Iterative Mesh Deformation for Dense Surface Tracking

Cédric Cagniart 1 Edmond Boyer 2 Slobodan Ilic 1
2 PERCEPTION - Interpretation and Modelling of Images and Videos
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : In this paper we propose a new method to capture the temporal evolution of a surface from multiple videos. By contrast to most current methods, our algorithm does not use any prior information on t he nature of the tracked surface. In addition, it does not require sparse features to constrain the deformation but only relies on purely geometric information: a target set of 3D points and normals. Our approach is inspired by the Iterative Closest Point algorithm but handles large deformati ons of non-rigid surfaces. To this aim, a mesh is iteratively deformed while enforcing local rigidity with respect to a reference model. This rigidity is preserved by diffusing it on local patches randomly seeded on the surface. The iterative nature of the algorithm combined with the softly enforced local rigidity allows to progressively evolve the mesh to fit the target data. The proposed method is validated and evaluated on several standard and challenging surface data sets acquired using real videos.
Type de document :
Communication dans un congrès
3DIM 2009 - IEEE 12th International Conference on Computer Vision Workshops, Oct 2009, Kyoto, Japan. IEEE, pp.1465-1472, 2009, 〈10.1109/ICCVW.2009.5457440〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00440389
Contributeur : Edmond Boyer <>
Soumis le : mardi 23 février 2010 - 18:53:36
Dernière modification le : mercredi 14 décembre 2016 - 01:07:05
Document(s) archivé(s) le : jeudi 17 juin 2010 - 21:31:17

Fichiers

3dim09.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Cédric Cagniart, Edmond Boyer, Slobodan Ilic. Iterative Mesh Deformation for Dense Surface Tracking. 3DIM 2009 - IEEE 12th International Conference on Computer Vision Workshops, Oct 2009, Kyoto, Japan. IEEE, pp.1465-1472, 2009, 〈10.1109/ICCVW.2009.5457440〉. 〈inria-00440389〉

Partager

Métriques

Consultations de
la notice

402

Téléchargements du document

287