure as
is the case with the namenode of HDFS. Overall, fault-tolerance schemes cur-
rently used in BlobSeer are however rather minimal. We are currently exploring
ways to replace them with distributed, fault-tolerant mechanisms, while still
preserving a high-throughput for data access.

Security. We did not address security issues in this paper, as most of the
time Hadoop deployments are exploited within private, trusted clusters owned
by big companies, such as Google and Yahoo!: for now, we place ourselves in
the same context, therefore the security assumptions are basically the same
as for Hadoop’s built-in file system. In the case where Hadoop would run as
a Map/Reduce cloud service, possibly relying on externalized, virtualized re-
sources from other cloud computing service providers (such as Amazon), the
security constraints would be different. It then becomes crucial to guarantee
data privacy and data access control for multiple users, according to a contract.
We plan to explore these issues in the near future.
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