N

N

Generalized Dynamic Probes for the Linux Kernel and
Applications with Arachne

Nicolas Loriant, Jean-Marc Menaud

» To cite this version:

Nicolas Loriant, Jean-Marc Menaud. Generalized Dynamic Probes for the Linux Kernel and Applica-
tions with Arachne. 2007 TADIS Conference on Applied Computing, Feb 2007, Spain. inria-00441367

HAL 1d: inria-00441367
https://inria.hal.science/inria-00441367
Submitted on 13 Jul 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00441367
https://hal.archives-ouvertes.fr

GENERALIZED DYNAMIC PROBES FOR THE LINUX
KERNEL AND APPLICATIONS WITH ARACHNE

Nicolas Loriant Jean-Marc Menaud
Obasco Group, EMN-INRIA, LINA
4, rue Alfred Kastler
44307 Nantes, France
{Nicolas.Loriant, Jean-Marc.Menaud} @emn.fr

ABSTRACT

Finding the root cause of bugs and performancel@nubin large applications is a difficult task. Tinain reason of this
difficulty is that the comprehension of such apgiions crosscuts the boundaries of a single prpdedsed the
concurrent nature of large applications requirsggint of multiple threads and process and even sores of the kernel.
In the meantime, most existing tools lacks supforsimultaneous kernel and applications analysis.

In this paper, we present Arachne, a tool for mstianalysis of complex applications. While effi@gn
considerations have played an important role indésign of Arachne, it allows safe and runtimedtigm of probes
inside the Linux kernel and user space applicatmmsoth function calls and variable access. Ituiegs an Aspect-
Oriented language that allows to access contegke€ution and to compose primitive probes (for gdensequence of
function calls). We show how Arachne allows to aahalyze problems such as race conditions whigblves complex
interactions between multiple process. And finallse show Arachne is fast enough to analyze higliopeance
applications such as the Squid web cache.

KEYWORDS
Aspect-Oriented Programming, System analysis abdglgng.

1. INTRODUCTION

Finding the root cause of bugs and performancel@nabin large applications is a difficult task. Qufethe
main reasons of this difficulty is the concurrerdture of such applications. In order to understtra
execution of concurrent applications, developergehto analyze the competitive execution of multiple
threads and process. Because it schedules proxesstien, developers must also take an insighthé t
kernel behavior. For example, in order to prevaserconditions on files, one solution consists anitoring

file operations in the kernel. Tools such as Sytdpm Kprobes, and DTrace allows developers to
dynamically insert probes in the Linux kernel. Nekeless, file operations are very common during
execution of the kernel leading to a large amotigiata to analyze.

To render the analysis of large applications pcatiie, it is necessary to reduce the amount of
information to monitor. That is possible when conibg knowledge on both the application and kernel
execution. For example, when monitoring file opierst to prevent race conditions, not all file opierss
done by the applications must be watched. Usingitfiarmation, it could be possible to reduce theoant
of data to analyze. A similar issue arise in thei®gveb cache, both user space and kernel spaciomiog
is necessary to report users disk usage. Nevesthtedo so, it is necessary to combine informagathered
from both the kernel and from applications.

The analysis and evolution of complex applicatiermphasis the need for a dynamic instrumentatioh too
for both the kernel and applications. Moreover, cbeplex nature of large systems stresses the sigce$
an expressive language to express the interactbmsobes. In this paper we propose a solutionhto t
analysis of large applications. More concretely,pravide the following contributions. First, we pide an
expressive C-like language to concisely descrilzdgtem of interactions between multiple executioeugs.
We show how this language allows to easily analggaes such as race conditions and the Squid desleu
accounting issue mentioned earlier. Second, weeptdsow that language can be implemented effigientl

through dynamic code injection in both kernel asdruspace. Finally, we give evidence that our sgpes
also meets strong efficiency requirements by shgwpirformance evaluations.

The paper is structured as follows. Section 2 tithtes the Arachne aspect language and its comturre
extension through the race conditions and Squidneles. Section 3 presents the Arachne implementatio
Section 4 discusses performance evaluations throuigto benchmarks and the Squid disk usage acaaunti
example. Section 5 compares our solution to relatatk before Section 6 concludes.

2. ARACHNE'S ASPECT LANGUAGE

In order to analyze the behavior of complex appilices, developers need a language to express whatse
in its execution, it is necessary to monitor anevHho treat those informatioreq., a function call and its
parameters). Hence, Aspect-Orientation appears aglaquate choice to tackle this issue. Indeede&sp
Oriented languages associate pointcuts and advcemintcut describes an event in the executiora of
program, such as a function call or a read acceas/ariable, upon which the advice is to be exatut

In this section, we describes how we extended spiect-oriented system, Arachne. Arachne's langisage
especially appropriate for system programming inn@eed, it allows to concisely express systemeisas
we have shown in “An Expressive Aspect LanguageSigstem Programming with Arachne” (Douence et
al.) and in “A Reflexive Extension to Arachne's Asp Language” and in “Server Protection through
Dynamic Patching” (Loriant et al.). In order toealiate this, we first present the examples of @mwlitions
and disk usage accounting in Squid in the Arachnguage, then we'll present the language itself.

2.1 Race conditions and disk usage accounting in Squid

The aspect shown accounts disk usage from cliargjuid. This is a sequence aspect, it matchey eadls
to the function tlientProcessRequestin Squid and stores both the process id wherec#iehappened and
IP address from which the request originated. Thgon call of ¥fs_read’ in the kernel and originating
from the process of which we stored the id, thdaaeall “addClientReadDiskAccessto account the disk
read to the client IP stored earlier.

seq(A: cal | (void clientProcessRequest(struct clientHttpRequest *) && ar gs(http)
&& bi nd (pid, GET_PID) && bi nd (IP_CLIENT, http->request->client_addr));
K: cal | (ssize_t vfs_read(struct file*, char*, size_t, loff _t9) && ar gs(file, buf, count, pos)
&& i f (lisSocket(file) && lisPipe(file)) && i f (pid == current->pid)
t hen addClientReadDiskAccess(current->pid, IP_CLIENT, s ize);

)

The second example presents a sequence aspetvadlssrace condition problem in Squid. The fastd
last step of the sequence matches calls in Squiidnictions ‘stat’” and “open’ where the target file is the
same. If in between an operation occurred in threddeon that file (but not originating from Squidhen an
alarm“race condition” is reported when Squid tries to open that file.

seq(A: call (int stat(const char*, struct stat*)) && ar gs(path_stat, buf)
&& bi nd (pid, GET_PID));
K: cal | (ssize_t vfs_op(struct file*, char*, size_t, loff_ t*)) && ar gs(file, buf, count, pos)
&& i f (file == pathtofile(path_stat)) && i f (current->pid != pid));
A cal | (int open(const char*, int)) && ar gs(path_open, flags)
&& i f (path_open == path_stat)

t hen alarm(“race condition”);

2.2 The Arachne language

In an Aspect-Oriented language, a joinpoint modsings the points in the execution of a programrehe
advices can be executed. The language associg@aint with an advice, the code to be executpdrnu
matching of the joinpoint. In the Arachne languagdyices are blocks of C code.The Arachne language
features five types of joinpoints.

2.2.1 Function calls

Aspects on function calls matches every call oivamgfunction €.g., “foo”). Its parameters and return value
can be bound to variables to be accessed in tleeiaagvice. Conditions can be given for the asfmestatch
only if parameters and return values have particeddues. Moreover, the developers can decide ¢ézge
the advice before, in-place, or upon return ofdtiginal function call.

cal | (void foo(int*)) && args(a) && if (a==0) t hen {printf(“null argument\n”); exit(0);};
2.2.2 Read access

Aspect on read access matches every read accessgmen global variable or local alias. The Arachne
language distinguishes the two for performanceomssindeed, a global variable access is an orfler o
magnitude slower that an local alias access. Irathéce, the developer can access the current wdltle
variable. He may also modify the variable conterdt execute any additional code.

2.2.3 Write access

Aspect on write access matches every write acaessgiven global variable or local alias. Again the are
distinguished for performance reasons. In the @&deica write access pointcut, the developer carsscthe
value before the write and the value to be writfggain, the developer can write code to be exechéfdre,
in-place or after the access.

2.2.4 Control Flow

In control flow aspects, developers provide a softunction nameseg(g., zoo, fog terminated with another
function name or a global variable access (readrite) (e.g., bar). The latter is matched whenever it occurs
imbricated in the suite of functions.g., bar called byfoo itself called byzog). Control flow aspects comes
in two variants; The first one, where the stackuoictions must strictly matches the call stack #redsecond
one where the matching is not strieg., bar called byfoo itself called byhomer itself called byzoowould
match the aspect. Context information and actiopetgursue in the advice of a control flow aspegtesthds

of its last element (function call or variable agge

control fl oW cal | (void zoo(void)), cal | (void foo(int)),
cal | (void bar(int)) && args(@)&& if (a>0) t hen {bar(--a);})

2.2.5 Sequence

A sequence aspect is composed of a sequence otipgiraspects (function call, variable aspect, oaint
flow). A sequence starts when the first primitiveect matches. Then the second primitive aspecinbes
active instead of the first one. When it matchhs, third aspect becomes active instead of the slecoe.
And so on, until the last primitive aspect in tleggence. All but the first and last primitive agpetan be
repeated zero or multiple times: in this case pifimitive aspect is active as long as the followorge in the
sequence does not match. An element of the sequamcalso match a global variable of the base progr
and accesses to its local aliases, as soon asldtess is knownif., a previous primitive pointcut has
already bound its address to a pointcut variablehce, an aspect matching accesses cannot seuance.
Every join point matching the first primitive poaut of a sequence starts a new instance of theesequ
The different instances are matched in parallel.

2.3 Concurrent extension

We extended the Arachne language to include coaectifeatures. Concretely, we introduced meanshier t
developers to place aspects in a single or multiplgications or in the kernel, and to share aretsppon
multiple applications and the kernel. To do so,imeduced: first, a notation to place aspect ot phaspect

in the kernel, a given application or groups of lmgpions, second, means to manipulate groups of
applications in order to activate and deactivapeeats.

2.3.1 Aspect placement

In order to place aspects in applications or inkbmel, we introduced a placement notation foreatp
Aspects and primitive aspects can be preceded drpw@p (of applications) on which to inject. Henes,

aspect can be placed on multiple applications, éeample, primitive aspects of a sequence are not
necessarily placed on the same applications. Apgrcan be a named group (created with gneup
keyword) or a comma separated list of groups. Aigheonstant group is the “K” group which corresgdo

the kernel. Apart from the “K” group, groups do ndirectly reference applications or process. The
assignment of process ids to groups is made ddh@gspect injection, hence, aspects (even compiked
independent from applications to ensure reusability

2.3.2 Group manipulation

During its lifetime, a program may create threadd process, hence it is necessary to provide thigyab
modify the placement of aspects. Our extensiomallone to manipulate groups in order to enlargehank
process and threads on which aspect applies. Qensgn of Arachne's aspect language allows degetop
to manipulate group inside aspects' advices usiogptimitives for group manipulatiomdd andremove

3. DYNAMIC CODE INJECTION WITH ARACHNE

Arachne is built around two tools, an aspect coen@ind a runtime weaver. The aspect compiler tates|
the aspect source code into a compiled library, titalveaving time, directs the weaver to placehieks in
the base program. The hooking mechanisms allovewsite the binary code of executable files on tiye f
i.e, without pausing the base program, as long astfies conform to the mapping defined by the Unix
standard between the C language and x86 assemigydge. Arachne does not require a compile time
preparation of the base program, hence, Arachtweaby transparent for the base program.

The Arachne architecture is structured around thraim entities: the aspect compiler, the instruraion
kernel, and the different rewriting strategies. Hspect compiler translates the aspect source iotaleC
before compiling it. Weaving is accomplished thre@gcommand line toaleavethat acts as a front end for
the instrumentation kernekeaverelays weaving requests to the instrumentationdddoaded in the address
space of the program through Unix socketsavealso associate programs (identified by pids thihotigp
command line argument of weave) with the group rsansed in the aspect file. Upon reception of a \weav
request, the instrumentation kernel selects theaogpiate rewriting strategies and instruments tlseb
program (and/or the kernel) accordingly. It finathodifies the binary code of the base program toadly
tie the aspects to the base program.

3.1 The Arachne aspect compilation process

The aspect compilation scheme is relatively stitfagivard. First, the aspect file is split into deypinent
units according to placement information. Then, ¢benpiler transforms advices into regular C funcsio
Pointcuts are rewritten as C code driving hook rith@es into the base program at weaving time. Tlaeee
however cases where the sole introduction of hamkssufficient to determine whether an advice stide

executed. In this case, the aspect compiler gezsefanctions that complement the hooks with dynaests
on the state of the base program. Once the aspaetsbeen translated into C, the Arachne aspecpiterm
uses a legacy C compiler to generate shared ldzrard/or kernel modules holding the compiled aspec

3.2 The Arachne weaving process

The Arachneweave command line takes two arguments. The first isagpect file name to wove and the
second is a list that initializes the group of @ex declared in the aspect file with pids of predesweave

in. When Arachne'sreavereceives a request to weave an aspect in a procésshe kernel and it does not
contain the Arachne instrumentation kernvebaveloads the instrumentation kernel in the addressespf
the process (or the Linux kernel) through standectiniques described by Clowes in “modifying angirsp

on running process under Linux” or simply usingdable module in the case of the kernel.

The instrumentation kernel is transparent for lthse program as the latter can not access thercesou
(memory and sockets essentially) used by the for@®ece injected, the kernel creates a thread twadlbs
the different weaving requests. The instrumentakennel allocates memory by using side effect free
allocation routines. This transparency turns outdarucial in our experiments. Legacy applicatisash as
Squid use dedicated resource management routireexgrect any piece of code they run to use these

routines. Failures would result in an applicatioast. After loading an aspect, the instrumentakiemel
rewrites the binary code of the base program utsiagewriting strategies described below.

3.3 The Arachne rewriting strategies

Rewriting strategies are responsible for transfagrthe binary code of the base program to effelgtitie
aspects to the base program at weaving time. Tétestegies localize Arachne's main dependencidketo
underlying hardware architecture. In general, rémgistrategies need to collect information abdet base
program. These information typically consist of Hatlresses of the different rewriting locationgirtisize,
the symbol i(e. function or global variable name) they manipulate. In order to keep compiled aspects
independent from the base program, this informatomathered on demand at runtime. The mapping
between a symbol name in the base program soud=eaml its address in memory is inferred from hgki
information and kernel filesSystem.map. However because these information can be costhetrieve,
Arachne collects and stores it into meta-informatstared libraries (a loadable module in the cdgben
kernel) that behave as a cache. Because aspeetstamon data, typically a sequence of functiotsdal
different applications need to share a common stdien an aspect file involves aspect sharing imédion
among multiple applications and/or the kernel, Arae places those data into a shared memory sedhatnt
is accessed concurrently by all aspects. To imphtrttee aspect language, Arachne provides a segbf e
rewriting strategies that might eventually use eaitter. For the sake of conciseness, the restioftttion
omits control flow and sequence which are builtamof function calls and variable access aspects.

3.3.1 Function calls and global variable access

In Arachne, an advice may be triggered upon a fonctall, a read on a global variable or a write
respectively. Arachne implements the strategy fdf loy rewriting function invocations found in thmse
program. On the Intel architecture, function caksefit from the direct mapping to the x88&ll assembly
instruction that is used by almost, if not all, qolers. Write and read accesses to global variabtes
translated into instructions using immediate, haodled addresses within the binary code of the base
program. By comparing these addresses with linkifigrmation contained in the base program execatabl
Arachne can determine where the global variableiag accessed. Therefore those primitive aspectotl
involve any dynamic tests. The sole rewriting of thinary base program code is enough to triggeicadv
executions at all appropriate points.

The size of the x886all instruction and the size of an x86 junymg) instruction are the same. Since the
instruction performing an access to a global \deianvolves a hard coded address, x86 instructibas
read or write a global variable have at least tlze of a x86jmp instruction. Hence at weaving time,
Arachne rewrites them asj@mp instruction to a hook. Hooks are generated orflthen freshly allocated
memory. Hooks contain a few assembly instructib@as $ave and restore the appropriate registersebafal
after an advice execution. A generic approach isawe hooks save the whole set of registers, theaute
the appropriate advice code before restoring thelavket of registers; finally the instructions fduat the
join point are executed to perform the appropriaide effects on the processor registers. This is
accomplished by relocating the instructions founhdha joinpoint. Relocating the instructions maltes
rewriting strategies handling read and write acdesglobal variable independent from the instruttio
generated by the compiler to perform the accesdthxists more than 250 x86 mnemonics manipulating
global variables corresponding to more that oneishod opcodes). The limited number of x86 instomsti
used to invoke a function allows Arachne's rewgititrategy to exploit efficient, relocation fre@oks.

3.3.2 Local alias access

Their implementation rely on a page memory protecas allowed by the Linux operating system intafa
(i.e. mprotect) and the Intel processor specifications. Read ntewpointcut triggers a relocation of the
bound variable into a memory page that the basgrano is not allowed to access and adds a dedicated
signal handler. Any attempt made by the base progm access the bound variable identified will then
trigger the execution of the previously added digmandler. This handler will then inspect the binar
instruction trying to access the protected pagdeti@rmine whether it was a read or a write accefsrd
eventually executing the appropriate advice.

4. PERFORMANCE EVALUATIONS

Dynamic code injection for large system analyzind debugging will be used if it expressive enougt #

its overhead is low enough for the task at hane filrpose of this section is to study the Araclystesn's
performance. We first present the performance ofi @aachne language construct (function calls, sage
etc) and compare it to equivalent C constructstii#a study the overhead of the disk usage coupsters
extension for the Squid web cache that requirege aaj@ction both in user space and kernel spacds. ddse
study shows that even if some Arachne languagetrmts might seems more costly than similar C
constructs, this cost is largely amortized in seaild applications.

4.1 Evaluation of Arachne's language constructs

To estimate the cost of each of the Arachne's laggiconstructs, we wrote an aspect using that remnst
that behave as an interpreter of the part of thee hrogram it replaces. For each of these aspeets,
compared the time to perform the operation of matclthe aspect with the time required to carry et
operation natively. This approach requires to memasery short periods of time, indeed the retriesfah
global variable is done in one CPU clock cycle velti and a function call in no more that 21 cycles.
Because standard time measurement APIs are nds@recough (POSIX time API are precise up to one
millisecond), our benchmarking infrastructure relen assembly instructions suchrimsc andmfence and
gcc code optimization such as loop unrolling. To vata&the correctness of our benchmarking protocel, w
measured the time necessary to execut®m assembly instruction, that requires one procesyate
according the Intel specifications. Our measuraspfpresented a relative variation of no more thafl.6
The table bellow summarizes our experimental reslsing the aspect language to replace a function
that returns immediately is only 1.3 times slowsart a direct, aspect-less, call to that empty fancSince
the aspect compiler packages advices as regulandidns, and becauseall pointcut involves no dynamic
test, this good result is not surprising. For simileasons, a sequence of three invocations of eongty
functions is only 3.2 time slower than the direxgpect-less, three successive functions calls. @edpto
the pointcuts used to delimit the different stadles,sequence overhead is limited to a few pomtehanges
between the linked lists holding the bound varialta Intel x86, global variable accesses benedinfr
excellent hardware support. In the absence of &spedirect global variable read is usually caroat in a
single unique cycle. To trigger the advice executithe Arachne runtime has to save and restore the
processor state to ensure the execution coherascgdvices are packaged as regular C functions. It
therefore not surprising that a global variabledrappears as being 2762 times slower than a daspgct-
less global variable read. The signal mechanisrd irséhe local alias read aspect requires thabperating
system detects the base program attempt to rea@ iptotected memory page before locating anderigg
the signal handler set up by Arachne. Such switthesd from kernel space remain slow.

cycles
Arachne Native Ratio
call 28 21 1.3
seq 201 63 3.2
cflow 228 42 5.4
readglobal 2762 1 2762
read 9729 1 9728
gt 10
Sequence and controlflow can refer to _ 5 Lo 3 3000
several points in the execution of the base 8 5 o i Lo ¢
program {.e., different stages for sequence g - 8 Q‘ P 5 = . o
and different function invocations for the £ A N ;f g" = g = o000
control flow). The runtime of these aspects & 55 O g o
grows linearly with the number of g - ¥ = g "
execution points they refer to and with the =, g 7 < 1000
number of matching instances. The figure % 8 M
on the right summarizes a few § { & 7
experimental results for control flow and # | & Controlflow - Sequence

sequence proving these points. 1 2 3 4 s 1 2 3 4 5
Number of imbricated calls Number of matching instances

4.2 Case study on the Squid web cache

Since, depending on the aspect construct usedpiateng the base program with aspects can slalown

by a factor ranging between 1.3 and 9729, we stulliachne's performance on a real world applicatioa
Web cache Squid. We extended Squid with the disig@i€ounter aspect described earlier. This acewunti
aspect is implemented as a sequence aspect sdatietiee Squid application and in the Linux kernak
based our evaluation on Web Polygraph a benchnmatkiol developed by the Squid team and featuring a
realistic 24 hours HTTP and SSL traffic generatut a flexible content simulator.

The table below resumes our measures. The “mongoriesults sums the number of cycle spent exeautio
the two part of the aspect once. We distinguishedfirst time the ¥fs_read’ aspect is matched from the
next ones, indeed, upon the first call oris” read’ the aspect allocates memory usirigralloc” to hold
results of the counts. During our experiment, vam aheasured the maximum number of requests Squed wa
proceeding per second. It shows the accountingcabpé a limited impact on performances (-5% retples

cycles time
Monitoring first call 16150 1.16ps
next 220 15,9ns

5. RELATED WORK

Our work is directly related to other aspect weavier C, and dynamic code instrumentation techrigure
this section, we consider related work in eacthese fields in turn.

Apart from Arachne, there are few aspect weaverCfgor even C-like languages); some noteworthy
exceptions, are AspectC (Gong and Jacobsen) (onlyneompleted implementation available), AspectC++
(Spinczyk et al), AspectC# (Kim). All of these raiyn source-code transformation and thus cannotsbd u
for the application of aspects to running C codenasessitated by the use we consider. TOSKANA,
developed by Engel and Freisleben allows the rumtimection of aspects into the Linux kernel.
Nevertheless, TOSKANA presents some restrictiomapared to Arachne. First, TOSKANA is limited to
the Linux kernel, while adapting it to user-spappliations is small issue, there is no supportdode
spanning both the kernel and user space applicat®acond, TOSKANA's aspect language only consider
code injected on function calls, whereas Arachagufes code injected on function calls and variabtess,
and higher level primitives to express sequencdgraition calls or nested function calls. Finallye believe
the code rewriting techniques used in TOSKANA to wesafe in case of concurrent thread executing
simultaneously in places where code is modified.

A few other approaches have considered a directitiegy of the binary code at runtime: Dyninst
(Hollingsworth et al.), Pin (Luk et al.) and DPrebgvoore). Dyninst allows programmers to modify any
binary instruction belonging to an executable, haaveDyninst relies on the Unix debugging Aptrace.
ptrace allows a third party process to read and write llase program memory. It is however highly
inefficient: before usingtrace, the third party process has to suspend the erecot the base program and
resume its execution afterwards. In comparisoncima useptrace at most once, to inject its kernel DLL
into the base program process. In addition, Dyrdosts not free the programmer from dealing with level
details. For example, it seems difficult to triggeradvice execution upon a variable access withiridy: the
translation from the variable identifier to an effee address is left to the user. Worse, Dyniresdnot
grant that the manipulation of the binary instroos it performs will succeed. Dyninst uses an
instrumentation strategy where several adjacerttuicisons are relocated. This is unsafe as onehef t
relocated instructions can be the target of bramgchistructions. In comparison, Arachne has beeefaldy
designed to avoid these kind of issues; if an aspat be compiled with Arachne, it can always be/evo
Prasad et al. propose Systemtap which is builtopnaf Kprobes. Systemtap is the most similar taol t
Arachne. Indeed, Systemtap is capable of insefindes into the Linux kernel, developers write patcin
a mix of C and awk. Systemtap does not yet suppoties in user-space programs but that featuraderu
development. Nevertheless, Systemtap is limited pgoed to Arachne as its language does not support
higher level constructs such as nested functids eald sequences.

6. CONCLUSION

In this paper we have discussed two different aislpf complex applications which are typical of C-
applications using OS-level services and which degly need to be conducted at runtime. We have
motivated that such concerns can be expressedpastasWe proposed a language that is more expeessi
than those used in other analysis tools for C &t ithprovides support for aspects defined oveuseges of
execution points as well as for variable aliasas. &proach is also novel as it supports aspecsscutting
the kernel and applications boundaries. We haveepted an integration of this language into Arachne
Finally, we have provided evidence that the intiBgnais efficient enough to apply such aspects dyinally

to high-performance applications, in particular 8guid web cache. As future work, we intend to mdteur
approach to distributed analysis with aspects Spgmmultiple machines. We also intend to exploradkne
extension to the C++ language.

ACKNOWLEDGEMENT

This work is supported by a regional grant fromBags de la Loire (France).

REFERENCES

Journal

Douence, R. et al, 2006. An expressive aspect Eggyor system applications with ArachiheTransactions on Aspect-
Oriented Software Development, Vol. 1, No. 1, pp 174-213.

Conference paper or contributed volume

Spinczyk, O. et al, 2002. AspectC++: an aspechteiextension to the C++ programming langu&geceedings of the
Fortieth International Conference on Tools Pacific. Sidney, Australia, pp. 53-60.

Engel, M. and Freisleben, B., 2005. Supporting monaic computing functionality via dynamic operatisgstem kernel
aspectsProceedings of the fourth International conference on Aspect-Orient Software Development. Chicago, ILL,
USA, pp. 51-62.

Loriant, N. et al., 2006. A reflexive extensionAmchne's aspect languadoceedings of the 2006 AOSD workshop on
Open and Dynamic Aspect Languages. Bonn, Germany.

Loriant, N. et al., 2006. Server protection throudymamic patchingProceedings of the eleventh IEEE Pacific Rim
Conference Symposium on Dependable Computing. Changsha, China, pp. 343-349.

Hollingsworth, J. K. et al., 1997. MDL: a languagied compiler for dynamic program instrumentatiBroceedings of
IEEE conference on Parallel Architectures and Compilation Techniques. Yaroslavl, Russia, pp. 201-213.

Luk, C.-K. et al., 2004. A post-link optimizer fdhe Intel Itanium architectureProceedings of the international
symposium on code generation and optimization: feedback-directed and runtime optimization. Washington, DC,
USA, pp. 15-27.

Moore, R. J., 2000. Dynamic probes and generakeedel hooks interface for Linuroceedings of the fourth annual
Linux showcase and conference. Atlanta, GA, USA, pp. 139-145.

Prasad, V. et al, 2005. Locating system problemagudynamic instrumentatiorProceedings of the 2005 Linux
Symposium. Ottawa, Canada, pp. 49-64 (\Vol. 2).

Clowes, S., 2001. Modifying and spying on runnimggess under LinuwProceedings of the 2001 Black hat conference.
Technical reports

Gong, W. and Jacobsen, H.-A., 2006. AspectC Spatifin. Middleware Systems Research Group, University of
Toronto, Canada

Kim, H., 2002. AspectC#: an AOSD implementation@#. Master's thesi3rinity College.

