
HAL Id: inria-00440785
https://inria.hal.science/inria-00440785

Submitted on 14 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Word Order Constraints for Lexical Disambiguation of
Interaction Grammars

Guillaume Bonfante, Bruno Guillaume, Mathieu Morey

To cite this version:
Guillaume Bonfante, Bruno Guillaume, Mathieu Morey. Word Order Constraints for Lexical Disam-
biguation of Interaction Grammars. Workshop on Parsing with Categorial Grammars - ESSLLI, Jul
2009, Bordeaux, France. �inria-00440785�

https://inria.hal.science/inria-00440785
https://hal.archives-ouvertes.fr


Word Order Constraints for Lexical Disambiguation of Interaction

Grammars

Guillaume Bonfante, Bruno Guillaume and Mathieu Morey

LORIA - Nancy-Université - INRIA Nancy Grand-Est

{guillaume.bonfante, bruno.guillaume, mathieu.morey}@loria.fr

Abstract

We propose a new method to perform lexical disambiguation of Interaction Grammars. It
deals with the order constraints on words. Actually, the soundness of the method is due to an
invariant property of the parsing of an Interaction Grammar. We show how this invariant can
be computed statically from the grammar.

1 Introduction

Interaction Grammars are a lexicalized grammatical formalism. They share with Categorial Gram-
mars the idea that words are composed of syntactic constituents with a notion of polarity. Some
constituents are unsaturated: they ”wait” for some resources and provide some other ones. Inter-
action Grammars also have, as Categorial Grammars, a mechanism to cope with the linear order
on words.

We show in this paper that ordering constraints can be used to partially disambiguate the words
of a sentence. But, first of all, let us state some of our wills. First, the issue considered here is to be
thought in the context of syntactic analysis. We do not want to use statistical methods for lexical
disambiguation since an error at that point cannot be recovered at the parsing step. Consequently,
given a sentence, we accept to have more than one lexical tagging for it, as long as we can ensure
to have the good ones (when they exist!).

Now, since we have to consider all possible lexical taggings to find the right ones, there is an
immediate problem of complexity. Knowing that a word has typically about 10 corresponding
lexical descriptions, for a short sentence of 10 words, we get 1010 possible taggings. It is not
reasonable to treat them individually.

To avoid it, it is convenient to use an automaton to represent the set of all paths. This automaton
has linear size with regard to the initial lexical ambiguity. The idea of using automata is not new.
In particular, methods based on Hidden Markov Models (HMM) use such a technique for part-of-
speech tagging [3, 4]. Using automata, one may conceive dynamic programming procedures, and
consequently benefits from an exponential temporal speed up, together with the space one.

2 Interaction Grammars

We give here a very short and simplified description of IG and then, an example to illustrate them
at work; we refer the reader to [2] for a complete and detailed presentation.

1



The final structure, used as output of the parsing process, is an ordered tree called parse tree
(PT).

Figure 1: The PT of “Jean la de-
mande.” [John asks for it.]

An example of a PT is given in Figure 1, on the right. A PT
for a sentence contains the words of the sentence or the empty
word � in its leaves (the left-right order of the tree leaves fol-
lows the left-right order of words in the input sentence). The
internal nodes of a PT represent the constituents of the sen-
tence. The morpho-syntactic properties of these constituents
are described with feature structures (only the category is
shown in the figure).

As IG use the Model-Theoretic Syntax (MTS) framework,
a PT is defined as the model of a set of constraints. Con-
straints are defined at the word level: words are associated
to a set of constraints formally described as a polarized tree
description (PTD). A PTD is a set of nodes provided with
relations between these nodes. In Figure 2, the three PTDs
given on the left are used to build the model above. The rela-
tions used in the PTDs are: dominance (lines) and immediate
sisterhood (arrows). Nodes represent syntactic constituents and relations express structural depen-
dencies between these constituents; moreover, nodes carry a polarity (polarities are {+,−,=,∼})
which expresses a saturation constraint.

Figure 2: PTDs for the sentence “Jean la de-
mande.” [John asks for it.]

Now, we define a PT to be a model of a set
of PTDs if there is a surjective function I from
nodes of the PTDs to nodes of the PT such that:

• relations in the PTDs are realized in the
PT: if M is a daughter (resp. immediate
sister) of N in some PTD then I(M) is a
daughter (resp. immediate sister) of I(N) ;

• each node N in the PT is saturated: the
composition of the polarities of the nodes
in I−1(N) with the associative and com-
mutative rule given in Table 3 is =;

• the feature structure of a node N in the PT
is the unification of the feature structures
of the nodes in I−1(N).

One of the strong points of IG is the flex-
ibility given by the MTS approach: PTDs
can be partially superposed to produce the fi-
nal tree (superposition is limited in usual CG or in TAG for instance). In our exam-
ple, the four grey nodes in the PTD which contains “la” are superposed to the four grey
nodes in the PTD which contains “demande” to produce the four grey nodes in the model.
In the full IG formalism, relations between nodes can be underspecified, for instance a PTD can
impose a node to be an ancestor of another one without constraining the length of the path in the

2



model. In full IG, polarities are linked to features, not to nodes. A node can contain several polar-
ities. The methods we present here can be straightforwardly extended to full IG (with unessential
technical details).

∼ − + =
∼ ∼ − + =
− − =
+ + =
= =

Figure 3: Polarity composition

An IG is made of:

• A finite set W of words;

• A finite set G of PTDs (without the word attached to
them);

• A function � : W −→ P(G) which associates words with
set of PTDs.

Now, to parse a sentence S = w1 . . . wn, we have to:

• first, for each wi, choose one of the PTDs di ∈ �(wi) (we call lexical tagging a choice
{d1, . . . , dn} of one PTD for each word of the sentence);

• find a parse tree which is a model of the set of PTDs of the lexical tagging.

3 The Left-Right Principle

Computing a model of a sentence from a lexical tagging requires to saturate all the polarity con-
straints of its PTDs. To build a model, each node which is not saturated (with a polarity +, − or
∼) has to be merged with its “companions”, namely nodes from other PTDs that will saturate it.

Now let us take a look at the grammar, independently of any sentence, and try to find the
“potential companions” of a given unsaturated node. Actually, as our grammar models word order
constraints, it can be the case that using a node M to saturate a node N requires the PTD corre-
sponding to M to be on the left (resp. on the right) of N . Therefore, for each unsaturated node N

of the grammar G, we can enumerate all of its potential companions using two possibly overlapping
lists: its left potential companions (written LPC(N)) and its right potential companions (written
RPC(N)). By extension, we say that d ∈ LPC(N) (resp. d ∈ RPC(N)) for some PTD d whenever
∃M ∈ d : M ∈ LPC(N) (resp. ∃M ∈ d : M ∈ RPC(N)).

Observe that constructing the LPC and the RPC sets can be done independently from any
sentence, it is a property of the grammar which can be computed from the grammar itself.

Let us consider a sentence w1w2 · · ·wn and one of its lexical taggings d1d2 · · · dn. Suppose that
there is one node N ∈ di for some i for which there is neither some dj ∈ LPC(N) with j < i nor
some dk ∈ RPC(N) with k > i. Then, without performing deep parsing, we can state that such a
lexical tagging has no model. So, it is a necessary condition of the success of parsing that there is
no such node. We call this the Left-Right Principle.

4 Implementation of the Left-Right Principle with automata

We have seen above that the Left-Right principle applies to lexical taggings. As a matter of fact, in
this section we keep the promise we made in the introduction of this paper: we show that it can be
computed by means of automata, saving space and time. Actually, we propose two implementations
of the Left-Right principle, an exact one and an approximate one. The latter is really fast and can
be used as a first step before applying the first one.

3



4.1 Exact Left-Right disambiguation (ELR)

Given a sentence w1 · · ·wn, a PTD d ∈ �(wi) and a node N of d, we can build the companionship
automaton A(wi, d,N) for the sentence. It represents the saturation state of the polarity constraint
corresponding to N after each choice of a PTD for a word.

Each state of A(wi, d,N) is labelled with a couple (j, x), with j the position of the last considered
word and x the saturation state (Open or Close). A state is labelled with Close when all of its
incoming paths fulfill the polarity constraint of N . Otherwise the state is labelled with Open.

More formally, A(wi, d,N) is defined as follows. States are a subset of N × {Open, Close}.
Transitions (j − 1, x) d�−→ (j, y) are labelled by d� ∈ �(wj). The value of y is determined in the
following way :

• if (j = i) ∧ (d = d�) then y = x,

• if (j = i) ∧ (d �= d�) then y = Close,

• if (j < i) ∧ (d� ∈ LPC(N)) then y = Close,

• if (j > i) ∧ (d� ∈ RPC(N)) then y = Close,

• otherwise y = Open.

The initial state is (0, Open) and the unique accepting final state is (n, Close).
For every word wi of the sentence, we construct the companionship automaton A(wi, d,N) of

every polarized node N in every PTD d ∈ �(wi). The intersection of these automata represents all
the possible lexical taggings of the sentence which respect the Left-Right Principle. That is, we
output: �

1≤i≤n, d∈�(wi), N∈d

A(wi, d,N)

Let us say that for the sentence “Jean la demande.”, the possible PTDs are those described in
Figure 4: �(”Jean”) ={Jean NP}, �(”la”) ={la Det, la Clit, la CN}, �(”demande”) ={demande V,
demande CN}. Then Figure 5 represents the automaton A(”demande”,demande V,D3).

Figure 4: Possible PTDs for the sentence “Jean la demande.”

4



Figure 5: A(”demande”,demande V,D3) for the sentence “Jean la demande.”

4.2 Quick and dirty approximation (QLR)

The issue with the previous algorithm is that it involves a large number of automata (actually
O(n)) where n is the size of the input sentence. Each of these automata has size O(n). The
theoretical complexity of the intersection is then O(nn). Sometimes, we face the exponential. So,
let us provide an algorithm which approximates the Principle.

Again, we consider a sentence w1 · · ·wn. Suppose that for some d ∈ �(wi) and some N ∈ d,
there is no d� ∈ LPC(N) with d� ∈ �(wj), j < i nor some d�� ∈ RPC(N) with d�� ∈ �(wk), k > i.
Then lexical taggings containing d at position i have no model, hence, d can be removed.

This can be computed by a double-for loop: for each node N of a PTD d ∈ �(wi) in the sentence,
verify that there is a companion node M ∈ d�, d� ∈ �(wj) for it. If it is not the case, simply remove
the lexical choice d for the word wi. Observe that the cost of this algorithm is O(n2).

Note that one must iterate this algorithm until a fix-point is reached. Indeed, removing a PTD
which serves as a potential companion breaks the verification. Nevertheless, since for each step
before the fix-point is reached, we remove at least one PTD, we iterate the double-for at most O(n)
times. The complexity of the whole algorithm is then O(n3).

Let us see on an example the difference between the two algorithms ELR and QLR. Take a
very simple grammar, with a single word w associated to two PTDs d1, d2 such that RPC(d1) =
LPC(d1) = {d2}, LPC(d2) = RPC(d2) = {d1}1. For the sentence ww, the algorithm QLR keeps
the four lexical taggings d1d1, d1d2, d2d1 and d2d2, whereas ELR only keeps d1d2 and d2d1.

5 Experimental results

We present here some results obtained2 with our methods. Our test corpus is composed of 189
sentences (with a mean length of 10 words) extracted from the French newspaper “Le Monde”. Our
linguistic resources are a French IG [5] and a lexicon built from freely available French resources.
In the table below, we give the filtering time for all sentences and filtering ratio for grammatical3

sentences.
The filtering methods we consider are: POL (as a baseline) which uses a global filter based

on polarity counting (described in [1]); QLR is the method described in 4.2 and ELR is described
1
For instance, take the PTDs made of one node polarized +N for d1 and −N for d2.

2
These results are obtained with a PC (Pentium

R�
D930, 3.0Ghz, 4Go).

3
Here grammatical means that they are accepted by the grammar.

5



in 4.1. Note that we have not reported experiments about the ELR method alone because the
filtering time is too high for some sentences.

Values in the table are percentiles. For instance the value 1.20s (in the box) means that with
the ELR+POL filtering, 75% of the 189 sentences are filtered in 1.20s at most. The ratio 3.06 ·105

(also in a box) means that 85% of the 133 sentences have a filtering ratio of 3.06 · 105 at least.
POL QLR QLR + POL ELR + POL

Filtering time 50% 0.38s 0.03s 0.07s 0.11s
for all sentences 75% 2.84s 0.07s 0.38s 1.20s
(189 sentences) 85% 9.83s 0.11s 0.98s 5.92s

Filtering ratio for 50% 2.86 · 105 8.06 · 103 5.76 · 107 1.70 · 108

grammatical sentences 75% 3.07 · 104 9.68 · 102 1.01 · 106 3.24 · 106

(133 sentences) 85% 1.99 · 104 2.66 · 102 3.06 · 105 7.52 · 105

It is clear from the first 2 experiments that the QLR is much more efficient (85% of the sentences
can be filtered in less than 0.11s) but the ratio is lower than the baseline. The combination of the
two methods (QLR+POL) greatly improves the baseline both in filtering time and ratio. The last
experiment is more time consuming (bigger automata are built) but it is still usable in practice and
shows the higher impact that can be reached with our methods (number of taggings divided by at
least 7.52 · 105 for 85% of the sentences).

References

[1] G. Perrier G. Bonfante, B. Guillaume. Polarization and abstraction of grammatical formalisms
as methods for lexical disambiguation. In Proceedings of CoLing 2004, 2004.

[2] Bruno Guillaume and Guy Perrier. Interaction Grammars. Research Report RR-6621, INRIA,
2008.

[3] Julien Kupiec. Robust Part-of-Speech Tagging Using a Hidden Markov Model. Computer
Speech and Language, 6(3):225–242, 1992.

[4] Bernard Merialdo. Tagging English Text with a Probabilistic Model. Computational linguistics,
20:155–157, 1994.

[5] G. Perrier. A french interaction grammar. In proceedings od the 6th International Conference
on Recent Advances in Natural Language Processing, pages 463–467, Borovets, Bulgaria, 2007.

6


