
HAL Id: inria-00441351
https://inria.hal.science/inria-00441351

Submitted on 15 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DiaSim: A Parameterized Simulator for Pervasive
Computing Applications

Wilfried Jouve, Julien Bruneau, Charles Consel

To cite this version:
Wilfried Jouve, Julien Bruneau, Charles Consel. DiaSim: A Parameterized Simulator for Pervasive
Computing Applications. IEEE International Conference on Pervasive Computing and Communica-
tions, 2009 (Demo), Mar 2009, Galveston, United States. �inria-00441351�

https://inria.hal.science/inria-00441351
https://hal.archives-ouvertes.fr

 978-1-4244-3304-9/09/$25.00 ©2009 IEEE

DiaSim: A Parameterized Simulator for
Pervasive Computing Applications

Wilfried Jouve, Julien Bruneau, Charles Consel
INRIA / LaBRI / ENSEIRB, Talence, France

jouve@labri.fr, bruneau@enseirb.fr, consel@labri.fr

Abstract—Pervasive computing applications involve both soft-

ware concerns, like any software system, and integration con-

cerns, for the constituent networked devices of the pervasive

computing environment. This situation is problematic for testing

because it requires acquiring, testing and interfacing a variety of

software and hardware entities. This process can rapidly become

costly and time-consuming when the target environment involves

many entities.

In this demonstration, we present DiaSim, a simulator for per-

vasive computing applications. To cope with widely heterogeneous

entities, DiaSim is parameterized with respect to a description

of a target pervasive computing environment. This description is

used to generate both a programming framework to develop the

simulation logic and an emulation layer to execute applications.

Furthermore, a simulation renderer is coupled to DiaSim to

allow a simulated pervasive system to be visually monitored and

debugged.

I. INTRODUCTION

Pervasive computing applications coordinate a variety of
networked entities collecting context data from sensors and re-
acting by triggering actuators. To collect context data, sensors
process stimuli that are observable changes of the environment
(e.g., fire and motion). Developing a pervasive computing
application requires to address a number of issues such as
entity heterogeneity, physical constraints, and types of stimuli
present in the target environment. Also, such an application
needs to implement strategies to manage a variety of scenarios
e.g., fire situations, intrusions, and crowd emergency-escape
plans. Consequently, in addition to the challenges of develop-
ing any software system, a pervasive computing system needs
to validate the application building blocks both individually
and globally, to identify potential conflicts. In practice, the
many parameters to take into account for the development of
a pervasive computing application can considerably lengthen
this process and a fully-equipped pervasive computing envi-
ronment is still required to run and test an application. As a
result, an iteration process is needed, involving the physical
layout of the target environment and the application code. This
process is cumbersome and hinders testing applications against
a wide range of scenarios. To ease this process, we propose
DiaSim, a parameterized simulator for pervasive computing
applications.

II. OUR APPROACH

DiaSim relies on the DiaGen approach [1], [2] where a
high-level specification of a pervasive computing environment
written in the DiaSpec language is passed to a compiler to

produce a customized programming framework. This program-
ming framework provides developers with high-level abstrac-
tions to discover services and to communicate with them.
In the DiaSim approach, DiaGen automates the production
of simulation environments, enables transparent simulation of
applications and allows actual entities to be tested together
with simulated ones. In the rest of this section, we describe
the key features of our approach.
Parameterized simulator. Pervasive computing systems tar-
get a variety of application areas, including home automation,
building surveillance and assisted living. A simulation tool
for the pervasive computing domain is required to deal with
different application areas, enabling new classes of entities and
stimuli to be introduced easily. To adapt to various application
areas, the DiaSim simulator is parameterized with respect to a
high-level specification of a pervasive computing environment
written in the DiaSpec language.
Transparent simulation. Our approach makes it possible for
the same code to be simulated or executed in the actual
environment. DiaSim emulate the execution of an application
without requiring any change in the application code. As a
result, when the testing phase is completed, the application
code can be uploaded as is and its logic does not require
further debugging. To do that, we ensure a functional corre-
spondence between a simulated environment and an actual one
by requiring both implementations to be in conformance with
the same DiaSpec specification.
Generated simulation support. A DiaSpec specification is
used to generate both an emulation layer to execute ap-
plications and a simulation programming framework to de-
velop simulated entities. Furthermore, simulation scenarios
are defined in a scenario editor which is parameterized by
a DiaSpec specification. Simulated services and stimuli can
then be graphically defined using a wizard. To facilitate the
creation of simulated services and stimulus producers, we
provide libraries of predefined behaviors.
Hybrid simulated environments. DiaSim builds simulated
environments as extensions of actual environments. Because of
this inheritance strategy, an application can be executed in an
hybrid environment, combining simulated and actual services.
This feature is particularly useful to perform unit testing of
actual entities.
Simulation renderer. We present a simulation renderer that
enables the developer to visually monitor and debug a per-
vasive computing system. The simulation renderer takes into

Authorized licensed use limited to: UR Futurs. Downloaded on December 15, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

account various features of the pervasive computing domain.
Specifically, it supports visual representations for an open-
ended set of entities and stimuli, visual support for scenario
monitoring, and debugging facilities to navigate in scenarios
in terms of time and space.

The DiaSim simulator architecture is shown in Figure 1.
Stimulus producers emit stimuli of various types according
to a predefined scenario. In place of actual sensors, simulated
ones process these stimuli and produce events. The unchanged
application reacts to these events by invoking actuator com-
mands. In turn, actuators change the simulated environment,
triggering stimulus producers.

Emulator

Simulated
Sensors

Simulated
Actuators

Applications
events

Monitoring
Engine

Scenario
Controller

Stimuli
Producers

Stimuli
Producers

Stimuli
Producers

Stimuli
Producers

Stimulus
Producers

stimuli

stimuli state

commands

Simulator of context

Monitor

Simulation Renderer

Logs

simulation data

Fig. 1. The DiaSim simulator architecture

III. DEMONSTRATION

To demonstrate the key features of DiaSim, we will simulate
various applications in the building management area. DiaSim
will be used to test these applications and evaluate the feasi-
bility of their deployment in ENSEIRB, an engineering school
to which the authors are affiliated.

A. Target environment

The ENSEIRB school is a three-floor building of 13,500 m2,
consisting of several lecture halls, labs and recreation rooms
for students. ENSEIRB hosts up to 900 occupants, including
students and faculty members. Many devices compose the
ENSEIRB school. Sensors such as motion detectors, light and
temperature sensors provide context information from all over
the building to various applications. The applications trigger
several types of actuators. These include alarms, lights, LCD
screens, PDAs, loudspeakers and air conditioners.

B. Demonstration Steps

Specifying simulated environments. The first step of our
demonstration will show how the DiaSim simulator is pa-
rameterized with respect to the DiaSpec specification of the
ENSEIRB environment. We will show how to model a perva-
sive computing environment in DiaSpec and how the resulting
DiaSpec specification parameterizes the DiaSim simulator.

Defining simulation scenarios. The second step of our
demonstration will be the definition of simulation scenarios.
Scenarios will be defined using a Java GUI called the scenario
editor (Figure 2). From a DiaSpec specification, simulated
services are either graphically defined using a wizard, or
developed using the generated simulation programming frame-
work. The demonstration will show examples of both ways to
define simulated services. The scenario editor also supports
the definition of stimulus producers by allowing the user to
define stimulus intensities in areas of the simulated space at
specific moments in time. For example, a producer of motion
stimuli simulates a user moving in a school hallway at a
given time. Furthermore, the definition of simulation scenarios
is supported by libraries of generic simulated services and
stimulus producers which can be parameterized following the
target simulation scenario.

To see how the applications behave in a realistic environ-
ment, the simulated scenario defines hundreds of simulated
persons moving around in the school. The simulated persons
are students and faculty members. Students belong to one of
four departments at ENSEIRB. Their behavior depends on the
agenda of their study field. When a class they have to attend
begins, they go to the class room. Furthermore, they modify
the context of the simulated environment. For instance, a
simulated person is detected when passing in front of a motion
detector. As another example, simulated persons increase the
CO2 density in the room where they are located.

Fig. 2. The scenario editor

Testing applications. Using the programming framework
generated from a DiaSpec specification, we developed vari-
ous applications which will be shown in our demonstration.
In the third step, these applications will be tested against
the previously defined simulation scenarios. Each application
requires several simulated services. To follow the evolution
of the simulated environments, DiaSim extends an existing
visualization tool: the Siafu open source context simulator 1.
Siafu provides a 2D rendering and time-control functionalities.

1http://siafusimulator.sourceforge.net/

Authorized licensed use limited to: UR Futurs. Downloaded on December 15, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

Figure 3 shows the resulting simulation renderer. Services
and stimuli defined in the scenario are displayed on top of a
picture of the simulated space. The simulation renderer gives
the state of services by displaying a bubble of raw text above
services and/or modifying the visual representation of the
service. To complement these macroscopic views, we enriched
Siafu’s rendering functionalities with Web Interfaces and audio
streams. As shown in Figure 3, in the ENSEIRB simulation,
clicking on school LCD screens runs a Web interface showing
its display. Similarly, loudspeakers are rendered using audio
streams.

Actual Devices

Actual Web Interfaces

Simulation Renderer

Fig. 3. Demonstration of a hybrid simulated environment

Demonstrating hybrid simulated environments. One of
the key feature of DiaSim is to enable hybrid simulated
environments, i.e., combining simulated and actual devices in
the same simulation scenario. As illustrated in Figure 3, in the
final step, we will demonstrate this feature by making actual
devices interact with simulated ones. These actual devices
are an IP camera and an actual PDA. The camera is used
as a motion detector for the intrusion manager. Messages are
received on the actual PDA when an intrusion in the simulated
environment is detected. These actual devices will be added
incrementally in the simulation, demonstrating the flexibility

of our approach.

C. Demonstrated Applications

The first application is a newscast manager. Its purpose is
to display news and schedules on screens scattered throughout
the school. This manager reads the school RSS feed in order
to get the latest school news. It also receives schedule events
from the ENSEIRB agenda. This agenda describes the courses
of the four ENSEIRB departments. The newscast manager
alternatively displays the news and the students’ schedule. A
key feature of the newscast manager is that it adapts the con-
tents displayed on the screens with respect to the department
affiliation and the nationality of the people surrounding the
screens. Thus, for instance, the messages displayed on a screen
are in English if this screen is mainly surrounded by English
native speakers. Moreover, when a class begins, the newscast
manager plays a message on the loudspeakers of the school
using the text-to-speech technology.

The second application is an intrusion manager. It is ac-
tivated when ENSEIRB is closed. The intrusion manager
receives intrusion events from the motion detectors. They are
installed in every corridor and room of the school. When a
motion is detected, the intrusion manager turns on the school
alarms. It also displays a message on the PDA of the school
supervisor to warn him and to indicate where the intrusion
took place.

The last application is a building automation manager. This
manager controls the lights depending on the outside lumi-
nosity and the area occupancy. It also controls the school air
conditioners to regulate the temperature based on temperature
values produced by multiple temperature sensors. When the
school is closed, all lights are turned off and the target
temperature is lower (in winter) or higher (in summer) than
during the day to save energy. Between 7 am and 8 pm, its
behavior depends on luminosity values of the outside light
sensors. If the luminosity is lower than a predefined threshold,
the lights of a given area are turned on, when some people
enter this area, and turned off, when the area is empty. If the
outside luminosity is greater than the predefined threshold, the
previous behavior only occurs for areas without windows. The
manager also receives information from CO2 sensors. When
the CO2 density is too high in a given area, the corresponding
air conditioner is activated to decrease its density.

D. Technical constraints

The demonstration does not have special requirements other
than a demo booth or table and an Internet connection.

REFERENCES

[1] W. Jouve, N. Palix, C. Consel, and P. Kadionik. A SIP-based program-
ming framework for advanced telephony applications. In Proceedings of

the 2nd LNCS Conference on Principles, Systems and Applications of IP

Telecommunications (IPTComm’08), Heidelberg, Germany, July 2008.
[2] W. Jouve, J. Lancia, N. Palix, C. Consel, and J. Lawall. High-level

programming support for robust pervasive computing applications. In
Proceedings of the 6th IEEE Conference on Pervasive Computing and

Communications (PERCOM’08), Hong Kong, China, March 2008. WiP
session.

Authorized licensed use limited to: UR Futurs. Downloaded on December 15, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

