
HAL Id: inria-00440795
https://inria.hal.science/inria-00440795

Submitted on 11 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dependency Constraints for Lexical Disambiguation
Guillaume Bonfante, Bruno Guillaume, Mathieu Morey

To cite this version:
Guillaume Bonfante, Bruno Guillaume, Mathieu Morey. Dependency Constraints for Lexical Disam-
biguation. 11th International Conference on Parsing Technologies - IWPT’09, Oct 2009, Paris, France.
pp.242-253. �inria-00440795�

https://inria.hal.science/inria-00440795
https://hal.archives-ouvertes.fr

Dependency Constraints for Lexical Disambiguation

Guillaume Bonfante

LORIA INPL

guillaume.bonfante@loria.fr

Bruno Guillaume

LORIA INRIA

bruno.guillaume@loria.fr

Mathieu Morey

LORIA Nancy-Université

mathieu.morey@loria.fr

Abstract

We propose a generic method to per-

form lexical disambiguation in lexicalized

grammatical formalisms. It relies on de-

pendency constraints between words. The

soundness of the method is due to invariant

properties of the parsing in a given gram-

mar that can be computed statically from

the grammar.

1 Introduction

In this work, we propose a method of lexical dis-

ambiguation based on the notion of dependencies.

As this has been done by Boullier in (Bou03), our

method is not based on statistics, nor on heuris-

tics, but it is based on a necessary condition of

the deep parsing. Consequently, given a sentence,

we accept to have more than one lexical tagging

for it, as long as we can ensure to have the good

ones (when they exist!). This property is particu-

lary useful for deep parsing which won’t fail due

to an error at the disambiguation step.

In modern linguistics, Lucien Tesnière devel-

oped a formal and sophisticated theory with de-

pendencies (Tes59). Nowadays, many current

grammatical formalisms rely more or less explic-

itly on the notion of dependencies between words.

The most straightforward examples are formal-

ism in the Dependency Grammars family but it

is also true of the phrase structure based for-

malisms which consider that words introduce in-

complete syntactic structures which must be com-

pleted by other words. This idea is at the core

of Categorial Grammars (CG) (Lam58) and all

its trends such as Abstract Categorial Grammars

(ACG) (dG01) or Combinatory Categorial Gram-

mars (CCG) (Ste00), being mostly encoded in

their type system. Dependencies in CG were

studied in (MM91) and for CCG, in (CHS02;

KK09). Other formalisms can be viewed as mod-

eling and using dependencies, such as Tree Ad-

joining Grammars (TAG) (Jos87) with their sub-

stitution and adjunction operations. Dependen-

cies for TAG are studied in (JR03). More re-

cently, (MGP09) shows that it is also possible to

extract a dependency structure from a syntactic

analysis in Interaction Grammars (IG) (GP08).

Another much more recent concept of polar-

ity can be used in grammatical formalisms to ex-

press that words introduce incomplete syntactic

structures. IG directly use polarities to describe

these structures but it is also possible to use po-

larities in other formalisms in order to make ex-

plicit the more or less implicit notion of incom-

plete structures: for instance, in CG (Lam08) or

in TAG (Kah06; BGP04; GK05). On this re-

gard, (MGP09) exhibits a direct link between po-

larities and dependencies. This encourages us to

say that in many respects dependencies and polar-

ities are two sides of the same coin.

The aim of this paper is to show that depen-

dencies can be used to express constraints on the

taggings of sentence and hence these dependency

constraints can be used to partially disambiguate

the words of a sentence. We will see that, in prac-

tice, using the link between dependencies and po-

larities, these dependency constraints can be com-

puted directly from polarized structures.

Concerning disambiguation, knowing that a

word has typically about 10 corresponding lexi-

cal descriptions, for a short sentence of 10 words,

we get 1010 possible taggings. It is not reason-

able to treat them individually. To avoid this, it

is convenient to use an automaton to represent

the set of all paths. This automaton has linear

size with regard to the initial lexical ambiguity.

The idea of using automata is not new. In par-

ticular, methods based on Hidden Markov Models

(HMM) use such a technique for part-of-speech

tagging (Kup92; Mer94). Using automata, we

benefit from dynamic programming procedures,

and consequently from an exponential temporal

ans space speed up.

2 Abstract Grammatical Framework

Our filtering method is applicable to any lexical-

ized grammatical formalism which exhibits some

basic properties. In this section we establish these

properties and define from them the notion of Ab-

stract Grammatical Framework (AGF).

Formally, an Abstract Grammatical Frame-

work is an n-tuple (V, S,G,anc, F,p,dep)
where:

• V is the vocabulary: a finite set of words of

the modeled natural language;

• S is the set of syntactic structures used by

the formalism;

• G ⊂ S is the grammar: the finite set of initial

syntactic structures; a finite list [t1, . . . , tn] of

elements of G is called a lexical tagging;

• anc : G → V maps initial syntactic struc-

tures to their anchors;

• F ⊂ S is the set of final syntactic structures

that the parsing process builds (for instance

trees);

• p is the parsing function from lexical tag-

gings to finite subsets of F;

• dep is the dependency function which maps

a couple of a lexical tagging and a final syn-

tactic structures to dependency structures.

Note that the anc function implies that the

grammar is lexicalized: each initial structure in G

is associated to an element of V. Note also that no

particular property is required on the dependency

structures that are obtained with the dep function,

they can be non-projective for instance.

We call lexicon the function (written ℓ) from V

to subsets of G defined by:

ℓ(w) = {t ∈ G | anc(t) = w}.

We will say that a lexical tagging

[t1, . . . , tn] is a lexical tagging of the sentence

[anc(t1), . . . ,anc(tn)].
The final structures in p (L) ⊂ F are called the

parsing solutions of L.

In the following, in our examples, we will con-

sider the ambiguous French sentence (1).

(1) “La belle ferme la porte”

Example 1 We consider the following toy AGF,

suited for parsing our sentence:

• V = { “la”, “belle”, “ferme”, “porte” };

• the grammar G is given in the table be-

low: each × corresponds to an element in

G, written with the category and the French

word as subscript. For instance, the French

word “porte” can be either a common noun

(“door”) or a transitive verb (“hangs”);

hence G contains the 2 elements CNporte and

TrVporte .

la belle ferme porte

Det ×
LAdj × ×
RAdj × ×
CN × × × ×
Clit ×
TrV × ×
IntrV ×

In our example, categories stands for, respec-

tively: determiner, left adjective, right adjec-

tive, common noun, clitic pronoun, transitive

verb and intransitive verb.

With respect to our lexicon, for sentence (1),

there are 3 × 3 × 5 × 3 × 2 = 270 lexical tag-

gings.

The parsing function p is such that 3 lexical

taggings have one solution and the 267 remaining

ones have no solution; we do not need to precise

the final structures, so we only give the English

translation as the result of the parsing function:

• p([Detla , CNbelle , TrVferme , Detla , CNporte]) =

{“The nice girl closes the door”}

• p([Detla , LAdjbelle , CNferme , Clitla , TrVporte]) =

{“The nice farm hangs it”}

• p([Detla , CNbelle , RAdjferme , Clitla , TrVporte]) =

{“The firm nice girl hangs it”}

3 The Companionship Principle

We have stated in the previous section the frame-

work and the definitions required to describe our

principle.

3.1 Potential Companion

We say that u ∈ G is a companion of t ∈ G if

anc(t) and anc(u) are linked by a dependency in

dep(L, t) for some lexical tagging L which con-

tains t and u and some t ∈ p(L). The subset of

elements of G that are companions of t is called

the potential companion set of t.
The Companionship Principle says that if a lex-

ical tagging contains some t but no potential com-

panion of t, then it can be removed.

In what follows, we will generalize a bit this

idea in two ways. First, the same t can be implied

in more than one kind of dependency and hence

it can have several different companion sets with

respect to the different kind of dependencies. Sec-

ondly, it can be the case that some companion t
has to be on the right (resp. on the left) to fulfill its

duty so we will consider pairs of sets rather than

sets. These generalizations are done through the

notion of atomic constraints defined below.

3.2 Atomic constraints

We say that a pair (L,R) of subsets of G is an

atomic constraint for an initial structure t ∈ G

if for each lexical tagging L = [t1, . . . , tn] such

that p(L) 6= ∅ and t = ti for some i then:

• either there is some j < i such that tj ∈ L,

• or there is some j > i such that tj ∈ R.

In other words, (L,R) lists the potential com-

panions of t, respectively on the left and on the

right.

A system of constraints for a grammar G is a

function C which associates a finite set of atomic

constraints to each element of G.

The Companionship Principle is an immedi-

ate consequence of the definition of atomic con-

straints. It can be stated as the necessary condi-

tion:

The Companionship Principle

If a lexical tagging [t1, . . . , tn] has a solution

then for all i and for all atomic constraints

(L,R) ∈ C(ti)

• {t1, . . . , ti−1} ∩ L 6= ∅

• or {ti+1, . . . , tn} ∩ R 6= ∅.

Example 2 Often, constraints can be expressed

independently of the anchors. In our example, we

use the category to refer to the subset of G of struc-

tures defined with this category: LAdj for instance

refers to the subset {LAdjbelle , LAdjferme}.

We complete the example of the previous section

with the following constraints1:

➊ t ∈ CN ⇒ (Det, ∅) ∈ C(t)

➋ t ∈ LAdj ⇒ (∅, CN) ∈ C(t)

➌ t ∈ RAdj ⇒ (CN, ∅) ∈ C(t)

➍ t ∈ Det ⇒ (∅, CN) ∈ C(t)
➎ t ∈ Det ⇒ (TrV, TrV ∪ IntrV) ∈ C(t)

➏ t ∈ TrV ⇒ (Clit, Det) ∈ C(t)
➐ t ∈ TrV ⇒ (Det, ∅) ∈ C(t)

➑ t ∈ IntrV ⇒ (Det, ∅) ∈ C(t)

➒ t ∈ Clit ⇒ (∅, TrV) ∈ C(t)

The two constraints ➍ and ➎ for instance ex-

press that every determiner is implied in two de-

pendencies. First, it must find a common noun on

its right to build a noun phrase. Second, the noun

phrase has to be used in a verbal construction.

Now, let us consider the lexical tagging:

[Detla , LAdjbelle , TrVferme , Clitla , CNporte] and

the constraint ➒ (a clitic is waiting for a transitive

verb on its right). This constraint is not fulfilled

by the tagging so this tagging has no solution.

3.3 The “Companionship Principle”

language

Actually, a lexical tagging is an element of the

formal language G∗ and we can consider the fol-

lowing three languages. First, G∗ itself. Second,

the set C ⊆ G∗ corresponds to the lexical tag-

gings which can be parsed. The aim of lexical

disambiguation is then to exhibit for each sen-

tence [w1, . . . , wn] all the lexical taggings that are

within C. Third, the Companionship Principle de-

fines the language P of lexical taggings which ver-

ify this Principle. P squeezes between the two lat-

ter sets C ⊆ P ⊆ G∗. Remarkably, the language

P can be described as a regular language. Since C
is presumably not a regular language (at least for

natural languages!), P is a better regular approxi-

mation than the trivial G∗.

Let us consider one lexical entry t and an atomic

constraint (L,R) ∈ C(t). Then, the set of lexical

taggings verifying this constraint can be described

as

Lt:(L,R) = ∁((∁L)∗t(∁R)∗)

where ∁ denoting the complement of a set.

1these constraints are relative to our toy grammar and are
not linguistically valid in a larger context.

Since P is defined as the lexical taggings veri-

fying all constraints, it is

P =
⋃

(L,R)∈C(t)

Lt:(L,R)

which is a regular expression.

From the Companionship Principle, we derive

a lexical disambiguation Principle which simply

tests tagging candidates with P . Notice that P can

be statically computed (at least, in theory) from

the grammar itself.

Example 3 For instance, for our example gram-

mar, this automaton is given in the figure 1 where

c=Clit, n=CN, d=Det, i=IntrV, l=LAdj, r=RAdj

and t=TrV.

A rough approximation of the size of the au-

tomaton corresponding to P can be easily com-

puted. Since each automaton Lt:(L,R) has 4 states,

P has at most 4m states where m is the num-

ber of atomic constraints. For instance, the gram-

mar used in the experiments contains more than

one atomic constraint for each lexical entry, and

m > |G| > 106. Computing P by brute-force is

then intractable.

4 Implementation of the Companionship

Principle with automata

We have seen above that the Companionship Prin-

ciple applies to lexical taggings. As a matter of

fact, in this section we keep the promise we made

in the introduction of this paper: we show that it

can be computed by means of automata, saving

space and time. Actually, we propose two im-

plementations of the Companionship Principle, an

exact one and an approximate one. The latter is

really fast and can be used as a first step before

applying the first one.

4.1 Automaton to represent sets of lexical

taggings

The number of lexical taggings to consider for a

sentence can be exponential in the length of the

sentence. In many cases, an acyclic automaton

with elements of G on the transitions can effi-

ciently represent a large set of lexical taggings:

each path of the automaton is interpreted as a lex-

ical tagging. We call such an automaton a lexical

taggings automaton (LTA).

For instance, with a given sentence

[w1, . . . , wn] the number of lexical taggings

to consider at the beginning of the parsing process

is Π1≤i≤n|ℓ(wi)|, hence the number of taggings

grows exponentially with the length of the sen-

tence. This set of taggings can be efficiently

represented as the set of paths of the automaton

with n + 1 states s0, . . . , sn and with a transition

from si−1 to si with the label t for each t ∈ ℓ(wi).
This automaton has

∑

1≤i≤n |ℓ(wi)| transitions.

Example 4 With the data of the previous exam-

ples, we have the initial automaton:

0 1

Det

CN

Clit

2

LAdj

RAdj

CN

3

TrV

IntrV

LAdj

RAdj

CN

4

Det

CN

Clit

5
CN

TrV

To improve readability, only the categories are

given on the edges, while the French words can be

inferred from the position in the automaton.

4.2 Exact Companionship Principle (ECP)

Suppose we have a LTA A for a sentence

[w1, . . . , wn]. For each transition t and for each

atomic constraint in (L, R) ∈ C(t), we construct

an automaton At,L,R in the following way.

Each state s of At,L,R is labeled with a triple

composed of a state of the automaton A and

two booleans. The intended meaning of the first

boolean is to say that each path reaching this

state passes through the transition t. The second

boolean means that the atomic constraint (L,R) is

necessarily fulfilled.

The initial state is labeled (s0, F, F) where s0 is

the initial state of A and other states are labeled as

follows: if s
u
−→ s′ in A then, in At,L,R, we have:

1. (s, F, b)
u
−→ (s′, T, b) if u = t

2. (s, F, b)
u
−→ (s′, F, T) if u ∈ L

3. (s, F, b)
u
−→ (s′, F, b) if u /∈ L

4. (s, T, b)
u
−→ (s′, T, T) if u ∈ R

5. (s, T, b)
u
−→ (s′, T, b) if u /∈ R

where b ∈ {T, F}. It is then routine to show that,

for each state labeled (s, b1, b2):

0

4c

5
d

6
l

1

{i,n,r} 7

c

8

d

9

l

10

t

2

{i,n,r,t}

c

11{d,l}

3

{i,n,r}

c

t

12

{d,l}

{c,l}

14

d

{d,l}

13
i

c

15

t

16

n

c

d

l

t{c,i,n,r}

17

{d,l}

{d,l,r}

i

t

n

c

n
d

{i,l,r}

t

c

{i,l,n,r,t}

d

20

c

n
{d,i,l,r,t}

c

nt

{d,i,l,r}

c

n
d

{i,l}

c

t

n

{c,d,i,l}

18
t

n

{i,l,t}

19

c

22d

i

c

{d,l} t{n,r}

n

t

{c,d,i,l,r}

n

c

{d,i,l,t}

d

{c,i,l}
n

21

t

d

{c,i,l,n,r}

23

t

d

c{i,l,t}

n

n

c

t

{d,i,l}

d

c
{i,l,n,r,t}

Figure 1: The P language for G

• b1 is T iff all paths from the initial state to s
contain the transition t;

• b2 is T iff for all paths p reaching this state,

either there is some u ∈ L or p goes through

t and there is some u ∈ R. In other words, the

constraint (whether we go through t or not) is

fulfilled.

In conclusion, a path ending with (sf , T, F) with

sf a final state of A is built with transitions 1, 3
and 5 only and hence contains t but no transition

able to fulfill the constraint. The final states are:

• (sf , F, b): each path ending here does not

contains the edge t and is not concerned by

the constraints, if is kept,

• (sf , T, T) each path ending here contains the

edge t but it contains also either a transition

2 or 4, so the constraint is fulfilled by there

these paths.

The size of these automata is easily bounded by

4n where n is the size of A. Using a slightly more

intricated presentation, we built automata of size

2n.

Example 5 We give below the automaton A for

the atomic constraint ➑ (an intransitive verb is

waiting for a determiner on its left):

0,F,F

1,F,T

Det

1,F,F

CN

Clit

2,F,T
LAdj

RAdj

CN

2,F,F

LAdj

RAdj

CN

3,F,T

LAdj

RAdj

CN

TrV

3,T,T

IntrV

3,F,F

LAdj

RAdj

CN

TrV

3,T,F

IntrV

4,F,T

Det

CN

Clit

4,F,F

Det

CN

Clit

4,T,T

Det

CN

Clit

4,T,F

Det

CN

Clit

5,F,T

CN

TrV

5,F,F
CN

TrV

5,T,T
CN

TrV

5,T,F
CN

TrV

The dotted part of the graph corresponds to the

part of the automaton that can be safely removed.

After minimization, we finally obtain:

0

1
Det

1'

CN

Clit

2

LAdj

RAdj

CN

2'

LAdj

RAdj

CN

3

LAdj

RAdj

CN

TrV

IntrV

LAdj

RAdj

CN

TrV

4

Det

CN

Clit

5
CN

TrV

This automaton contains 234 paths (36 lexical

taggings are removed by this constraint).

For each transition t of the lexical taggings au-

tomaton and for each constraint (L,R) ∈ C(t), we

construct the atomic constraint automaton At,L,R.

The intersection of these automata represents all

the possible lexical taggings of the sentence which

respect the Companionship Principle. That is, we

output :

ACP =
⋂

1≤i≤n, t∈A;(L,R)∈C(t)

At,L,R

It can be shown that the automaton is the same

that the one obtained by intersection with the au-

tomaton of the language defined in 3.3:

ACP = A ∩ P.

Example 6 In our example, the intersection of

the 9 automata built for the atomic constraints is

given below:

0 1
Det

2
LAdj

2

CN

3a

CN
3b

TrV

3c
IntrV

CN

RAdj

TrV

3d
IntrV

4
Clit

4'

Det

CN

Clit

CN
5

TrV

CN

This automaton has 8 paths: there are 8 lexical

taggings which fulfill every constraint.

4.3 Approximation: the Quick

Companionship Principle (QCP)

The issue with the previous algorithm is that it in-

volves a large number of automata (actually O(n))
where n is the size of the input sentence. Each

of these automata has size O(n). The theoreti-

cal complexity of the intersection is then O(nn).
Sometimes, we face the exponential. So, let

us provide an algorithm which approximates the

Principle. The idea is to consider at the same time

all the paths that contain some transition.

We consider a LTA A. We write ≺A the prece-

dence relation on transitions in an automaton A.

We define lA(t) = {u ∈ G, u ≺A t} and rA(t) =
{u ∈ G, t ≺A u}.

For each transition s
t
−→ s′ and each constraint

(L, R) ∈ C(t), if lA(t) ∩ L = ∅ and rA(t) ∩ R =
∅, then none of the lexical taggings which use the

transition t has a solution and the transition t can

be safely removed from the automaton.

This can be computed by a double-for loop: for

each atomic constraint of each transition, verify

that either the left context or the right context of

the transition contains some structure to solve the

constraint. Observe that the cost of this algorithm

is O(n2), where n is the size of the input automa-

ton.

Note that one must iterate this algorithm until a

fixpoint is reached. Indeed, removing a transition

which serves as a potential companion breaks the

verification. Nevertheless, since for each step be-

fore the fixpoint is reached, we remove at least one

transition, we iterate the double-for at most O(n)
times. The complexity of the whole algorithm is

then O(n3). In practice, we have observed that the

complexity is close to O(n2): only 2 or 3 loops

are enough to reach the fixpoint.

Example 7 If we apply the QCP to the automaton

of Example 4, in the first step, only the transition

0
CN
−→ 1 is removed by applying the atomic con-

straint ➊. In the next step, the transition 1
RAdj
−−−→ 2

is removed by applying the atomic constraint ➌.

The fixpoint is reached and the output automaton

(with 120 paths) is:

0 1
Det

Clit

2
LAdj

CN

3

LAdj

RAdj

CN

TrV

IntrV

4

Det

CN

Clit

5
CN

TrV

5 The Generalized Companionship

Principle

In practice, of course, we have to face the prob-

lem of the computation of the constraints. In large

coverage grammar, the size of G is too big to com-

pute all the constraints in advance. However, as

we have seen in example 2 we can identify sub-

sets of G that have the same constraints; the same

way, we can use these subsets to give a more con-

cise presentation of the L and R sets of the atomic

constraints. This motivates us to define a General-

ized Principle which is stated on a quotient set of

G.

5.1 Generalized atomic constraints

Let U be a set of subsets of G that are a partition

of G. For t ∈ G, we write t the subset of U which

contains t.

We say that a pair (L,R) of subsets of U is a

generalized atomic constraint for u ∈ U if for

each lexical tagging L = [t1, . . . , tn] such that

p(L) 6= ∅ and u = ti for some i then:

• either there is some j < i such that tj ∈ L,

• or there is some j > i such that tj ∈ R.

A system of generalized constraints for a par-

tition U of a grammar G is a function C which asso-

ciates a finite set of generalized atomic constraints

to each element of U.

5.2 The Generalized Principle

The Generalized Companionship Principle is then

an immediate consequence of the previous defini-

tion and can be stated as the necessary condition:

The Generalized Companionship Principle

If a lexical tagging [t1, . . . , tn] has a solution

then for all i and for all generalized atomic con-

straints (L,R) ∈ C(ti)

• {t1, . . . , ti−1} ∩ L 6= ∅

• or {ti+1, . . . , tn} ∩ R 6= ∅.

Example 8 The constraints given in example 2

are in fact generalized atomic constraints on the

set (recall that we write LAdj then 2 elements set

{LAdjbelle , LAdjferme}):

U = {Det, LAdj, RAdj, CN, Clit, TrV, IntrV}.

Then the constraints are expressed on |U| = 7 el-

ements and not on |G| = 13.

A generalized atomic constraint on U can, of

course, be expressed as a set of atomic constraints

on G: let u ∈ U and t ∈ G such that t = u

(L, R) ∈ C(u) =⇒

(

⋃

L∈L

L,
⋃

R∈R

R

)

∈ C(t).

5.3 Implementation of lexicalized grammars

In implementations of large coverage linguistic re-

sources, it is very common to have, first, the de-

scription of the set of “different” structures needed

to describe the modeled natural language and then

an anchoring mechanism that explains how words

of the lexicon are linked to these structures. We

call unanchored grammar the set U of differ-

ent structures (not yet related to words) that are

needed to describe the grammar. In this context,

the lexicon is split in two parts:

• a function ℓ from V to subsets of U,

• an anchoring function α which builds the

grammar elements from a word w ∈ V and

an unanchored structure u ∈ ℓ(w); we sup-

pose that α verifies that anc(α(w, u)) = w.

In applications, we suppose that U, ℓ and α are

given. In this context, we define the grammar as

the codomain of the anchoring function:

G =
⋃

w∈V,u∈ℓ(w)

α(w, u)

Now, we can define generalized constraints on

the unanchored grammar, which are independent

of the lexicon and can be computed statically for a

given unanchored grammar.

6 Application to Interaction Grammars

In this section, we apply the Companionship Prin-

ciple to the Interaction Grammars formalism. We

first give a short and simplified description of IG

and an example to illustrate them at work; we refer

the reader to (GP08) for a complete and detailed

presentation.

6.1 Interaction Grammars

We illustrate some of the important features on

the French sentence (2). In this sentence, “la”

is an object clitic pronoun which is placed before

the verb whereas the canonical place for the (non-

clitic) object is on the right of the verb.

(2) “Jean la demande.” [John asks for it]

The set F of final structures, used as output of

the parsing process, contains ordered trees called

parse trees (PT). An example of a PT for the sen-

tence (2) is given in Figure 2. A PT for a sentence

contains the words of the sentence or the empty

word ǫ in its leaves (the left-right order of the tree

leaves follows the left-right order of words in the

input sentence). The internal nodes of a PT repre-

sent the constituents of the sentence. The morpho-

syntactic properties of these constituents are de-

scribed with feature structures (only the category

is shown in the figure).

As IG use the Model-Theoretic Syntax (MTS)

framework, a PT is defined as the model of a set

of constraints. Constraints are defined at the word

level: words are associated to a set of constraints

formally described as a polarized tree descrip-

tion (PTD). A PTD is a set of nodes provided with

A2-A3=S

B1-B3=NP C2-C3=V D2-D3=NP

Jean E2=Cl F2-F3=V ε

la demande

Figure 2: The PT of sentence (2)

relations between these nodes. The three PTDs

used to build the model above are given in Fig-

ure 3. The relations used in the PTDs are: imme-

diate dominance (lines) and immediate sisterhood

(arrows). Nodes represent syntactic constituents

and relations express structural dependencies be-

tween these constituents.

Moreover, nodes carry a polarity: the set of po-

larities is {+,−,=,∼}. A + (resp.−) polarity

represents an available (resp. needed) resource, a

∼ polarity describes a node which is unsaturated.

Each + must be associated to exactly one − (and

vice versa) and each ∼ must be associated to at

least another polarity.

B1+NP

Jean

A2~S

C2~V D2+NP

E2=Cl F2~V ε

la

A3=S

B3-NP C3=V D3-NP

F3=V

demande

Figure 3: PTDs for the sentence (2)

Now, we define a PT to be a model of a set of

PTDs if there is a surjective function I from nodes

of the PTDs to nodes of the PT such that:

• relations in the PTDs are realized in the PT:

if M is a daughter (resp. immediate sister)

of N in some PTD then I(M) is a daughter

(resp. immediate sister) of I(N);

• each node N in the PT is saturated: the

composition of the polarities of the nodes in

I−1(N) with the associative and commuta-

tive rule given in Table 4 is =;

• the feature structure of a node N in the PT is

the unification of the feature structures of the

nodes in I−1(N).

One of the strong points of IG is the flexibility

given by the MTS approach: PTDs can be partially

superposed to produce the final tree (whereas su-

perposition is limited in usual CG or in TAG for

instance). In our example, the four grey nodes

in the PTD which contains “la” are superposed

to the four grey nodes in the PTD which contains

“demande” to produce the four grey nodes in the

model.

∼ − + =

∼ ∼ − + =
− − =
+ + =
= =

Figure 4: Polarity composition

In order to give a idea of the full IG system, we

briefly give here the main differences between our

presentation and the full system.

• Dominance relations can be underspecified:

for instance a PTD can impose a node to be an

ancestor of another one without constraining

the length of the path in the model. This is

mainly used to model unbounded extraction.

• Sisterhood relations can also be underspeci-

fied: when the order on subconstituents is not

total, it can be modeled without using several

PTDs.

• Polarities are attached to features rather than

nodes: it sometimes gives more freedom

to the grammar writer when the same con-

stituent plays a role in different constructions.

• Feature values can be shared between several

nodes: once again, this is a way to factorize

the unanchored grammar.

The application of the Companionship Princi-

ple is described on the reduced IG but it can

be straightforwardly extended to full IG with

unessential technical details.

Following notation of 5.3, an IG is made of:

• A finite set V of words;

• A finite set U of unanchored PTDs (without

any word attached to them);

• A lexicon function ℓ from V to subsets of U.

When t ∈ ℓ(w), we can construct the anchored

PTD α(w, u). Technically, in each unanchored

PTD u, a place is marked to be the anchor, i.e.

to be replaced by the word during the anchoring

process. Moreover, the anchoring process can also

be used to refine some features. The fact that

the feature can be refined gives more flexibility

and more compactness to the unanchored gram-

mar construction. In the French IG grammar, the

same unanchored PTD can be used for masculine

or feminine common nouns and the gender is spec-

ified during the anchoring to produce distinct an-

chored PTDs for masculine and feminine nouns. G

is defined by:

G =
⋃

w∈V,u∈ℓ(w)

α(w, u)

The parsing solutions of a lexical tagging is the

set of PTs that are models of the list of PTDs de-

scribed by the lexical tagging:

p(L) = {t ∈ F | t is a model of L}

With the definitions of this section, an IG is a

special case of AGF as defined in section 2.

6.2 Companionship Principle for IG

In order to apply the Companionship Principle, we

have to explain how the generalized atomic con-

straints are built for a given grammar. One way

is to look at dependency structures but in IG po-

larities are build in and then we can read the de-

pendency information we need directly on polari-

ties. A requirement to build a model is the satura-

tion of all the polarities. This requirement can be

expressed using atomic constraints. Each time a

PTD contains an unsaturated polarity +, − or ∼,

we have to find some other compatible dual po-

larity somewhere else in the grammar to saturate

it.

From the general MTS definition of IG above,

we can define a step by step process to build mod-

els of a lexical tagging. The idea is to build in-

crementally the interpretation function I with the

atomic operation of node merging. In this atomic

operation, we choose two nodes and make the hy-

pothesis that they have the same image through I

and hence that they can be identified.

Now, suppose that the unanchored PTD u con-

tains some unsaturated polarity p. We can use the

atomic operation of node merging to test if the

unanchored PTD u′ can be used to saturate the po-

larity p. Let L (resp R) be the set of PTDs that

can be used on the left (resp. on the right) of u
to saturate p, then (L,R) is a generalized atomic

constraint in C(u).

7 Companionship Principle for other

formalisms

As we said in the introduction, many current gram-

matical formalisms can more or less directly be

used to generate dependency structures and hence

are candidate for disambiguation with the Com-

panionship Principle. With IG, we have seen that

dependencies are strongly related to polarities and

dependency constraints in IG are built with the po-

larity system.

We give below two short examples of polarity

use to define atomic constraints on TAG and on

CG. We use, as for IG, the polarity view of depen-

dencies to describe how the constraints are build.

7.1 Tree Adjoining Grammars

Feature-based Tree Adjoining Grammars (here-

after FTAG) (Jos87) are a unification based ver-

sion of Tree Adjoining Grammars. An FTAG con-

sists of a set of elementary trees and of two tree

composition operations: substitution and adjunc-

tion. There are two kinds of trees: auxiliary and

initial. Substitution inserts a tree t with root r onto

a leaf node l of another tree t′ under the condition

that l is marked as a place for substitution and l and

r have compatible feature structures. Adjunction

inserts an auxiliary tree t into a tree t′ by splitting

a node n of t′ under the condition that the feature

structures of the root and foot nodes of t are com-

patible with the top and bottom ones of n.

Getting the generalized atomic constraints and

the model building procedure for lexical tagging

is extremely similar to what was previously de-

scribed for IG if we extend the polarization proce-

dure which was described in (GK05) to do polarity

based filtering in FTAG. The idea is that for each

initial tree t, its root of category C is marked as

having the polarity +C, and its substitution nodes

of category S are marked as having the polarity

−S. A first constraint set contains trees t′ whose

root is polarized +S and such that feature struc-

tures are unifiable. A second constraint sets con-

tains trees t′′ which have a leaf that is polarized

−C. We can extend this procedure to auxiliary

trees: each auxiliary tree t of category A needs to

be inserted in a node of category A of another tree

t′. This gives us a constraint in the spirit of the

∼ polarity in IG: C(t) contains all the trees t′ in

which t could be inserted2.

7.2 Categorial Grammars

In their type system, Categorial Grammars en-

code linearity constraints and dependencies be-

tween constituents. For example, a transitive verb

is typed NP\S/NP , meaning that it waits for a

subject NP on its left and an object NP on its

right. This type can be straightforwardly decom-

posed as two −NP and one +S polarities. Then

again, getting the generalized atomic constraints

is immediate and in the same spirit as what was

described for IG.

8 Experimental results

The experiments are done with a IG French gram-

mar and a set of sentences taken from the newspa-

per Le Monde.

The French grammar we consider (Per07) con-

tains |U| = 2 088 unanchored trees. It cov-

ers 88% of the grammatical sentences and re-

jects 85% of the ungrammatical ones on the

TSNLP (LORP+96) corpus.

The constraints have been computed on the

unanchored grammar as explained in section 5:

each tree contains several polarities and therefore

several atomic constraints. For the whole gram-

mar, there is a total of 20 627 atomic constraints.

It takes 2 days to compute the set of constraints

and the results can be stored in a constraints file

of 10MB. Of course, an atomic constraint is more

interesting when the sizes of L and R are small.

In our grammar, 50% of the constraints set (either

R or L) contain at most 40 elements and 80% of

these sets contain at most 200 elements over 2 088.

8.1 The QCP method

The QCP method (section 4) was applied to 68 500

sentences of various length (figure 5). The mean

time for a given length is reported in figure 6: the

2Note that in the adjunction case, the constraint is not ori-
ented and then L= R

time is almost linear and below 0.2 second even

for long sentences.

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

6  7  8  9  10  11  12  13  14  15  16  17  18  19 

n
u
m
b
e
r 
o
f 
se
n
te
n
ce
s 

sentence length (number of words) 

Figure 5: number of sentence of each length

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

6  7  8  9  10  11  12  13  14  15  16  17  18  19 

!
m
e
 (
in
 s
) 

sentence length (number of words) 

Figure 6: mean execution time (in s)

As we have observed above, the number of lex-

ical taggings is exponential in the length of the

sentence. As the number n of lexical taggings

is a priori exponential in the sentence length, we

will consider the log. Moreover, we use a raw cor-

pus, some sentences can be considered as agram-

matical by the grammar; in this case it may hap-

pen that the disambiguation method removes all

taggings. This is the reason why we will con-

sider log10(1+n) to avoid undefined values when

n = 0.

In figure 7, for each sentence length, we give the

mean value of log10(1 + n) where n is:

• the initial number of lexical taggings, in the

upper curve with squares;

• the number of lexical taggings after the QCP,

in the lower curve with diamonds.

We can then observe that the two curves are lin-

ear and that the QCP has a significant impact. For

instance, for sentences of length 14, the mean log

value goes from more than 11 down to less than 7:

the number of path is divided by 10 000 over 1011.

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

6  7  8  9  10  11  12  13  14  15  16  17  18  19 

Lo
g
 (
1
+
n
) 

sentence length (number of words) 

QCP 

Ini2al 

Figure 7: number of taggings (initial and after

QCP)

8.2 The ECP method

As expected, the ECP method is more time con-

suming and for some sentences the time and/or

memory required is problematic. To be able to ap-

ply the ECP to a large number of sentences, we

have used it after another filtering method based

on polarities and described in (BGP04).

In our experiment, 31 000 sentences were used.

For each sentence, we have computed 3 different

filters, each one being finer than the previous one:

• QCP the Quick Companionship Principle

(like in the previous subsection)

• QCP+POL QCP followed by a filtering tech-

nique based on polarity counting

• QCP+POL+ECP the Exact Companionship

Principle applied to the previous filter

We give in figure 8 the number of sentences of

each length in the corpus we consider.

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

4500 

5000 

6  7  8  9  10  11  12  13  14  15  16  17  18  19 

n
u
m
b
e
r 
o
f 
se
n
te
n
ce
s 

sentence length (number of words) 

Figure 8: number of sentences of each length

In figure 9, we report the mean computation

time for each length: it confirms that the ECP is

more time consuming and goes up to 5s for our

long sentences.

0.01 

0.1 

1 

10 

6  7  8  9  10  11  12  13  14  15  16  17  18  19 

!
m
e
s 
(i
n
 s
) 

sentence length (number of words) 

QCP 

QCP+POL 

QCP+POL+ECP 

Figure 9: mean execution time (in s)

Finally, as before, we report the number of lexi-

cal taggings that each method returns. In figure 10,

we give the mean value of log10(1+n) where n is

either the initial number of lexical taggings or the

number of lexical taggings returned by our meth-

ods.

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

6  7  8  9  10  11  12  13  14  15  16  17  18  19 

Lo
g
 (
1
+
n
) 

sentence length (number of words) 

QCP 

QCP+POL 

QCP+POL+ECP 

Ini6al 

Figure 10: number of taggings (initial and after the

3 disambiguation methods)

We can observe that the slope of the lines cor-

responds to the mean word ambiguity: if the

mean ambiguity is a then the number of taggings

for a sentence of length n is about an and then

log(an) = n · log(a). As a consequence, the mean

ambiguity can be read as 10s where s is the slope

in the last figure. Computing the mean ambiguity

(for sentence of length 17) we get 6.2 for the raw

data and 1.4 after the filtering.

9 Conclusion

We have presented a disambiguation method

based on dependency constraints which allows to

filter out many wrong lexical taggings before en-

tering the deep parsing. As this method relies on

the computation of static constraints on the lin-

guistic data and not on a statistical model, we can

be sure that we will never remove any correct lex-

ical tagging. Moreover, we manage to apply our

methods to an interesting set of data and prove that

it is efficient for a large coverage grammar and not

only for a toy grammar.

These results are also an encouragement to de-

velop further this kind of disambiguation methods.

In the near future, we would like to explore some

improvements.

First, we have seen that our principle cannot be

computed on the whole grammar and that in im-

plementation, we consider unanchored structures.

We would like to explore the possibility to com-

pute on the fly finer constraints (relative to the full

grammar) for each sentence. We believe that this

can eliminate some more taggings before entering

the deep parsing.

Concerning the ECP, as we have seen, there is a

kind of interplay between the efficiency of the fil-

tering and the time of the computation. We would

like to explore the possibility to define some in-

termediate way between QCP and ECP either by

using approximate automata or using the ECP but

only on a subset of elements where it is known to

be efficient.

Another challenging method we would like to

investigate is to use the Companionship Principle

not only as a disambiguation method but as a guide

for the deep parsing. Actually, we have observed

for at least 20% of the words that dependencies are

completely determined by the filtering methods. If

deep parsing can be adapted to use this observation

(this is the case for IG), this can be of great help.

Finally, we can improve the filtering using both

worlds: the Companionship Principle and the po-

larity counting method. Two different constraints

cannot be fulfilled by the same potential compan-

ion: this may allow to discover some more lexical

taggings that can be safely removed.

References

G. Bonfante, B. Guillaume, and G. Perrier. Polar-
ization and abstraction of grammatical formalisms
as methods for lexical disambiguation. In CoLing
2004, pages 303–309, Genève, Switzerland, 2004.

P. Boullier. Supertagging : A non-statistical parsing-
based approach. In Pro- ceedings of the 8th Inter-
national Workshop on Parsing Technologies (IWPT
03), pages 55–65, Nancy, France, 2003.

S. Clark, J. Hockenmaier, and M. Steedman. Building
Deep Dependency Structures with a Wide-Coverage
CCG Parser. In Proceedings of ACL’02, pages 327–
334, Philadephia, PA, 2002.

Ph. de Groote. Towards abstract categorial grammars.
In Association for Computational Linguistics, 39th
Annual Meeting and 10th Conference of the Euro-
pean Chapter, Proceedings of the Conference, pages
148–155, 2001.

C. Gardent and E. Kow. Generating and select-
ing grammatical paraphrases. Proceedings of the
ENLG, Aug 2005.

B. Guillaume and G. Perrier. Interaction Grammars.
Research Report RR-6621, INRIA, 2008.

A. Joshi. An Introduction to Tree Adjoining Gram-
mars. Mathematics of Language, 1987.

A. Joshi and O. Rambow. A Formalism for Depen-
dency Grammar Based on Tree Adjoining Grammar.
In Proceedings of the Conference on Meaning-Text
Theory, 2003.

S. Kahane. Polarized unification grammar. In Pro-
ceedings of Coling-ACL’02, Sydney, 2006.

A. Koller and M. Kuhlmann. Dependency trees and the
strong generative capacity of ccg. In EACL’ 2009,
Athens, Greece, 2009.

J. Kupiec. Robust Part-of-Speech Tagging Using a
Hidden Markov Model. Computer Speech and Lan-
guage, 6(3):225–242, 1992.

J. Lambek. The mathematics of sentence structure.
American mathematical monthly, pages 154–170,
1958.

F. Lamarche. Proof Nets for Intuitionistic Linear
Logic: Essential Nets. Technical report, INRIA,
2008.

S. Lehmann, S. Oepen, S. Regnier-Prost, K. Netter,
V. Lux, J. Klein, K. Falkedal, F. Fouvry, D. Estival,
E. Dauphin, H. Compagnion, J. Baur, L. Balkan, and
D. Arnold. Tsnlp: Test suites for natural language
processing. In Proceedings of the 16th conference
on Computational linguistics, pages 711–716, 1996.

B. Merialdo. Tagging English Text with a Probabilis-
tic Model. Computational linguistics, 20:155–157,
1994.

J. Marchand, B. Guillaume, and G. Perrier. Analyse en
dépendances à l’aide des grammaires d’interaction.
In Actes de TALN 09, Senlis, France, 2009.

M. Moortgat and G. Morrill. Heads and phrases. type
calculus for dependency and constituent structure.
In Journal of Language, Logic and Information,
1991.

G. Perrier. A French Interaction Grammar. In RANLP
2007, pages 463–467, Borovets Bulgarie, 2007.

M. Steedman. The Syntactic Process. MIT Press,
2000.

L. Tesnière. Éléments de syntaxe structurale.
Klinksieck, 1959.

