Geometric Tomography With Topological Guarantees

Omid Amini 1 Jean-Daniel Boissonnat 2 Pooran Memari 2, *
* Auteur correspondant
2 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
Abstract : We consider the problem of reconstructing a compact 3-manifold (with boundary) embedded in $\mathbb{R}^3$ from its cross-sections with a given set of cutting planes having arbitrary orientations. Under appropriate sampling conditions that are satisfied when the set of cutting planes is dense enough, we prove that the algorithm presented by Liu et al. in [1] preserves the homotopy type of the object. Using the homotopy equivalence, we also show that the reconstructed object is homeomorphic (and isotopic) to the original object. This is the first time that 3D shape reconstruction from cross-sections comes with such theoretical guarantees. [1] L. Liu, C.L. Bajaj, J.O. Deasy, D.A. Low, and T. Ju. Surface reconstruction from non-parallel curve networks. Computer Graphics Forum, 27:155-163, 2008.
Type de document :
Rapport
[Research Report] RR-7147, INRIA. 2009, pp.26
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00440322
Contributeur : Pooran Memari <>
Soumis le : jeudi 10 décembre 2009 - 12:07:17
Dernière modification le : mardi 24 avril 2018 - 17:20:06
Document(s) archivé(s) le : jeudi 18 octobre 2012 - 10:35:52

Fichier

RR-7147.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00440322, version 1

Collections

Citation

Omid Amini, Jean-Daniel Boissonnat, Pooran Memari. Geometric Tomography With Topological Guarantees. [Research Report] RR-7147, INRIA. 2009, pp.26. 〈inria-00440322〉

Partager

Métriques

Consultations de la notice

385

Téléchargements de fichiers

127