
HAL Id: inria-00441627
https://inria.hal.science/inria-00441627

Submitted on 16 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance and energy optimization of concurrent
pipelined applications

Anne Benoit, Paul Renaud-Goud, Yves Robert

To cite this version:
Anne Benoit, Paul Renaud-Goud, Yves Robert. Performance and energy optimization of concurrent
pipelined applications. [Research Report] RR-LIP-2009-27, 2010, pp.28. �inria-00441627�

https://inria.hal.science/inria-00441627
https://hal.archives-ouvertes.fr

Performance and energy optimization

of concurrent pipelined applications

Anne Benoit, Paul Renaud-Goud and Yves Robert

LIP, ENS Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France

UMR 5668 - CNRS - ENS Lyon - UCB Lyon - INRIA

{Anne.Benoit|Paul.Renaud-Goud|Yves.Robert}@ens-lyon.fr

September 2009

LIP Research Report RR-2009-27

Abstract

In this paper, we study the problem of finding optimal mappings for several indepen-
dent but concurrent workflow applications, in order to optimize performance-related criteria
together with energy consumption. Each application consists in a linear chain application
with several stages, and processes successive data sets in pipeline mode, from the first to
the last stage. We study the problem complexity on different target execution platforms,
ranking from fully homogeneous platforms to fully heterogeneous ones. The goal is to select
an execution speed for each processor, and then to assign stages to processors, with the aim
of optimizing several concurrent optimization criteria. There is a clear trade-off to reach,
since running faster and/or more processors leads to better performance, but the energy
consumption is then very high. Energy savings can be done at the price of a lower perfor-
mance, by reducing processor speeds or enrolling fewer resources.. We consider two mapping
strategies: in one-to-one mappings, a processor is assigned a single stage, while in interval
mappings, a processor may process an interval of consecutive stages of the same application.
For both mapping strategies and all platform types, we establish the complexity of several
multi-criteria optimization problems, whose objective functions combine period, latency and
energy criteria. In particular, we exhibit cases where the problem is NP-hard with concur-
rent applications, while it can be solved in polynomial time for a single application. Also, we
demonstrate the difficulty of performance/energy trade-offs by proving that the tri-criteria
problem is NP-hard, even with a single application on a fully homogeneous platform.

1

Contents

1 Introduction 3

2 Motivating example 5

3 Framework 6

3.1 Applicative framework . 6
3.2 Target platform . 7
3.3 Mapping strategies and scheduling . 8
3.4 Performance optimization criteria . 8
3.5 Energy model . 9

4 Complexity of mono-criterion problems 10

4.1 Period minimization . 10
4.1.1 One-to-one mappings . 10
4.1.2 Interval mapping . 11

4.2 Latency minimization . 14
4.2.1 One-to-one mapping . 14
4.2.2 Interval mapping . 16

4.3 Summary . 16

5 Complexity of multi-criteria problems 17

5.1 Period/latency minimization . 17
5.2 Period/energy minimization . 19

5.2.1 Preliminary results with one application: interval mapping 19
5.2.2 Results with many applications . 20

5.3 Period/latency/energy minimization . 20
5.3.1 Uni-modal processors . 21
5.3.2 Multi-modal processors . 21

5.4 Summary . 25

6 Conclusion 25

2

1 Introduction

In this paper, we aim at optimizing the execution of several independent pipelined applications
that execute concurrently on a given platform. Indeed, pipelined applications are becoming
increasingly prevalent, see for instance [7, 18, 22]. Mapping such applications onto paral-
lel platforms is a challenging problem, that becomes even more difficult when platforms are
heterogeneous (nowadays a standard assumption). Another level of difficulty is added when
considering several independent applications which are executed concurrently on the platform
and that compete for available resources.

We focus in this work on pipelined applications with the regular structure of a linear chain.
Such applications are ubiquitous in streaming environments, as for instance video and audio
encoding and decoding, DSP applications, image processing, and so on ([7, 18, 10, 21, 22]).
Furthermore, the regularity of these applications render them amenable to a high-level parallel
programming approach based on algorithmic skeletons ([6, 14]). Skeletons ease the task of the
application developer and make it easy to tailor his/her specific problem to a target platform. In
linear pipeline applications, a series of data sets enter the input stage and progress from stage to
stage until the final result is computed. Each stage has its own communication and computation
requirements: it reads an input from the previous stage, processes the data and outputs a result
to the next stage. Each data set is first input to the first stage, and final results are output
from the last stage. The pipeline operates in synchronous mode: after a transient behavior
due to the initialization delay, a new data set is completed every period. Typical performance-
related objectives for such pipelined operations are the period (which is defined as the inverse
of the throughput) or the latency (also called response time) [16, 17, 19, 20, 3, 4, 21]. Formally,
the period of a mapping is defined as the time interval required between the beginning of the
execution of two consecutive data sets. The period is dictated by the critical resource: it is equal
to the longest cycle-time of a processor. For instance under a strict one-port communication
model with no overlap of communications and computations, it is the sum of the time to perform
all incoming communications, the time to perform all outgoing communications, and the total
computation time. As for the latency, it is defined as the time elapsed between the beginning
and the end of the execution of a given data set, hence it measures the response time of the
system to process the data set entirely. Period and latency already are conflicting objectives
when executing a single application. When several applications run concurrently, the scheduler
must decide which resources to select and assign to each application, so that all users receive a
fair share of the platform.

In the recent years, another critical problem arose, namely the energy consumption of com-
putational platforms. As an example, the Earth Simulator requires about 12 megawatts of
peak power, and Petaflop systems may require 100 MW of power, nearly the output of a small
power plant (300 MW). At $100 per MegaWatt.Hour, peak operation of a petaflop machine
may thus cost $10,000 per hour [9]. Current estimates state that cooling costs $1 to $3 per
watt of heat dissipated [15]. This is just one of the many economical reasons why energy-aware
scheduling has proved to be an important issue in the past decade, even without considering
battery-powered systems such as laptop and embedded systems.

The emphasis of this paper is on a multi-criteria approach, where efficient trade-offs must be
found between performance-related objectives that are typical of pipelined applications, namely
period and latency minimization, and the total energy consumed by enrolled resources. For this
purpose, we consider multi-modal processors: each processor has a discrete number of speeds
(or modes) of computation, which can be obtained by changing the processor frequency: the
faster the speed, the less efficient energetically-speaking [11]. At the beginning of execution,
we must decide at which speed each computer will operate, and this speed is then fixed for the
whole execution. The energy-oriented objective is to minimize the total energy consumption of
the platform; it is computed as the sum of the energy consumed by each processor, which is a

3

function of its speed (dynamic energy) and of a fixed overhead (static energy), similarly to the
model in [12].

Our global aim is to execute all applications efficiently while minimizing the energy con-
sumed. Unfortunately, the goals of low power consumption and efficient scheduling are con-
tradictory. Indeed, period and/or latency can be minimized by using more energy to speed up
processors, while energy can be minimized by reducing processor speeds, hence performance-
related objectives. How to deal with these contradictory objective functions? In traditional
approaches, one would form a linear combination of the different objectives and treat the result
as the new objective to be optimized. But is it natural for the user to maximize the quantity
0.7P + 0.3E, where P is the period and E the energy? Since criteria are very different in nature,
it does not make much sense for a user to make a linear combination of them. Thus we advo-
cate the use of multi-criteria with thresholds. Now, each criteria combination can be handled
in a natural and meaningful way: one single criterion is optimized, under the condition that
a threshold is enforced for all other criteria. This leads to two interesting questions. If we fix
energy, we get the laptop problem, which asks “What is the best schedule achievable using a
particular energy budget, before battery becomes critically low?” Fixing schedule quality gives
the server problem, which asks “What is the least energy required to achieve a desired level of
performance?”

The optimization problem can then be stated informally as follows: given a set of applications
and a computational platform, which stage to assign to which processor? We consider two
different mapping strategies: one-to-one mappings, for which each application stage is allocated
to a distinct processor; and interval mappings, where each participating processor is assigned an
interval of consecutive stages. These mapping strategies have been widely used in the literature
when mapping one single application (see for instance [16, 17, 3]), and we extend them naturally
to the mapping of several concurrent applications without allowing any processor sharing. This
assumption is quite realistic from the point of view of the platform manager whose goal may be
to secure an efficient (albeit concurrent) execution for each application, and is further motivated
from a theoretical point of view in Section 3.3.

We target three different platform types: fully homogeneous platforms have identical pro-
cessors and interconnection links; communication homogeneous platforms have identical links
but different-speed processors, thus introducing a first degree of heterogeneity; and finally, fully
heterogeneous platforms with different-speed processors and different capacity links, which con-
stitute the most difficult problem instance.

Finally, we aim at optimizing several contradictory criteria, namely period, latency and
energy, and we study all combination of these criteria. However, when taking energy into
account, we always include the period in the combination, since the energy is an energy spent
per time unit, which makes sense only in a pipelined execution of the application, while latency
by its own takes only one single data set into account. Thus we consider two mono-criterion
problems consisting in minimizing the period or the latency, and then two bi-criteria problems
combining period/latency or period/energy, and finally the tri-criteria problem combining all
three optimization criteria. Altogether, with two mapping strategies, three target platforms and
five criteria combination, we have 30 problems to solve. A major contribution of this paper is
to establish the complexity of all these problems in the context of multiple concurrent pipelined
applications.

The problem of mapping a single linear chain application onto parallel platforms in order
to minimize latency and/or period has already been widely studied, in particular on homoge-
neous platforms (see the pioneering papers [16] and [17]) and later for heterogeneous platforms
(see [3, 4]). These results focus on the mapping of one single application, while we add the com-
plexity of satisfying several users who each have different requirements for their applications.
We were able to extend polynomial time algorithms to this multi-application setting, and to
exhibit cases in which the problem becomes NP-hard because of this additional difficulty. Of

4

course, problem instances which were already NP-hard with a single application remain diffi-
cult with several concurrent applications. Moreover, we consider a new and important objective
function, namely energy minimization, and this is the first study (to the best of our knowledge)
which combines performance-related objectives with energy in the context of pipelined appli-
cations. As expected, combining all three criteria (period, latency and energy) leads to even
more difficult optimization problems: the problem is NP-hard even with a single application on
a fully homogeneous platform.

The paper is organized as follows. We start by illustrating and motivating the problem with
a simple example in Section 2. Then we describe the framework in Section 3. The next two
sections constitute the heart of the paper: we assess the complexity of all problem instances.
Results for period or latency minimization are reported in Section 4, while results for multi-
criteria problems are presented in Section 5. Finally we conclude in Section 6.

2 Motivating example

Figure 1: Example with two applications and three multi-modal processors

In this small example we have two applications and three processors, as shown on Figure 1.
We restrict to interval mappings, where a processor can be assigned only a set of consecutive
stages of a single application. The first stage of App1 receives a data of size 1, then computes
3 operations, and finally sends a data of size 3 to the second stage, and so on. If both stages
are assigned to the same processor, there will be no communication cost to pay; otherwise this
cost will depend on the communication volume (3 in this case) and on the link bandwidth
between the corresponding processor pair. For the computational platform, each processor has
two execution modes. For instance, P1 can process 3 operations per time unit in its first mode,
and 6 in its second one, against 6 or 8 for P2, and 1 or 6 for P3. The energy consumption
of a processor is equal to the square of its speed, which is quite a realistic assumption (see
Section 3.5 for more details on the model for energy consumption). Finally, all communication
link bandwidths are set to 1.

We compute the global period as follows: T = max(T1, T2), where Ti is the period of the ith

application (i = 1, 2). The global latency is defined in a similar way, as the maximum of the
latency achieved by all applications. Note that when the energy is not a criterion to minimize,
all processors can run in their higher modes (as fast as possible), because this can only improve
the performance-related criteria (period and latency). In this case, either a processor is used at
its fastest speed, or it is turned off. In order to minimize the period without energy constraints,
we map the whole first application onto processor P3, the first half of the second application
onto processor P2, and the rest onto processor P1. The period is then:

max

(

max

(

1

1
,
3 + 2 + 1

6
,
0

1

)

,max

(

max

(

0

1
,
2 + 6

8
,
1

1

)

, max

(

1

1
,
4 + 2

6
,
1

1

)))

= 1 (1)

Equation (1) reads as follows: we compute the cycle-time of each processor as the maximum
time spent for incoming communications, computations, and outgoing communications, thus

5

considering a model in which communications and computations are overlapped. We then take
the maximum of these quantities to derive the period. Note that the cycle-time of each processor
is exactly 1 and there is no idle time on computation, thus it is not possible to achieve a better
period: this mapping is optimal for the period minimization problem. The minimum latency
is obtained by removing all communications and using the fastest processors. A mapping that
returns the optimal latency in the example (in the absence of other criteria) is for instance the
one which maps the first application on P1 and the second application on P2, thus achieving a
global latency of:

max

(

1

1
+

3 + 2 + 1

6
+

0

1
,
0

1
+

2 + 6 + 4 + 2

8
+

1

1

)

= 2.75 (2)

In Equation (2) we simply compute the longest execution path for each application. The
bottleneck is the second application, and we cannot achieve a better latency since we pay no
communication and use the fastest processor for this application. This latency is thus optimal.

The minimum energy is obtained when we use fewer processors, each running in slowest
mode. Since we assume that a processor cannot be assigned stages of two different applications,
two processors are required in the example. For instance, we can map the first application on
P1 running in its lowest mode and the second application on P3 running in its lowest mode too,
thus achieving an energy of 32 + 12 = 10. This is the minimum energy consumption required
to run both applications. We observe that the period is then:

max

(

max

(

1

1
,
3 + 2 + 1

3
,
0

1

)

, max

(

0

1
,
2 + 6 + 4 + 2

1
,
1

1

))

= 14

As expected, running at a slower pace to save energy leads to poorer performances. Trade-offs
must be found when considering several antagonistic optimization criteria.

For instance, if we try to minimize the energy consumption under the constraint that the
period is not greater than 2, we can use the first mode of each processor. Then the first
application is mapped onto P1, the first three stages of the second application are mapped onto
P2 and its last stage is mapped onto P3. The global period is 2, and the consumed energy is
32 + 62 + 12 = 46. This may be quite a reasonable compromise between energy and period:
indeed, with the mapping minimizing the period (period of 1), the energy consumption was
62 + 82 + 62 = 136.

3 Framework

We start with a formal description of the applicative framework (Section 3.1) and the target
execution platform (Section 3.2). Next in Section 3.3, we introduce and motivate the mapping
strategies. We are then ready to formally describe the performance objective criteria (period
and latency) in Section 3.4, and then to finally discuss the energy model in Section 3.5.

3.1 Applicative framework

As shown in Figure 2, we consider A independent application workflows (A ≥ 1) to be executed
concurrently; each application operates on a collection of data sets that are executed in a
pipelined fashion. For 1 ≤ a ≤ A, let na be the number of stages of application a, and
N =

∑A
a=1 na be the total number of stages. For 1 ≤ k ≤ na, δk

a is the size of the output data
of Sk

a , the kth stage of application a and wk
a is its computation requirement. The first stage S1

a

of each application, 1 ≤ a ≤ A, receives an input of size δ0
a from the outside world, while the

last stage of each application Sna
a returns the result (of size δna

a) to the outside world.

6

Figure 2: Notations

3.2 Target platform

The target platform is composed of p processors, which are fully interconnected; there is a
bidirectional link Pu ↔ Pv between any processor pair Pu and Pv, of bandwidth bu,v. For
simplification, we assume that 2A additional processors Pin1 , . . . , PinA

and Pout1 , . . . , PoutA
are

devoted to input/output operations of the applications (in fact these additional processors are
virtual processes that may well be shared by the same physical resource). Initially, for each
a ∈ {1, . . . , A}, the input data for each task of the application a resides on Pina , while all results
must be returned to and stored on Pouta . These special processors are all connected to the p
processors of the target platform.

We use a linear cost model for communications; it takes X/bu,v time units to send (resp.
receive) a message of size X to (resp. from) Pv. With the mapping rules that we enforce (see
Section 3.3 below), it turns out that a processor never has to perform two concurrent ingoing
nor outgoing communications: at any time-step, a processor is involved in at most one send, one
computation and one receive. However, these three operations can either be parallel (as in the
example of Section 2) or serialized. With parallel operations, we have the overlap model that
corresponds to multi-threaded communication libraries such as MPICH2 [13]. With sequential
operations, we have the no-overlap model that is well-suited to single-threaded programs. Af-
terwards, we prove the theorems for the overlap model, and when nothing more is said about
communication model in the theorem proofs, they are valid for the both communication models.

Processors are multi-modal: every processor Pu is associated with a set of speeds Su =
{su,1, . . . , su,mu}. During the mapping process, we need to choose one speed su ∈ Su for each
processor Pu that is enrolled, and this speed is fixed during the whole execution. Then we
classify particular cases which are important, both from a theoretical and practical perspective.
Fully homogeneous platforms have identical processors (all processors have a common speed set:
Su = S) and homogeneous communication devices (bu,v = b for all link bandwidths). They
represent typical parallel machines. Communication homogeneous platforms are still intercon-
nected with homogeneous communication devices, but they may have processors with different
speed sets (Su 6= Sv). They correspond to networks of workstations with plain TCP/IP intercon-
nects or other LANs. Fully heterogeneous platforms are the most general, fully heterogeneous

7

architectures. Hierarchical platforms made up with several clusters interconnected by slower
backbone links can be modeled this way.

3.3 Mapping strategies and scheduling

We consider two mapping strategies, one-to-one and by interval. One-to-one mappings obey
the simplest rule: each application stage is allocated to a distinct processor. While easier
to optimize and implement, this rule may be unduly restrictive, and is likely to pay high
communication costs. Obviously, it also requires that p ≥ N , thereby limiting its applicability
to larger platforms (or fewer and smaller applications). A natural extension is to search for
interval mappings, where each participating processor is assigned an interval of consecutive
stages. Intuitively, assigning several consecutive stages to the same processors will increase
their computational load, but may well dramatically decrease communication requirements.
Interval mappings have been widely used in the literature, see [16, 17, 3, 21, 22] among others.

We point out that both one-to-one and interval mappings forbid any processor sharing, or
re-use, across applications. We could introduce general mappings that would allow any proces-
sor to execute any number of stages, consecutive or not, taken from one or several applications.
However, there are several reasons, both practical and theoretical, to restrict to interval map-
pings:

• On the practical side, we envision a computer center where applications, or jobs, cannot
share resources because of security rules or of batch-assignment procedures. The goal
of the platform manager is to secure an efficient (albeit concurrent) execution for each
application (performance-related criteria) while minimizing the energy consumption of the
whole platform.

• On the theoretical side, there are two problems with general mappings:

1. they immediately lead to NP-hard optimization problems, even for the simplest
mono-criterion problem: period minimization for a single application mapped onto
homogeneous and uni-modal processors, paying no communication cost (straightfor-
ward reduction from 2-partition);

2. they lead to intricate scheduling problems for period/latency bi-criteria problems.

The latter problem is the most important, although we discovered it only quite recently [1].
Basically, even when the mapping is given, scheduling the execution is a problem of combinato-
rial nature. With general mappings, a processor typically has several incoming and/or outgoing
communications, and it is difficult to orchestrate these operations so as to minimize conflicting
objectives such as period and latency. This holds true both for the overlap and no-overlap
models. On the contrary, with interval mappings, we have two key properties: (i) the execution
graph is acyclic, meaning that data leaving one processor never returns to that processor; and
(ii) each processor has at most one incoming and one outgoing communication. Once the map-
ping has been determined, these two properties allow for a straightforward scheduling: each
operation is executed as soon as possible.

3.4 Performance optimization criteria

We are now ready to formally define the period and the latency of one-to-one and interval
mappings. Because there is no processor sharing, we can focus on a single application.

An interval mapping is a partition of the set of stages S1 to Sn into m intervals Ij = [dj , ej]
such that dj ≤ ej for 1 ≤ j ≤ m, d1 = 1, dj+1 = ej +1 for 1 ≤ j ≤ m−1 and em = n. Then, the
function al : [1, n] 7→ [1, p] associates a processor number to each stage number. In a one-to-one
mapping, this function is a one-to-one assignment. In an interval mapping, for 1 ≤ j ≤ m, the

8

whole interval Ij is mapped onto the same processor Pal(dj), i.e., for dj ≤ i ≤ ej , al(i) = al(dj).
Also, two intervals (from the same application or from two different applications) cannot be
mapped onto the same processor, i.e., for 1 ≤ j, j′ ≤ m, j 6= j′, al(dj) 6= al(dj′). The period of
this single application is expressed in the overlap model as:

T (overlap) = max
j∈{1,...,m}

(

max

(

δdj−1

bal(dj−1),al(dj)
,

∑ej

i=dj
wi

sal(dj)
,

δej

bal(dj),al(ej+1)

))

(3)

The maximum in the previous expression is replaced by a sum when considering the no-overlap
model, since all operations are serialized. The period is then:

T (no−overlap) = max
j∈{1,...,m}

(

δdj−1

bal(dj−1),al(dj)
+

∑ej

i=dj
wi

sal(dj)
+

δej

bal(dj),al(ej+1)

)

(4)

The latency is the time to process a single data entirely, so it is identical in both communi-
cation models:

L =
δ0

bal(0),al(1)
+

m
∑

j=1





ej
∑

i=dj

wi

sal(dj)
+

δej

bal(dj),al(ej+1)



 (5)

Again, the simplicity of Equations (3), (4) and (5) is a very useful property of interval mappings,
and greatly simplifies the solution of multi-criteria problems.

These are the period and latency of one single application, and we need to define a global
period and latency function to be optimized. The simplest approach is to minimize X =
maxa∈{1,...,A}(Xa), where Xa is the period or latency of application a, for a ∈ {1, . . . , A}.
However, the concurrent applications can be of completely different nature and/or economic
value, so that their periods or latencies are not always comparable. Therefore we aim at
minimizing

X = max
a∈{1,...,A}

Wa ·Xa (6)

where Wa > 0 is a weight associated to each application and Xa is the period or latency of
application a, for a ∈ {1, . . . , A}. Wa can be 1 (we retrieve a simple maximum) or a priority ratio
(fixed by the platform manager and/or paid by the user). We can also let Wa = 1/X∗

a , where
X∗

a is the objective function computed when the application is executed alone on the platform;
in this case Wa ·Xa represents the slowdown factor of application a, and X corresponds to the
maximum stretch [2].

3.5 Energy model

The last criterion is the energy consumption of the platform, which is defined as the sum of the
energy E(u) consumed by each processor Pu enrolled in the mapping. We assume that E(u)
consists of a static part and of a dynamic part: E(u) = Estat(u) + Edyn(su). The static part
Estat(u) is the static cost for a processor to be in service, and does not depend on the speed
su at which the processor is running. On the contrary, the dynamic part Edyn(su) is of the
form Edyn(s) = sα, where α > 1 is an arbitrary rational number. It is sometimes assumed that
α = 2 [12], as we did in the example of Section 2, but all our results hold for any value of α.

The energy E(u) is an energy consumed per time unit, so it must be associated with a
duration. However, the execution of a pipelined application with arbitrarily many consecutive
data sets may last for an unbounded amount of time. Hence we always consider a combination
of energy and period objective criteria, because the latency by its own takes only one single
data set into account, and does not reflect a pipelined execution.

9

4 Complexity of mono-criterion problems

Note that since we do not consider energy minimization issues in our mono-criterion optimization
problems, we can systematically run processors at their highest speed, and thus use classical
results established in a context with no energy.

4.1 Period minimization

We show that a greedy assignment solves the problem of finding a one-to-one mapping on
communication homogeneous platforms, but the problem turns NP-complete with heterogeneous
links between the processors. For interval mappings, we use an existing algorithm which finds
the minimum period in a single application to build a new polynomial time algorithm that
minimizes the global period of many applications on fully homogeneous platforms, giving the
right number of processors to each application. The problem is NP-complete with heterogeneous
processors, even with equivalent pipelines and without communication.

4.1.1 One-to-one mappings

Communication homogeneous platforms

Theorem 1 On communication homogeneous platforms, a one-to-one mapping that minimizes
the period can be determined in polynomial time.

Proof The following proof is an adaptation of the algorithm described in [3], which finds
the minimum period under the same hypothesis but for a single application. The main idea
remains the same, since on communication homogeneous platforms the application that the
stage belongs to does not matter for a one-to-one mapping.
The optimal period belongs to the set:

T =

{

Wa ·max

(

δk−1
a

b
,
wk

a

su
,
δk
a

b

)

, 1 ≤ a ≤ A, 1 ≤ k ≤ na, 1 ≤ u ≤ p

}

because it is equal to the product of Wa by the cycle-time of some processor Pu executing some
stage Sk

a . First we compute the set T and sort its elements into an array TA. Then we binary
search the array TA for the optimal period, testing at each step whether the current element T
is a feasible value. To do so, we use the greedy assignment procedure described below. Initially,
the current element T is the median of TA. If the greedy assignment procedure returns ”failure”
we increase the period by jumping to the median of the elements of TA which are larger than T ,
and it returns ”success” we jump to the median of the elements of TA which are smaller than
T . The algorithm terminates in ⌈log T ⌉ iterations.

Note that |T | ≤ nmaxAp, where nmax = maxa∈{1,...,A} na, hence the total computation
time is O((nmaxAp + costGA) log(nmaxAp)), where costGA is the cost of the greedy assignment
procedure.

We now describe the greedy assignment algorithm for a prescribed value T of the achievable
period. Recall that there are N stages to map onto p ≥ N processors in a one-to-one fash-
ion. Also, we target Communication Homogeneous platforms with different-speed processors
(su 6= sv), with different-capacity links between the application, but with links of same capac-
ities within an application. First we retain only the fastest N processors, which we rename
P1, P2, . . . , PN such that s1 ≤ s2 ≤ · · · ≤ sN . Then we consider the processors in the order
P1 to PN , i.e. from the slowest to the fastest, and greedily assign them any free (not already
assigned) task that they can process within the period.

The proof that the greedy procedure returns a solution if and only if there exists a solution of
period T is done by a simple exchange argument. Indeed, consider a valid one-to-one assignment
of period T , denoted A, and assume that it has assigned stage Sk1

a1
to P1. Note first that the

10

Algorithm 1: Greedy-Assignment(T)

begin
Work with fastest N processors, numbered P1 to PN , where s1 ≤ s2 ≤ · · · ≤ sN

Mark all stages S1 to SN as free
for u = 1 to N do

Pick up any free stage Sk
a s.t. Wa ·max(δk−1

a

ba
, wk

a

su
, δk

a

ba
) ≤ T

Assign Sk
a to Pu

Mark Sk
a as already assigned

if no stage found then
return ”failure”

end

end

return ”success”
end

greedy procedure will indeed find a stage to assign to P1 and cannot fail, since Sk1
a1

can be
chosen. If the choice of the greedy procedure is actually Sk1

a1
, we proceed by induction with P2.

If the greedy procedure has selected another stage Sk2
a2

for P1, we find which processor, say Pu,
has been assigned this stage in the valid assignment A. Then we exchange the assignments of
P1 and Pu in A. As Pu is faster than P1, which could process Sk1

a1
in time in the assignment A,

Pu can process Sk1
a1

in time too.
As Sk2

a2
has been mapped on P1 by the greedy procedure, P1 can process Sk2

a2
in time. So

the exchange is valid, we can consider the new assignment A which is valid and which did the
same assignment on P1 than the greedy procedure. The proof proceeds by induction with P2

as before.
The complexity of the greedy assignment procedure is costGA = O(N2), because of the two

loops over processors and stages. Altogether, since N ≤ p and N ≤ nmaxA, the complexity of
the whole algorithm is O((nmaxAp)2 log(nmaxAp)), which is indeed polynomial in the problem
size.

In addition we can observe this algorithm works with the no-overlap communication model,

replacing Wa ·max(δk−1
a

ba
, wk

a

su
, δk

a

ba
) ≤ T by Wa · (δk−1

a

ba
+ wk

a

su
+ δk

a

ba
) ≤ T .

Fully heterogeneous platforms

Theorem 2 On fully heterogeneous platforms, finding a one-to-one mapping that minimizes
the period is a NP-complete problem.

Proof As the problem was already NP-complete with one single application [3], it remains
NP-complete with concurrent applications.

4.1.2 Interval mapping

Fully homogeneous platforms

Theorem 3 On fully homogeneous platforms an interval mapping that minimizes the global
period can be determined in polynomial time.

Proof A polynomial algorithm has already been found to exhibit the minimal period with
one application in this case under a no-overlap communication model (see [4]), that can be
easily extend to our overlap model, so the following proof is valid for both models.

We exhibit an algorithm which finds such a mapping for concurrent applications thanks to
the previous polynomial algorithm, and we show then its validity.

11

Algorithm 2:

Assign all stages of each application to 1 processor
Compute the period of all applications
for a← (p−A) to p do

Find an application a′ such that Wa′ · Ta′ is maximum
Add 1 processor to this application
Compute the new period Ta′ of this application

end

First here are some notations:

• (ku
a,i) is a A-tuple which represents the processor distribution among the applications at

step i.

• (ko
a,i) is an optimal processor distribution with i processors.

• Ta(n) is the period of the application numbered a, where n is the number of processors
the application a is assigned to.

• T (d) = maxa∈{1,...,A} Wa · Ta(da) where d is a A-uplet.

Now the proof:

• (ku
a,A) is the best distribution with A processors, because it is the only one.

• Let assume that (ku
a,i) is optimal with i processors. We want (ku

a,i+1) to be an optimal
distribution with i + 1 processors.

– Either:
∃a, ko

a,i+1 < ku
a,i

By construction:

∃i′ < i, T ((ku
a,i′)) = Wa · Ta(k

u
a,i′) = Wa · Ta(k

o
a,i+1)

Now, because every Ta and x 7→Wa · x are non-decreasing,

T ((ku
a,i+1)) ≤ T ((ku

a,i)) ≤ T ((ku
a,i′))

and by definition,
Wa · Ta(k

o
a,i+1) ≤ T ((ko

a,i+1))

So
T ((ku

a,i+1)) ≤ T ((ko
a,i+1))

– Or:
∃!a, ko

a,i+1 = ku
a,i + 1

∗ Either:
ku

a,i+1 = ku
a,i + 1

and we are done,

∗ or:
∃a′ 6= a, ku

a′,i+1 = ku
a′,i + 1

12

By construction:

T ((ku
a,i)) = fa′(Ta′(ku

a′,i))

= fa′(Ta′(ko
a′,i+1)) because ku

a′,i = ko
a′,i+1

≤ T ((ko
a,i+1))

Finally:
T ((ku

a,i+1)) ≤ T ((ko
a,i+1))

Overall we have shown that (ku
a,i+1) was as good as (ko

a,i+1).

• By recurrence, the algorithm finds an optimal solution to map p processors into A appli-
cations.

The complexity of computing the period of an application with n processors, keeping the
intermediate results with n−1 processors, is bounded by O(n3p) [3]. That is why the complexity
of the Algorithm 2 is bounded by O(n3p2).

Communication homogeneous platforms

Theorem 4 On communication homogeneous platforms, the problem of finding an interval
mapping that minimizes the period is NP-complete.

Proof As the problem was already NP-complete with one single application [3], it remains
NP-complete with concurrent applications.

Heterogeneous processors and homogeneous pipelines without communication

This case is more interesting, because a polynomial algorithm exists to find an interval map-
ping which minimizes the period of one single application [4]; however, the problem becomes
NP-complete with several concurrent applications.

Theorem 5 With more than one application, heterogeneous processors, homogeneous pipelines
without communication, the optimal interval mapping which minimizes maxa∈{1,...,A} Ta is a
NP-complete problem (in the strong sense).

Proof We consider the associated decision problem: given a period T, is there a mapping of
period less than T?

• The problem is obviously in NP: given a period and a mapping, it is easy to check in
polynomial time that it is valid by computing its period.

• To establish the completeness, we use a reduction from 3-partition [8]. We consider an
instance I1 of 3-partition: given an integer B and 3m positive integers a1, a2, . . . , a3m

such that for all i ∈ {1, . . . , 3m}, B/4 < ai < B/2 and with
∑m

i=1 ai = mB, does there
exists a partition I1, . . . , Im of {1, . . . , 3m} such that for all j ∈ {1, . . . ,m}, |Ij | = 3 and
∑

i∈Ij
ai = B?

As 3-partition is NP-complete in the strong sense, we can encode the 3m numbers in
unary, and assume that the size of I1 is O(mB).

We build an instance I2 of our problem: let m identical pipelines such that each pipeline
is composed of B stages, with w = 1, and p = 3m processors with speeds aj for each
j ∈ {1, . . . , 3m}. We ask whether it is possible to realize a global period of 1. Clearly,

13

the size of I2 is polynomial in the size of I1 (coded in unary). We now show that instance
I1 has a solution if and only if instance I2 does.

Suppose first that I1 has a solution. Let, for each j ∈ {1, . . . ,m}, Ij = {a′1,j , a
′
2,j , a

′
3,j}.

For each j ∈ {1, . . . ,m}, we assign the a′1,j first consecutive stages of the application j
to the (a) processor whose speed is equal to a′1,j , the a′2,j next stages to the processor of
speed a′2,j , and the a′3,j remaining stages to the processor of speed a′3,j . As the period of
every processor is clearly equal to 1, the global period is 1.

Suppose now that I2 has a solution. As the sum of all computation times is equal to the
sum of all processors speed, and a processor cannot be assigned stages of two different
applications, for each application, the sum of its computation times is equal to the sum
on the speed of processors, which are assigned a stage of this application. Now, for all
i ∈ {1, . . . , 3m}, B/4 < ai < B/2, so there are exactly 3 processors mapped into one
application. So I1 has clearly a solution.

As there is no communication, this proof is valid for both communication models.

Theorem 6 With more than one application, heterogeneous processors, homogeneous pipelines
without communication, the problem finding the optimal interval mapping which minimizes
maxa∈{1,...,A} Wa · Ta is NP-complete (in the strong sense).

Proof We follow the previous proof, but we assume now that, for each a ∈ {1, . . . , A}, for
k ∈ {1, . . . ,m}, wk

a = 1/Wa. Then we scale each application: each wk
a is multiplied by Wa

so that the new period T ′
a of the application a will be WaTa. We are now in the case of the

previous theorem.

Theorem 7 With more than one application, heterogeneous processors, homogeneous pipelines
without communication, the problem of finding the optimal interval mapping which minimizes
maxa∈{1,...,A} Ta/T ∗

a is NP-complete (in the strong sense).

Proof We build the same instance as the one of the first proof. As the pipeline applications
are all similar, the period of those applications when they are alone on the platform are all the
same. We finally just have to minimize maxa∈{1,...,A} Ta.

4.2 Latency minimization

We show that finding a one-to-one mapping which minimizes the latency is NP-complete as
soon as the processors do not have the same speed thanks to a reduction from 3-partition.
However we write a greedy algorithm that finds the optimal interval mapping on communication
homogeneous platforms. The problem is still NP-complete on fully heterogeneous platforms for
interval mappings.

Note that latency expression does not depend on the communication model, thus the results
of this section are valid for the overlap and no-overlap models.

4.2.1 One-to-one mapping

Fully homogeneous platforms

Theorem 8 The problem of finding the one-to-one mapping which minimizes the latency on
fully homogeneous platforms is polynomial.

Proof As all mappings are equivalent, the theorem is true.

14

Heterogeneous processors, no communication, homogeneous pipelines This is an
interesting case, because a polynomial algorithm exists to find a one-to-one mapping which
minimizes the latency of one single application [5]; however, the problem becomes NP-complete
with several concurrent applications.

Theorem 9 With more than one application, heterogeneous processors, homogeneous pipelines
without communication, the problem of finding the optimal one-to-one mapping which minimizes
maxa∈{1,...,A} La is NP-complete (in the strong sense).

Proof We consider the associated decision problem: given a latency L, is there a mapping
of latency less than L?

• The problem is obviously in NP: given a latency and a mapping, it is easy to check in
polynomial time that it is valid by computing its latency.

• To establish the completeness, we use a reduction from 3-partition. We consider an
instance I1 of 3-partition: given an integer B and 3m positive integers a1, a2, . . . , a3m

such that for all i ∈ {1, . . . , 3m}, B/4 < ai < B/2 and with
∑m

i=1 ai = mB, does there
exists a partition I1, . . . , Im of {1, . . . , 3m} such that for all j ∈ {1, . . . ,m}, |Ij | = 3 and
∑

i∈Ij
ai = B?

We build an instance I2 of our problem: let m identical pipelines such that each pipeline
is composed of 3 stages, with w = 1, and p = 3m processors with speeds 1/aj for
j ∈ {1, . . . , 3m}. We ask whether it is possible to realize a global latency of B. Clearly,
the size of I2 is polynomial in the size of I1. We now show that instance I1 has a solution
if and only if instance I2 does.

Suppose first that I1 has a solution. Let, for each j ∈ {1, . . . ,m}, Ij = {a′1,j , a
′
2,j , a

′
3,j}.

For each j ∈ {1, . . . ,m}, for i ∈ {1, 2, 3} we assign the ith stage of the application j to the
(a) processor whose speed is equal to 1/a′i,j . The global latency is clearly B.

Suppose now that I2 has a solution. There exists a partition I1, . . . , Im of {1, . . . , 3m}
such that for all j ∈ {1, . . . ,m}, |Ij | = 3 and

∑

i∈Ij
ai ≤ B. As

∑m
i=1 ai = mB, we have:

∀j ∈ {1, . . . ,m}
∑

i∈Ij

ai = B

We conclude that I1 has a solution.

Theorem 10 With more than one application, heterogeneous processors, homogeneous pipelines
without communication, the problem of finding the optimal one-to-one mapping which minimizes
maxa∈{1,...,A} Wa · La is NP-complete (in the strong sense).

Proof The proof is the same as the previous one, but we have now w1
a = w2

a = w3
a = 1/Wa.

Theorem 11 With more than one application, heterogeneous processors, homogeneous pipelines
without communication, the problem of finding the optimal one-to-one mapping which minimizes
maxa∈{1,...,A} La/L∗

a is NP-complete (in the strong sense).

Proof The proof is the same as the first one, but we ask now whether it is possible to realize
a global latency of KB, where K is the sum of the three biggest ai. All applications have
indeed the same latency when they are alone on the platform, and this latency is K. Instead
of minimizing maxa∈{1,...,A}

La

L∗
a
, we minimize maxa∈{1,...,A}

La

K so we minimize maxa∈{1,...,A} La.

15

4.2.2 Interval mapping

Communication homogeneous platforms

Theorem 12 On communication homogeneous platforms the optimal interval mapping which
minimizes the latency can be determined in polynomial time.

Proof

• With a single application the optimal mapping is to map the whole application onto one
processor: if two processors compute two parts of the application, mapping the entire
application onto the fastest processor will reduce the computation time and the commu-
nications cost.

• So with several concurrent applications we keep the A fastest processors and map the
applications onto those processors in a one-to-one fashion. The greedy procedure written
for the period minimization problem with one-to-one mapping can be reused.

• The optimal latency belongs to the set:

L =

{

Wa ·
(

δ0
a

b
+

∑na

k=1 wk
a

su
+

δna
a

b

)

, 1 ≤ a ≤ A, 1 ≤ u ≤ p

}

As |L| = Ap, the complexity of our algorithm is O((Ap+A2) log(Ap)), that we can simplify
in O(Ap log(Ap)).

Fully heterogeneous platforms

Theorem 13 On fully heterogeneous platforms, the problem of finding an optimal interval map-
ping, that minimizes the latency, is NP-complete.

Proof As the problem of finding the interval mapping, which minimizes the latency on fully
heterogeneous platforms, was already NP-complete with one single application [5], it remains
NP-complete with several concurrent applications.

4.3 Summary

Table 1 summarizes all mono-criterion complexity results. Each column corresponds to a plat-
form type: proc-hom denotes identical speed processors while proc-het represents heteroge-
neous processors; com-hom means identical communication links, while they differ for com-

het. We also report results for the case special-app, which corresponds to homogeneous
pipelines without communication.

The two special entries denoted with (*) are problem instances which could be solved in
polynomial time for a single application, but becomes NP-hard when several ones. Remaining
entries correspond to polynomial algorithms that were already existing for a single application
and that have been extended for several one. Finally, all results apply to both the overlap
and no-overlap models, and to all objective functions introduced in Section 3.4: more precisely,
polynomial problems remain polynomial for arbitrary weights Wa in Equation (6), while NP-
complete problems are already difficult with Wa = 1.

proc-hom proc-het
com-hom special-app com-hom com-het

Period - one-to-one polynomial (binary search) NP-complete
Period - interval polynomial (dyn. prog. + greedy) NP-complete(*) NP-complete
Latency - one-to-one polynomial NP-complete(*) NP-complete
Latency - interval polynomial (binary search) NP-complete

Table 1: Complexity results for mono-criterion optimization problems

16

5 Complexity of multi-criteria problems

When dealing with multiple criteria, our approach is to minimize one of them, given a threshold
on the others. Actually, fixing the period or the latency means fixing a threshold on the period
or latency of each application, thus providing a table of period or latency values. Equivalently,
we minimize the value of Equation (6) with suitable coefficients. For the energy, only a bound
on the global energy consumption is required.

5.1 Period/latency minimization

In this section again, we are not concerned with energy minimization issues, so, similarly to
results of Section 4, all processors can be run systematically at their highest speed. Therefore,
on fully homogeneous platforms, all one-to-one mappings are identical, and it is straightforward
to minimize the latency for a given period, or the converse.

We exhibit a dynamic programming algorithm to find an optimal interval mapping on fully
homogeneous platforms, which is the only case where one of the mono-criterion problem is
polynomial.

Fully homogeneous platforms

One-to-one mapping

Theorem 14 On fully homogeneous platforms the problem of finding the one-to-one mapping,
which minimizes the latency for a given period, or the opposite, is polynomial.

Proof On such platforms all mappings are equivalent, so the problem is polynomial.

Interval mapping

Theorem 15 With one application, on fully homogeneous platforms the optimal mapping which
minimizes the latency for a bounded period, or the period for a bounded latency can be determined
in polynomial time.

Proof We denote by n the number of stages, s the speed of every processor and b their
bandwidth.

We exhibit a dynamic programming algorithm which computes the optimal mapping that
minimizes the latency for a given period. We compute recursively the values of (L, T)(i, q),
which are the optimal latency and period that can be achieved by any interval-based mapping
of stages S1 to Si using exactly q processors. The recurrence relation can be expressed as:

(L, T)(i, q) = min
1≤j<i

















L(j, q − 1) +
Pi

k=j+1 wk

s + δi

b ,

max

(

T (j, q − 1),max(δj

b ,
Pi

k=j+1 wk

s , δi

b)

)

















This relation is effective for all i > 1 and q > 1. The function ”min” keeps the brace such
that the period is not greater than the given period and the latency is minimum. If such a
brace does not exist, it returns (+∞, +∞).

The initialization relations are:

• If there is only one processor, we map the whole interval onto this processor. For each
i ∈ {1, . . . , n}:

(L, T)(i, 1) =

(

δ0

b
+

∑i
k=1 wk

s
+

δi

b
,max

(

δ0

b
,

∑i
k=1 wk

s
,
δi

b

))

17

• Too much processors; if q > 1:

(L, T)(1, q) = (+∞,+∞)

Finally we aim at computing:

min
q∈{1,...,p}

(L, T)(n, q)

This dynamic programming algorithm solves the problem of finding a mapping, which min-
imizes the latency for a given period, with a complexity in O(n2p).

We use a binary search to find a mapping, which minimizes the period for a given latency.
On the one side, the minimum period belongs to the set:

T =

{

∑j
k=i w

k

s
, i ∈ {1, . . . , n}, j ∈ {i, . . . , n}

}

⋃

{

δi

b
, i ∈ {0, . . . , n}

}

On the other side, if a mapping realizes a period T and a latency L, then it realizes a period
T2 > T and a latency L2 = L. We conclude that the algorithm which minimizes the latency
for a given period Tlim will find a bigger latency than the one which minimizes the latency for
a given period T 2

lim > Tlim. We can thus minimize the period for a given latency thanks to
a binary search on the period and some calls to the previous algorithm, which minimizes the
latency for a given period.

As |T | = n(n+1)
2 +n, the complexity of this problem is O((n2+n2p) log(n)), i.e. O(n2p log(n)).

The proof of this theorem under the no-overlap communication model is very similar: all we

have to do is to replace max(
δj

b
,

∑i
k=j+1 wk

s
,
δi

b
) by

δj

b
+

∑i
k=j+1 wk

s
+

δi

b
) in the recurrence

relation, max

(

δ0

b
,

∑i
k=1 wk

s
,
δi

b

)

by
δ0

b
+

∑i
k=1 wk

s
+

δi

b
in the first initialization relation and

the previous T by:

T =

{

δi−1

b
+

∑j
k=i w

k

s
+

δj

b
, i ∈ {1, . . . , n}, j ∈ {i, . . . , n}

}

.

Theorem 16 With several applications, on fully homogeneous platforms the optimal mapping
which minimizes the latency L = maxa∈{1,...,A} Wa · La for a bounded period by application, or
the period T = maxa∈{1,...,A} Wa · Ta for a bounded latency by application can be determined in
polynomial time.

Proof There we can reuse the Algorithm 2.
If we want to solve the first problem, we run the version of the previous algorithm which

computes the minimum latency for the bounded period Ta′ to compute the latency of the
application a′, and if we want to solve the second problem, we run the version of the previous
algorithm which computes the minimum period for the bounded latency La′ to compute the
period of the application a′.

That leads us to a complexity in O((np)2 log(n)) for the period minimization with a bounded
latency, and O((np)2) for the latency minimization with a bounded period.

18

Heterogeneous processors, homogeneous pipeline, no communication

Theorem 17 With heterogeneous processors and homogeneous pipelines, without communi-
cation, the problem of finding an interval or one-to-one mapping, that solves the bi-criteria
period/latency problem, is NP-complete.

Proof

• The problem of minimizing the latency with a one-to-one mapping is NP-complete, so
finding a one-to-one mapping that minimizes the latency for a given array of period is
NP-complete too.

• The problem of minimizing the period with an interval mapping is NP-complete, so finding
an interval mapping that minimizes the period for a fixed latency by application is NP-
complete too.

5.2 Period/energy minimization

Contrary to the previous problems, we can no more operate the proofs with uni-modal processors
because of the energy.

We show that finding an optimal one-to-one mapping on communication homogeneous plat-
forms can be done by finding a minimum weight matching in a graph, which proves that our
problem is polynomial. In addition after exhibiting a dynamic programming algorithm that
finds an optimal interval mapping on fully homogeneous platforms for a single application, we
extend it to many applications.

5.2.1 Preliminary results with one application: interval mapping

Theorem 18 On fully homogeneous platforms the optimal interval mapping, which minimizes
the consumed energy for a given period, can be determined in polynomial time.

Proof We exhibit a dynamic programming algorithm that returns the optimal energy consump-
tion. We compute recursively the value E(i, j, k), which is the optimal energy consumption that
can be achieved by any interval-based mapping of stages Si to Sj using exactly k processors.
The goal is to determine mink∈{1,...,p}E(1, n, k). The recurrence relation can be expressed as:

E(i, j, k) = min
i≤ℓ≤j−1

(E(i, ℓ, k − 1) + E(ℓ + 1, j, 1))

with the initialization:

• E(i, i, q) = +∞ if q > 1

• Defining F j
i =

{

Edyn(sℓ) + Estat ,max

(

δi−1

b ,
Pj

k=i
wk

sℓ
, δj

b

)

≤ T, ℓ ∈ {1, . . . ,m}
}

,

E(i, j, 1) =

{

minF j
i if F j

i 6= ∅

+∞ otherwise

The complexity of this dynamic programming algorithm is bounded by O(n2(p + m)):
O(n2m) to compute the E(i, j, 1), i ∈ {1, . . . , n},j ∈ {i, . . . , n} and O(n2p) to compute the
E(1, i, k), i ∈ {1, . . . , n} and k ∈ {2, . . . , p}.

To prove the theorem in the no-overlap model, we must replace max

(

δi−1

b ,
Pj

k=i
wk

sℓ
, δj

b

)

by

δi−1

b +
Pj

k=i
wk

sℓ
+ δj

b in the definition of F j
i .

19

5.2.2 Results with many applications

One-to-one mapping

Theorem 19 On communication homogeneous platforms, a one-to-one mapping, which mini-
mizes the power consumption for a given period by application, can be determined in polynomial
time.

Proof We build a bipartite graph, and find a minimum weighted bipartite matching in it, that
means a matching in which the sum of the edges weights are minimum.

Let G = (U, V, E) a bipartite graph, where U is the processor set, and V the stage set.
For each processor and each stage, the weight of the edge between the two vertices is ∞ if the
processor cannot execute the stage within the period, and else the energy consumed by the
processor when it is running in the smallest mode which allows it to run the stage within the
period.

Finally finding a minimum weighted bipartite matching will give us, in polynomial time, the
minimum power consumption needed to execute the all stages in a one-to-one mapping.

The complexity of the Hopcroft-Karp algorithm, which solves this problem, is in O(
√

UV E),

so in O
(

(np)
3
2

)

in our case.

Theorem 20 On fully heterogeneous platforms, finding a one-to-one mapping, which minimizes
the power consumption for given periods or the global period for a given energy, is a NP-complete
problem.

Proof This comes directly from the NP-completeness of the period minimization problem.

Interval mapping

Theorem 21 On fully homogeneous platforms, an interval mapping, which minimizes the power
consumption for a given period by application, can be determined in polynomial time.

Proof For a ∈ {1, . . . , A} and k ∈ {0, . . . , p}, let Ek
a the minimum energy consumed by k

processors on the application a, computed by the previous dynamic programming algorithm.
If it fails, Ek

a = +∞. We note E(a, k) the minimum energy consumed by k processors on the
applications 1, . . . , a, so we are looking for mink∈{1,...,p} E(A, k). This energy can be computed
recursively, thanks to the relations:

∀k ∈ {1, . . . , p}
{

∀a ∈ {2, . . . , A} E(a, k) = minq∈{0,...,k−1} (Eq
a + E(a− 1, k − q))

E(1, k) = Ek
1

If we first compute the Eq
a for each a ∈ {1, . . . , A} and q ∈ {1, . . . , p}, then call the previous

algorithm, the whole complexity is in O(An3p2 + Ap), so O(An3p2).

Theorem 22 On not fully homogeneous platform, finding an interval mapping, which mini-
mizes the power consumption for a given period by application or the global period for a given
energy, is a NP-complete problem.

Proof Under those hypothesis the period minimization problem is NP-complete. So the bi-
criteria minimization problem is.

5.3 Period/latency/energy minimization

We can straight away restrain our study field: as the bi-criteria period/latency minimization
problem is NP-complete on any other platform type than fully homogeneous, this tri-criteria is
already NP-complete for those platform types.

Moreover we study both uni-modal and multi-modal processors, since their difference be-
comes more remarkable on the complexity results.

20

5.3.1 Uni-modal processors

Theorem 23 On fully homogeneous platforms, finding a one-to-one mapping that solves the
tri-criteria problem can be done in polynomial time.

Proof On those platforms all mappings are equivalent, and we do not have to make a choice
on the processors speed.

Theorem 24 On fully homogeneous platforms, finding an interval mapping that solves the tri-
criteria problem can be done in polynomial time.

Proof For one application, we wrote a polynomial time algorithm that minimizes the latency
for a bounded period and a given maximum number of processors, or minimizes the period, for
a bounded latency and a given maximum number of processors.

Let us come back to several concurrent applications and try to solve the problem: mini-
mization of T = maxa∈{1,...,A} Wa ·Ta for a given array of latency and a given consumed energy.
The given energy gives us the maximum number of available processors, as they have only one
mode. We can then once more reuse the Algorithm 2. Instead of computing the new period Ta′

of the application a′, we run the algorithm that minimizes the period for a given latency, which
is here the a′th element of the given latency array.

For an application a′, the complexity of computing the minimum latency for a given period
and q processors, knowing the minimum latency for the same given period and q− 1 processors
is in O(n2). The complexity of the whole algorithm is thus O(n2p).

We consider now the variant of the tri-criteria problem: latency minimization for given pe-
riods by application and a given consumed energy. It can be solved in the same way, with the
Algorithm 2. We firstly build the sorting period set once, then for one application, the com-
plexity of computing the minimum period for a given latency and a given number of processors
is O(n2 log n) if we know the result with less processors. The final complexity is O(n2p log n).

The last variant (energy minimization for given periods and latency by application) is sim-
pler: we iterate on the applications. While there are remaining applications and processors, we
compute the minimum number of needed processors to obtain a latency of the current applica-
tion lesser than the latency given in the latency array, and a period lesser than the one given in
the period array (with one of the bi-criteria problem; we choose rather the latency minimization
for a given period, because of its better complexity). The sum of all energies is the energy we
are looking for.

The complexity of this algorithm is O(n2p).

Theorem 25 On not fully homogeneous platforms, finding an interval mapping or a one-to-one
mapping that solves the tri-criteria problem is a NP-complete problem.

Proof The period/latency minimization problem is already NP-complete under those hypoth-
esis.

5.3.2 Multi-modal processors

Theorem 26 On fully homogeneous platforms, with a single application and without any com-
munication cost, finding a one-to-one mapping that solves the tri-criteria problem is NP-hard.

Proof We consider the associated decision problem: given a period T, a latency L and an
energy E, does there exist a one-to-one mapping of period less than T, latency less than L and
energy less than E?

• The problem is obviously in NP: given a period, a latency, an energy and a mapping, it
is easy to check in polynomial time that the mapping is valid.

21

• To establish the completeness, we use a reduction from 2-partition [8]. We consider an
instance I1 of 2-partition: given n strictly positive integers a1, a2, . . . , an, does there
exists a subset I of {1, . . . , n} such that

∑

i∈I ai =
∑

i/∈I ai? Let S =
∑n

i=1 ai.

We build an instance I2 of our problem with n identical processors, each with m = 2n+1
modes such that:

∀i ∈ {1, . . . , n}
{

s2i−1 = Ki

s2i = Ki + ai·X
Kiα

and a pipelined application composed of n stages, with computation costs wi = Ki(α+1).

Remember that α is the exponent used in the computation of the energy (see Section 3.5).
Intuitively, the idea is to choose K such that (i) stage weights are far enough from one
another and (ii) there is a gap between (s2i−1, s2i) and (s2j−1, s2j). Then the mapping
will use exactly one component of every pair (s2i−1, s2i). We choose K such that for each
j ∈ {2, . . . , n},

Kjα >

j−1
∑

i=1

Kiα + α ·
(

S

2
− 1

2

)

and Kjα+1 >

j
∑

i=1

Kiα +

(

Kα+1

Kj−1
· aj−1 + 1− S

2

)

We can choose such a K, because the degrees of K in the left hands are strictly higher
than those of the right hands. For each j ∈ {2, . . . , n} and each 0 < X < 1:

Kjα >

j−1
∑

i=1

Kiα + αX ·
(

S

2
− 1

2

)

and Kjα+1 >

j
∑

i=1

Kiα + X ·
(

Kα+1

Kj−1
· aj−1 + 1− S

2

)

For all i ∈ {1, . . . , n}, if we choose speed s2i instead of speed s2i−1, the additional energy
is:

sα
2i − sα

2i−1 = (Ki +
ai ·X
Kiα

)α −Kiα

= Kiα · (1 + α · ai ·X
Kiα

+ o(X))−Kiα

= αaiX + fE
i (X)

where fE
i (X) =

x→0
o(X).

In the same way, for each i ∈ {1, . . . , n}, the difference in latency when using speed s2i

instead of speed s2i−1 to execute stage Si is:

wi

s2i−1
− wi

s2i
=

Ki(α+1)

Ki
− Ki(α+1)

Ki + ai·X
Kiα

=
Ki(α+1)

Ki
− Ki(α+1)

Ki
·
(

1− ai ·X
Kiα

+ o(X)

)

= ai ·X − fL
i (X)

where fL
i (X) =

x→0
o(X).

22

For all i ∈ {2, . . . , n}, the time to execute Si at speed s2i−2 is:

wi

s2i−2
=

Ki(α+1)

Ki−1 + ai−1·X

K(i−1)α

=
Ki(α+1)

Ki−1
·
(

1− ai−1X

K(i−1)(α+1)
+ o(X)

)

= Kiα+1 − Kα+1

Ki−1
· ai−1X + fLi(X)

So we choose X < 1 small enough, so that for each i ∈ {1, . . . , n},
{

|fE
i (X)| < X · α

2n
|fL

i (X)| < X · 1
2n

and for all i ∈ {2, . . . , n}, |fLi(X)| < X · 1
2 . Finally, we have to decide for the latency,

the energy and the period bounds. Let E∗ and L∗ be the energy and latency obtained
when Si is executed at speed s2i−1 for all i ∈ {1, . . . , n}:

E∗ =
n
∑

i=1

sα
2i−1 =

n
∑

i=1

Kiα

L∗ =

n
∑

i=1

wi

s2i−1
= E∗

We ask whether it is possible to achieve an energy Eo = E∗ + X · (S/2 + 1/2), a latency
Lo = L∗ − (S/2− 1/2) and a period T o = Lo. Clearly, the size of I2 is polynomial in the
size of I1. We show that I1 has a solution if and only if I2 does.

Assume first that I1 has a solution. For each i ∈ I, stage Si is executed at speed s2i, and
for each i ∈ {1, . . . , n} \ I, stage Si is executed at speed s2i−1. The mapping consumes an
energy E and has a latency L, where:

E = E∗ +
∑

i∈I

(

sα
2i − sα

2i−1

)

= E∗ +
∑

i∈I

(

αaiX + fE
i (X)

)

≤ E∗ +
∑

i∈I

(

αaiX +
αX

2n

)

≤ E∗ + αX ·
(

S

2
+

1

2

)

≤ Eo

L = L∗ −
∑

i∈I

(

wi

s2i−1
− wi

s2i

)

= L∗ −
∑

i∈I

(

aiX − fL
i (X)

)

≤ L∗ −
∑

i∈I

(

aiX −
X

2n

)

≤ L∗ − αX ·
(

S

2
− 1

2

)

≤ Lo

Because T o = Lo, and because we fulfill the latency constraint, we fulfill the period
constraint too. We conclude that I2 has a solution.

Suppose now that I2 has a solution. We first show that for each i ∈ {1, . . . , n}, stage Si

is executed at speed either s2i−1 or s2i. Let (Pj) be the property: for each i ∈ {j, . . . , n},
there is a single processor running at speed s2i−1 or s2i, and this processor is assigned
stage Si. We first prove that (Pn) is true. On the one hand, if two processors were running

23

at speed s2n−1 or s2n, they would consume an energy:

E ≥ 2 · sα
2n−1 > Knα +

n−1
∑

i=1

Kiα + αX ·
(

S

2
+

1

2

)

> Eo

On the other hand, if no processor was running at speed s2n−1 or s2n, the latency would
verify:

L ≥ wn

s2n−2
≥ Knα+1 − Kα+1

Kn−1
· an−1X + fLi(X)

>
n
∑

i=1

Kiα + X ·
(

Kα+1

Kn−1
· an−1 + 1− S

2

)

− Kα+1

Kn−1
· an−1X + fLi(X)

>
n
∑

i=1

Kiα −X ·
(

S

2
− 1

2

)

+

(

X

2
+ fLi(X)

)

> Lo

We conclude that (Pn) is true. We now proceed by induction. If for some j ∈ {3, . . . , n},
(Pj) is true, then we show that (Pj−1) is true in a quite similar way. In the end, (P2) is
true (and the processor that is assigned stage S1 is running either at speed s1, or at speed
s2). Let I the subset of {1, . . . , n} such that the processor that is assigned the stage Si is
running at speed s2i. Then for each i ∈ {1, . . . , n}\I, the processor that is assigned stage
Si is running at speed s2i−1. The consumed energy is E = E∗ +

∑

i∈I

(

αaiX + fE
i (X)

)

.
But E ≤ Eo, hence

∑

i∈I

ai ≤
S

2
+

(

1

2
−
∑

i∈I fE
i (X)

αX

)

therefore
∑

i∈I ai < S
2 +

(

1
2 + 1

2

)

. As the ai are integers, we derive that
∑

i∈I ai ≤ S
2 .

The achieved latency is L = L∗ −
∑

i∈I

(

aiX − fL
i (X)

)

, and L ≤ Lo, hence

∑

i∈I

ai ≥
S

2
−
(

1

2
−
∑

i∈I fL
i (X)

X

)

Since
P

i∈I fL
i (X)

X ≤ 1
2 , we get:

∑

i∈I

ai ≥
S

2

Finally,
∑

i∈I ai = S
2 and I1 has a solution.

Theorem 27 On fully homogeneous platforms, with a single application and without any com-
munication cost, finding an interval mapping that solves the tri-criteria problem is NP-hard.

Proof We only give the sketch of the completeness proof, which reuses the proof of Theo-
rem 26. To construct the instance I2, we insert big stages between the previous stages. We add
a big speed to the processor modes, adjusted to allow the execution of exactly one big stage
during the period. More formally, we build a pipeline composed of 2n− 1 stages, such that:

{

∀i ∈ {1, . . . , n} w2i−1 = Ki(α+1)

∀i ∈ {1, . . . , n− 1} w2i = K(n+1)(α+1)

24

We use 2n− 1 identical processors, that can run 2n + 1 modes, such that:







∀i ∈ {1, . . . , n}
{

s2i−1 = Ki

s2i = Ki + ai·X
Kiα

s2n+1 = Kn+1

We search for an interval mapping, whose energy does not exceed Eo = (n − 1)K(n+1)α +
E∗+X ·(S/2+1/2), whose latency does not exceed Lo = (n−1)K(n+1)α +L∗−(S/2−1/2), and
whose period does not exceed T o = K(n+1)α. If the instance I1 of 2-partition has a solution,
we proceed like in the previous proof, and map every big stage onto a processor that is running
in its highest mode. All constraints are fulfilled.

If the instance I2 has a solution, we have to run processors that are assigned a big stage
in their highest mode. Moreover, these processors cannot be assigned other stages. All we
have to do next is to find a one-to-one mapping of the unassigned stages. while the additional
constraint that we cannot run the remaining processors in their highest modes without exceeding
the energy bound. We then conclude as in the proof of Theorem 26.

5.4 Summary

All complexity results are summarized in Table 2. Just as before, all results apply to both the
overlap and no-overlap models, and to all objective functions introduced in Section 3.3.

For each bi-criteria problem it is polynomial when the two mono-criterion problems are
polynomial and turns NP-complete when at least one of the mono-criterion problem is NP-
complete.

The tri-criteria problem is NP-complete with multi-modal processors even on fully homoge-
neous platforms.

proc-hom proc-het
com-hom special-app com-hom com-het

Period/Latency - both polynomial NP-complete

Period/Energy - one-to-one polynomial (minimum matching) NP-complete
Period/Energy - interval polynomial (dyn. prog.) NP-complete

Period/Latency/Energy - both NP-complete

Table 2: Complexity results for multi-criteria optimization problems with multi-modal proces-
sors

6 Conclusion

In this paper, we have studied the problem of mapping concurrent applications onto computa-
tional platforms according to three criteria: period, latency and energy. We restricted ourselves
to the class of applications which have a pipeline structure, and studied the complexity of the
problems for different variants of mapping strategies (one-to-one and interval mappings), and
different types of platforms (ranking from fully homogeneous to fully heterogeneous).

First we considered performance criteria, namely period or latency minimization. From this
study of mono-criterion problems, one striking result is the impact of having multiple concurrent
applications on the problem complexity. Indeed, when several applications are in competition
for resources, the period minimization problem turns out NP-hard for interval mappings with
heterogeneous processors, homogeneous pipelines and without communication, while a poly-
nomial algorithm had been found to solve the same problem with a single application. The
same phenomenon happens for latency minimization with one-to-one mappings. For other pe-
riod or latency minimization problems, either we were able to extend polynomial algorithms
for the single application case, or the problem remained NP-complete. Considering bi-criteria

25

problems, we put a particular emphasis on problems involving both performance and energy
criteria. We were able to derive nice sophisticated multi-criteria polynomial algorithms, through
the construction of bipartite graphs or the use of dynamic programming. Trade-offs were found
to allow for an efficient albeit energy-aware execution. Finally, the most challenging tri-criteria
problem period/latency/energy turned out to be NP-hard even with a single application on a
fully homogeneous platform and no communication cost.

We believe that this exhaustive complexity analysis provides a solid theoretical foundation
for the study of multi-criteria mappings of several concurrent applications, in particular when
combining performance and energy optimization criteria.

As future work, on the theoretical side, we envision to add replication into the mappings: a
stage could be mapped onto several processors, each in charge of different data sets, in order to
improve the period, as was investigated in [4]. The problem would become even more challenging
in a framework accounting for energy issues. On a more practical side, we plan to design some
polynomial-time heuristics to solve the tri-criteria optimization problem in a general framework,
in order to offer practical solutions to a difficult problem. It would also be challenging, both
from a theoretical and a practical perspective, to assess the impact of processor sharing between
applications, for situations in which it would be allowed by the platform manager.

26

References

[1] K. Agrawal, A. Benoit, L. Magnan, and Y. Robert. Scheduling algorithms for workflow
optimization. Research Report 2009-22, LIP, ENS Lyon, France, July 2009. Available at
http://graal.ens-lyon.fr/~yrobert/. Short version submitted to IPDPS’2010.

[2] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics for schedul-
ing continuous job streams. In Proceedings of SODA’98, 1998.

[3] A. Benoit and Y. Robert. Mapping pipeline skeletons onto heterogeneous platforms. J.
Parallel and Distributed Computing, 68(6):790–808, 2008.

[4] A. Benoit and Y. Robert. Complexity results for throughput and latency optimiza-
tion of replicated and data-parallel workflows. Algorithmica, 2009. Available online at
http://dx.doi.org/10.1007/s00453-008-9229-4.

[5] A. Benoit, Y. Robert, and E. Thierry. On the complexity of mapping linear chain appli-
cations onto heterogeneous platforms. Parallel Processing Letters (PPL), 19(3):383–397,
2009.

[6] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel
Programming. Parallel Computing, 30(3):389–406, 2004.

[7] DataCutter Project: Middleware for Filtering Large Archival Scientific Datasets in a Grid
Environment. http://www.cs.umd.edu/projects/hpsl/ResearchAreas/DataCutter.

htm.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

[9] R. Ge, X. Feng, and K. W. Cameron. Performance-constrained distributed DVS scheduling
for scientific applications on power-aware clusters. In ACM/IEEE conference on Supercom-
puting (SC’05), page 34. IEEE Computer Society, 2005.

[10] S. L. Hary and F. Ozguner. Precedence-constrained task allocation onto point-to-point
networks for pipelined execution. IEEE Trans; Parallel and Distributed Systems, 10(8):838–
851, 1999.

[11] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and D. Takahashi. Profile-based
optimization of power performance by using dynamic voltage scaling on a PC cluster. In In-
ternational Parallel and Distributed Processing Symposium IPDPS’2006. IEEE Computer
Society Press, 2006.

[12] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically variable voltage
processors. In International Symposium on Low Power Electronics and Design (ISLPED),
pages 197–202. ACM Press, 1998.

[13] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A grid-enabled implementation of the
message passing interface. J. Parallel and Distributed Computing, 63(5):551–563, 2003.

[14] F. Rabhi and S. Gorlatch. Patterns and Skeletons for Parallel and Distributed Computing.
Springer Verlag, 2002.

[15] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D. Tarjan.
Temperature-aware microarchitecture: modeling and implementation. ACM Transactions
on Architecture and Code Optimization, 1(1):94–125, 2004.

27

[16] J. Subhlok and G. Vondran. Optimal mapping of sequences of data parallel tasks. In Proc.
5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 1995.

[17] J. Subhlok and G. Vondran. Optimal latency-throughput tradeoffs for data parallel
pipelines. In ACM Symposium on Parallel Algorithms and Architectures, 1996.

[18] K. Taura and A. A. Chien. A heuristic algorithm for mapping communicating tasks on
heterogeneous resources. In Heterogeneous Computing Workshop, pages 102–115. IEEE
Computer Society Press, 2000.

[19] N. Vydyanathan, U. Catalyurek, T. Kurc, P. Saddayappan, and J. Saltz. Toward optimizing
latency under throughput constraints for application workflows on clusters. In Euro-Par’07,
LNCS 4641, pages 173–183. Springer Verlag, 2007.

[20] N. Vydyanathan, U. Catalyurek, T. Kurc, P. Saddayappan, and J. Saltz. A duplication
based algorithm for optimizing latency under throughput constraints for streaming work-
flows. In ICPP’2008, the Int. Conf. on Parallel Processing, pages 254–261. IEEE Computer
Society Press, 2008.

[21] Q. Wu, J. Gao, M. Zhu, N. Rao, J. Huang, and S. Iyengar. On optimal resource utilization
for distributed remote visualization. IEEE Trans. Computers, 57(1):55–68, 2008.

[22] Q. Wu and Y. Gu. Supporting distributed application workflows in heterogeneous comput-
ing environments. In 14th International Conference on Parallel and Distributed Systems
(ICPADS). IEEE Computer Society Press, 2008.

28

