
HAL Id: inria-00441952
https://hal.inria.fr/inria-00441952

Submitted on 17 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantifying the Sub-optimality of Uniprocessor Fixed
Priority Pre-emptive Scheduling for Sporadic Tasksets

with Arbitrary Deadlines
Robert Davis, Sanjoy Baruah, Thomas Rothvoss, Alan Burns

To cite this version:
Robert Davis, Sanjoy Baruah, Thomas Rothvoss, Alan Burns. Quantifying the Sub-optimality of
Uniprocessor Fixed Priority Pre-emptive Scheduling for Sporadic Tasksets with Arbitrary Deadlines.
Laurent George and Maryline Chetto andMikael Sjodin. 17th International Conference on Real-Time
and Network Systems, Oct 2009, Paris, France. pp.23-34, 2009. <inria-00441952>

https://hal.inria.fr/inria-00441952
https://hal.archives-ouvertes.fr

Quantifying the Sub-optimality of Uniprocessor Fixed Priority Pre-emptive
Scheduling for Sporadic Tasksets with Arbitrary Deadlines

Robert I. Davis ()
Real-Time Systems Research Group,

Department of Computer Science,
University of York, York, UK.

rob.davis@cs.york.ac.uk

Sanjoy K. Baruah
Department of Computer Science,

University of North Carolina,
Chapel Hill, NC 27599-317,

Carolina, USA.
baruah@cs.unc.edu

Thomas Rothvoß
Ecole Polytechnique Federale de Lausanne,

Institute of Mathematics, Station 8 - Bâtiment
MA, CH-1015 Lausanne, Switzerland.

thomas.rothvoss@epfl.ch

Alan Burns
Real-Time Systems Research Group,

Department of Computer Science,
University of York, York, UK.

alan.burns@cs.york.ac.uk

Abstract
This paper examines the relative effectiveness of fixed

priority pre-emptive scheduling in a uniprocessor system,
compared to an optimal algorithm such as Earliest
Deadline First (EDF). The quantitative metric used in this
comparison is the processor speedup factor, defined as the
factor by which processor speed needs to increase to
ensure that any taskset that is schedulable according to an
optimal scheduling algorithm can be scheduled using fixed
priority pre-emptive scheduling. For implicit-deadline
tasksets, the speedup factor is 1/ln(2) . For
constrained-deadline tasksets, the speedup factor is

. In this paper, we show that for arbitrary-
deadline tasksets, the speedup factor is lower bounded by

 and upper bounded by 2. Further, when
deadline monotonic priority assignment is used, we show
that the speedup factor is exactly 2.

1.44270 ≈

76322.1/1 ≈Ω

76322.1/1 ≈Ω

693.0)2ln(

1. Introduction

In this paper, we are interested in determining the
largest factor by which the processing speed of a
uniprocessor would need to be increased, such that any
feasible taskset (that was previously schedulable according
to an optimal scheduling algorithm) could be guaranteed to
be schedulable according to fixed priority pre-emptive
scheduling. We refer to this resource augmentation factor
as the processor speedup factor [14].

In 1973, Liu and Layland [18] considered fixed priority

pre-emptive scheduling of synchronous1 tasksets
comprising independent periodic tasks, with bounded
execution times, and deadlines equal to their periods. We
refer to such tasksets as implicit-deadline tasksets. Liu and
Layland showed that rate monotonic priority ordering
(RMPO) is the optimal fixed priority assignment policy for
implicit-deadline tasksets, and that using rate monotonic
priority ordering, fixed priority pre-emptive scheduling can
schedule any implicit-deadline taskset with a total
utilisation ≈≤U .

Liu and Layland also showed that Earliest Deadline
First (EDF) is an optimal dynamic priority scheduling
algorithm for implicit-deadline tasksets, and that EDF can
schedule any such taskset with a total utilisation 1≤U .

In 1974, Dertouzos [11] showed that EDF is in fact an
optimal pre-emptive uniprocessor scheduling algorithm, in
the sense that if a valid schedule exists for a taskset, then
the schedule produced by EDF will also meet all deadlines.

Combining the result of Dertouzos [11] with the results
of Liu and Layland [18] for both EDF and fixed priority
pre-emptive scheduling, we can see that the processor
speedup factor required to guarantee that fixed priority pre-
emptive scheduling can schedule any feasible implicit-
deadline taskset is 1 44270.1)2ln(/ ≈ .

Research into real-time scheduling during the 1980’s
and early 1990’s focussed on lifting many of the
restrictions of the Liu and Layland task model. Task
arrivals were permitted to be sporadic, with known

1 A taskset is synchronous if all of its tasks share a common release time.

In Proc. of the 17th International Conference on Real-Time and Network Systems
RTNS'2009, Paris, ECE, 26-27 October, 2009

mailto:rob.davis@cs.york.ac.uk
mailto:baruah@cs.unc.edu
mailto:thomas.rothvoss@epfl.ch
mailto:alan.burns@cs.york.ac.uk

minimal inter-arrival times, (still referred to as periods),
and task deadlines were permitted to be less than or equal
to their periods (so called constrained deadlines) or less
than, equal to, or greater than their periods (so called
arbitrary deadlines).

In 1982, Leung and Whitehead [15] showed that
deadline monotonic2 priority ordering (DMPO) is the
optimal fixed priority ordering for constrained-deadline
tasksets. Exact fixed priority schedulability tests for
constrained-deadline tasksets were introduced by Joseph
and Pandya in 1986 [13], Lehoczky et al. in 1989 [17], and
Audsley et al. in 1993 [1].

In 1990, Lehoczky [16] showed that deadline
monotonic priority ordering is not optimal for tasksets with
arbitrary deadlines; however, an optimal priority ordering
for such tasksets can be determined, in at most 2/)1(+nn
task schedulability tests, using Audsley’s optimal priority
assignment algorithm3 [1].

Exact schedulability tests for tasksets with arbitrary
deadlines were developed by Lehoczky [16] in 1990 and
Tindell et al. in 1994 [20].

Exact EDF schedulability tests for both constrained and
arbitrary-deadline tasksets were introduced by Baruah et
al. in 1990 [6], [7].

In 2008, Baruah and Burns [5] showed that the
processor speedup factor for constrained-deadline tasksets
is lower bounded by 1.5 and upper bounded by 2. In 2009,
Davis et al. [10] derived the exact speedup factor for
constrained-deadline tasksets; (where 76322.1/1 ≈Ω Ω
is the mathematical constant defined by the transcendental
equation , hence,). Ω=Ω)/1ln(0.567143 ≈Ω

In this paper, we derive the speedup factor for fixed
priority pre-emptive scheduling of arbitrary-deadline
tasksets. We are able to give an exact speedup factor when
deadline monotonic priority assignment is used, and upper
and lower bounds assuming an optimal priority
assignment.

It is known that an exact condition for the schedulability
of a constrained or arbitrary-deadline taskset under an
optimal pre-emptive uniprocessor scheduling algorithm,
such as EDF [11], is that a quantity referred to as the
processor LOAD (see Section 2.3) does not exceed the
capacity of the processor (i.e. LOAD) [6], [7]. 1≤

The processor speedup factor derived in this paper
shows that every arbitrary-deadline taskset with
LOAD is guaranteed to be schedulable according to
fixed priority pre-emptive scheduling using either

5.0≤

2 Deadline monotonic priority ordering assigns priorities in order of task
deadlines, such that the task with the shortest deadline is given the highest
priority.
3 This algorithm is optimal in the sense that it finds a schedulable priority
ordering whenever such an ordering exists.

deadline-monotonic priority assignment or an optimal
priority assignment algorithm.

This result complements the earlier results of Davis et
al. [10] that every constrained-deadline taskset with
LOAD 567143.0≤ Ω ≈ is guaranteed to be schedulable
according to fixed priority pre-emptive scheduling using
deadline-monotonic priority assignment; and the seminal
result of Liu and Layland [18] (693.0)2ln(≈≤U), that
applies to implicit-deadline tasksets.

While the results presented in this paper are mainly
theoretical, they also have practical utility in enabling
system designers to quantify the maximum penalty for
using fixed priority pre-emptive scheduling in terms of the
additional processing capacity required. This performance
penalty can then be weighed against other factors such as
implementation overheads when considering which
scheduling algorithm to use.

1.1. Related work on average case sub-optimality

This paper examines the sub-optimality of fixed priority
pre-emptive scheduling in the worst-case, other research
has examined its behaviour in the average-case.

In 1989, Lehoczky et al. [17] introduced the breakdown
utilisation metric: A taskset is randomly generated, and
then all task execution times are scaled until a deadline is
just missed. The utilisation of the scaled taskset gives the
breakdown utilisation. Lehoczky et al. showed that the
average breakdown utilisation, for implicit-deadline
tasksets of large cardinality under fixed priority pre-
emptive scheduling is approximately 88%, corresponding
to a penalty of approximately 12% of processing capacity
with respect to an optimal algorithm such as EDF.

In 2005, Bini and Buttazzo [8] showed that breakdown
utilisation suffers from a bias which tends to penalise fixed
priority scheduling by favouring tasksets where the
utilisation of individual tasks is similar. Bini and Buttazzo
introduced the optimality degree metric, defined as the
number of tasksets in a given domain that are schedulable
according to some algorithm A. divided by the number that
are schedulable according to an optimal algorithm. Using
this metric, they showed that the penalty for using fixed
priority-pre-emptive scheduling for implicit-deadline
tasksets is typically significantly lower than that assumed
by determining the average breakdown utilisation.

1.2. Organisation

The remainder of this paper is organised as follows.
Section 2 describes the system model and notation used,
and recapitulates exact schedulability analysis for both
fixed priority and EDF scheduling. Section 3 illustrates the
processor speedup factor via a simple example. Section 4

In Proc. of the 17th International Conference on Real-Time and Network Systems
RTNS'2009, Paris, ECE, 26-27 October, 2009

derives the processor speedup factor required for arbitrary-
deadline tasksets under fixed priority pre-emptive
scheduling. Section 5 concludes with a summary of the
results.

2. Scheduling model and schedulability
analysis

In this section, we outline the scheduling model,
notation and terminology used in the rest of the paper. We
then recapitulate the exact schedulability analysis for both
fixed priority pre-emptive scheduling and EDF scheduling.

2.1. Scheduling model, terminology and notation

In this paper, we consider the pre-emptive scheduling of
a set of tasks (or taskset) on a uniprocessor.

Each taskset comprises a static set of n tasks (nττ ..1),
where n is a positive integer. We assume that the index i of
task iτ also represents the task priority used in fixed
priority pre-emptive scheduling, hence 1τ has the highest
fixed-priority, and nτ the lowest.

Each task iτ is characterised by its bounded worst-case
execution time iC , minimum inter-arrival time or period

i , and relative deadline i . Each task iT D τ therefore gives
rise to a potentially infinite sequence of invocations, each
of which has an execution time upper bounded by iC , an
arrival time at least iT after the arrival of its previous
invocation, and an absolute deadline time units after its
arrival.

iD

ii TDIn an implicit-deadline taskset, all tasks have = .
In a constrained-deadline taskset, all tasks have ii TD ≤ ,
while in an arbitrary-deadline taskset, task deadlines are
independent of their periods, thus each task may have a
deadline that is less than, equal to, or greater than, its
period. The set of arbitrary-deadline tasksets is therefore a
superset of the set of constrained-deadline tasksets, which
is itself a superset of the set of implicit deadline tasksets.

The utilisation i , of a task is given by its execution
time divided by its period (iU = iC / iT). The total
utilisation U, of a taskset is the sum of the utilisations of
all of its tasks:

U

∑
=

=
n

i i

i

T
C

U
1

 (1)

The following assumptions are made about the
behaviour of the tasks:

o The arrival times of the tasks are independent and
hence the tasks may share a common release time.

o Each task is released (i.e. becomes ready to
execute) as soon as it arrives.

o The tasks are independent and so cannot block
each other from executing by accessing mutually

exclusive shared resources, with the exception of
the processor.

o The tasks do not voluntarily suspend themselves.
A task is said to be ready if it has outstanding

computation and so is awaiting execution by the processor.
A taskset is said to be schedulable with respect to some

scheduling algorithm and some system, if all possible
sequences of task invocations (or jobs) that may be
generated by the taskset can be scheduled on the system by
the scheduling algorithm without any deadlines being
missed.

Under Earliest Deadline First (EDF) scheduling, at any
given time, the ready task invocation with the earliest
absolute deadline is executed by the processor. In contrast,
under fixed priority pre-emptive scheduling, at any given
time, the highest priority ready task is executed by the
processor.

When a taskset is scheduled according to fixed
priorities, task priorities need to be assigned according to
some algorithm. Optimal priority assignment algorithms
are known for implicit-deadline [18], constrained-deadline
[15], and arbitrary-deadline [1] tasksets.

A priority assignment policy P is said to be optimal
with respect to some class of tasksets if there are no
tasksets in the class that are schedulable according to fixed
priority pre-emptive scheduling using any other priority
ordering policy that are not also schedulable using the
priority assignment determined by policy P.

A taskset is said to be feasible with respect to a given
system model if there exists some scheduling algorithm
that can schedule all possible sequences of task activations
that may be generated by the taskset on that system
without missing any deadlines. Note, in this paper, we are
primarily interested in a reference system model that
consists of a pre-emptive uniprocessor with unit processing
speed.

A scheduling algorithm is said to be optimal with
respect to a system model and a tasking model if it can
schedule all of the tasksets that comply with the tasking
model and are feasible on the system.

We note that EDF is known to be an optimal pre-
emptive uniprocessor scheduling algorithm for tasksets
compliant with the tasking model described in this section
[11]. Least Laxity First is another such optimal algorithm
[19].

A schedulability test is termed sufficient, with respect to
a scheduling algorithm and system model, if all of the
tasksets that are deemed schedulable according to the test
are in fact schedulable on the system under the scheduling
algorithm. Similarly, a schedulability test is termed
necessary, if all of the tasksets that are deemed
unschedulable according to the test are in fact
unschedulable on the system under the scheduling

In Proc. of the 17th International Conference on Real-Time and Network Systems
RTNS'2009, Paris, ECE, 26-27 October, 2009

algorithm. A schedulability test that is both sufficient and
necessary is referred to as exact.

2.2. Schedulability analysis for fixed priority pre-
emptive scheduling

In this section, we give a brief summary of Response
Time Analysis [2] used to provide an exact schedulability
test for fixed priority pre-emptive scheduling of
constrained-deadline tasksets. We then recapitulate on
response time analysis for arbitrary-deadline tasksets.

First, we introduce the concepts of worst-case response
time, synchronous arrival sequence, and busy periods,
which are fundamental to response time analysis.

For a given taskset scheduled under fixed priority pre-
emptive scheduling, the worst-case response time i of
task i

R
τ is given by the longest possible time from release

of the task until it completes execution. Thus task iτ is
schedulable if and only if , and the taskset is
schedulable if and only if .

ii
DRi ≤∀

DR ≤
ii

A synchronous arrival sequence refers to a pattern of
arrival such that all tasks arrive simultaneously, and then
subsequently as early as possible given the constraints on
minimum inter-arrival times.

The term priority level-i busy period refers to a period
of time during which the processor is busy
executing computation at priority i or higher, that was
released at the start of the busy period at 1 , or during the
busy period but strictly before its end at t .

),[21 tt

t
2

The synchronous arrival sequence generates the longest
possible priority level-i busy period. For constrained-
deadline tasksets, the length i of this busy period
corresponds directly to the worst-case response time of
task i

w

τ . In the remainder of this paper, when we refer to a
priority level-i busy period, we mean the longest such busy
period. Further, when it is clear which priority level is
referred to we use the more concise term, busy period.

The busy period comprises two components, the
execution time of the task itself, and so called interference,
equal to the time for which task iτ is prevented from
executing by higher priority tasks.

For constrained-deadline tasksets, the length of the busy
period i , can be computed using the following fixed
point iteration [2], with the summation term giving the
interference due to the set of higher priority tasks hp(i).

w

j
i jT ⎥⎥⎢⎢)

m
i

m
i ww =+1

R

hpj
ii CCw ∑

∈∀
⎥⎢+=

(

m Dw >+1

m
im w+ ⎤⎡1 (2)

Iteration starts with an initial value , typically
ii , and ends when either in which case

the worst-case response time i , is given by i , or
when ii in which case the task is unschedulable.
The fixed point iteration is guaranteed to converge

provided that the overall taskset utilisation is less than or
equal to 1.

0
iw

Cw =0

1+mw

 Equation (2) gives an exact schedulability test for the
fixed priority pre-emptive scheduling of constrained-
deadline tasksets with any fixed priority ordering.

For arbitrary-deadline tasksets, execution of one
invocation of a task may not necessarily be complete
before the next invocation is released. Hence a number of
invocations of task iτ may be present within the longest
priority level-i busy period, with earlier invocations
delaying the execution of later ones. In general it is
therefore necessary to compute the response times of all
invocations within the busy period in order to determine
the worst-case response time [20].

The length of the busy period i , starting at the
simultaneous arrival of all tasks and extending until the
completion of the qth invocation of i

)(qw

τ (where q = 0 is the
first invocation) is given by the fixed point iteration:

∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
++=

)(

1)(
)1()(

ihpj
j

j

n
i

i
n
i C

T
qw

Cqqw

)(0 qwi
Cqqw)1()(0 +=)()(1 qwqw n

i
n =+

)(qR
n qTqw −+)(1

i
n DqTqw >−+)(1

Tqqw)1()(

 (3)

Iteration starts with an initial value , typically
ii , and ends when either i

in which case the worst-case response time i , of
invocation q, is given by ii or when

ii in which case invocation q is
unschedulable.

Invocation q can only impinge upon the execution of
subsequent invocations if its completion occurs after their
release. Hence, response times need to be calculated for
invocations q=0,1,2,3… until an invocation q is found that
completes at or before the earliest possible release of the
next invocation q+1, i.e. where: ii +≤

i

. The
worst-case response time of task τ is then given by:

))((max iiqi qTqwR −= ∀

DR

 (4)

Again, the task is schedulable provided that ii . ≤
Equations (3) and (4) give an exact schedulability test

for the fixed priority pre-emptive scheduling of arbitrary-
deadline tasksets with any fixed priority ordering.

The exact schedulability test given by Equations (3) and
(4) potentially requires the examination of a large number
of invocations of the task of interest.

A simpler sufficient schedulability test for a task iτ in
an arbitrary-deadline taskset can be derived by considering
the maximum amount of task execution at priority i and
higher released within an interval of length i starting
with simultaneous arrival of all tasks. If all of this
execution can be completed by i , then this indicates that
the length of the longest priority level-i busy period is at
most i , and hence that all invocations of i

D

D

D τ released in
that busy period meet their deadlines, and so iτ is
schedulable. This sufficient schedulability test is given by

In Proc. of the 17th International Conference on Real-Time and Network Systems
RTNS'2009, Paris, ECE, 26-27 October, 2009

Equation (5):

ij
ihepj j

i DC
T
D

≤
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
∑
=∀)(

 (5)

Where hep(i) is the set of tasks with priorities higher
than or equal to i.

2.3. Exact schedulability analysis for EDF

The schedulability of an arbitrary-deadline taskset under
EDF can be determined via the processor demand bound
function h(t) given below:

i
i i

C
T

th ∑
=

⎟
⎠

⎜
⎝

+⎥
⎦

⎢
⎣

=
1

1,0max)(

1≤

n
iDt ⎟

⎞
⎜
⎛ ⎥⎢ − (6)

Baruah et al [6], [7] showed that a taskset is schedulable
under EDF if and only if a quantity referred to as the
processor LOAD is where the processor LOAD is given
by:

LOAD ⎟
⎠
⎞⎛ th)(

⎜
⎝

=
∀ tt

max

],0(L

 (7)

Further, they showed that the maximum value of
occurs for some value of t in the interval , where L is
defined as follows, thus limiting the number of values of t
that need to be checked to determine schedulability.

tth /)(

⎟⎟
⎠

⎜⎜
⎝

⎟
⎠

⎜
⎝ −

−=
∀ U

DTDDDL ii
i

n 1
)(max,...,max ,21

DkTti +=∀

⎞⎛ ⎞⎛ U (8)

The only values of t that need to be checked in the
interval are those where the processor LOAD can
change, i.e. for integer values of k.

],0(L
ii

Significant developments have been made, extending
the scope of the schedulability tests for both fixed priority
pre-emptive scheduling and EDF; however, these basic
forms are sufficient for the purposes of this paper.

2.4. Definitions

Definition 1: Let be a taskset that is feasible (i.e.
schedulable according to an optimal scheduling algorithm)
on a processor of speed 1. Now assume that

Ψ

)(Ψf is the
lowest speed of any similar processor that will schedule
taskset using scheduling algorithm A. The processor
speedup factor for scheduling algorithm A is given by
the maximum processor speed required to schedule any
such taskset .

Ψ

Ψ
((=f A

1≥Af
Af

1=Af

Af

))Ψmax
Ψ∀

f

For any scheduling algorithm A, we have , with

smaller values of indicative of a more effective
scheduling algorithm, and implying that A is an
optimal algorithm.

In the remainder of the paper, unless otherwise stated,
when we refer to the processor speedup factor, we mean
the processor speedup factor for fixed priority pre-emptive
scheduling using an optimal priority assignment policy.

Definition 2: A taskset is said to be speedup-optimal if it
requires the processor to be speeded up by the processor
speedup factor in order to be schedulable under fixed
priority pre-emptive scheduling. Hence for a speedup-
optimal taskset Ψ , . Aff =Ψ)(

iC iT iD

3. Example

The concept of processor speedup factor defined in the
previous section can be illustrated by means of an
example.

Consider the arbitrary-deadline taskset S comprising the
two tasks defined in Table 1. The parameters of these tasks
appear to have some unusual values; however, this is
because they have been chosen so that the taskset is just
schedulable according to EDF, yet requires a speedup
factor of 1.8 in order to be schedulable according to fixed
priority pre-emptive scheduling, with priorities ordered via
deadline monotonic priority assignment.

Table 1

Task
 1.8 2 16 1τ
 14.4 ∞ 17 2τ

We now show that taskset S is schedulable according to

EDF
Under EDF scheduling, the processor demand bound

function for taskset S is the sum of the processor
demand bound functions 1

)(th
),(τth),(and 2τth for tasks 1τ

and 2τ respectively, where i),(th τ is the processor
demand bound at time t for a single task iτ , given below:

i
i

i
i C

T
Dt

th ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢ −
= 1,0max),(τ (9)

Thus:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥+⎥⎦
⎥

⎢⎣
⎢ −

<
= 168.18.1

2
16

160
),(1 tt

t
th τ (10)

⎣ ⎦ yxyx //as ≤ , we have:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥+
−

<
≤ 168.1

2
)16(8.1

160
),(1 tt

t
th τ

2

 (11)

Similarly, the processor demand bound function for task
τ is:

In Proc. of the 17th International Conference on Real-Time and Network Systems
RTNS'2009, Paris, ECE, 26-27 October, 2009

⎭
⎬
⎫

⎩
⎨
⎧

≥
<

=
174.14
170

),(2 t
t

th τ (12)

Recall that any arbitrary-deadline taskset is schedulable
according to EDF, provided that:

LOAD = 1)(max ≤⎟
⎠
⎞

⎜
⎝
⎛

∀ t
th

t
 (13)

Now, given the following:
(i) The value of tth /)(at times 16=t , 17=t , and

18=t are 1.8, 16.2 and 18 respectively.
(ii) From Equations (11) and (12), an upper bound on

the value of tth /)(at time 18=t is 18.
(iii) From Equation (11), the rate of increase of the

upper bound on tth /)(for 18≥t is 0.9.
Hence, the maximum value of occurs at time

. The processor LOAD of taskset S is therefore 1,
indicating that the taskset is just schedulable according to
EDF.

tth /)(
18=t

 We now consider the schedulability of taskset S when
scheduled according to fixed priority pre-emptive
scheduling, using deadline monotonic priority assignment,
on a processor that has been speeded up by a factor of 1.8.
The parameters of the taskset on this faster processor are
given in Table 2. We refer to this taskset as V.

Table 2

Task iC iT iD

1τ 1 2 16
2τ 8 ∞ 17

Figure 1 illustrates the execution of taskset V under

fixed priority pre-emptive scheduling, assuming a
synchronous arrival sequence.

Figure 1

We note that the worst-case response time of task 1τ is
1 and that of task 2

4. Processor speedup factor for arbitrary-
deadline tasksets

In this section, we derive the exact processor speedup
factor required for the (non-optimal) case where deadline
monotonic priority ordering is used in conjunction with
arbitrary-deadline tasksets. Further, we provide upper and
lower bounds on the processor speedup factor required for
the general case where an optimal priority assignment
algorithm [1] is used to determine task priorities.

4.1. Arbitrary-deadline tasksets with deadline
Monotonic priority ordering

Initially, we consider the case of arbitrary-deadline
tasksets where task priorities are assigned in deadline
monotonic priority order (DMPO). Recall that DMPO is
not optimal in this case [16]; nevertheless, fixed priority
pre-emptive scheduling using DMPO is a simple
combination of scheduling algorithm and priority
assignment policy that is used in many real-time systems.
We now derive an exact processor speedup factor for this
combination.

Lemma 1: An upper bound on the processor speedup
factor for fixed priority pre-emptive scheduling of
arbitrary-deadline tasksets using deadline monotonic
priority assignment is 2.

Proof: Let S be any taskset that is schedulable on a
processor of unit speed according to an optimal scheduling
policy such as EDF.

 For each task kτ , in S, consider the processor demand
bound during an interval of length k . As taskset S is
schedulable according to EDF, it follows that:

D2

τ is 16. Taskset V is only just
schedulable under fixed priority pre-emptive scheduling,
using deadline monotonic priority assignment. Any
reduction in processor speed would result in the taskset
being unschedulable. The processor speedup factor
required is therefore 1.8.

ki

n

i i

ik DC
T

DD
s 21

2
,0max

1
≤⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢ −∑
=

DDki

 (14)

Where s = 1 is the speed of the processor.
Next, consider taskset S scheduled according to fixed

priority pre-emptive scheduling on a processor of speed s =
2 using deadline monotonic priority assignment. DMPO
implies that ki . ∀ ≤ ≤

From Equation (14) above, assuming speed s = 2, and
discarding the contribution from all tasks of lower priority
than k we have:

ki

k

i i

ik DC
T

DD
≤⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢ −∑
=1

1
2

,0max (15)

⎣ ⎦ ⎡ ⎤xx ≥1 ki DDki ≤ and ≤∀ then: As +

ki

k

i i

k DC
T
D

≤⎥
⎥

⎤
⎢
⎢

⎡
∑
=1

 (16)

In Proc. of the 17th International Conference on Real-Time and Network Systems
RTNS'2009, Paris, ECE, 26-27 October, 2009

Equation (16) is recognisable as the sufficient
schedulability test for task kτ in an arbitrary-deadline
taskset S, scheduled under fixed priority pre-emptive
scheduling (see Equation (4) in Section 2.2). Repeating the
above argument for each task kτ in S proves that the
taskset is schedulable on a processor of speed 2 under
fixed priority pre-emptive scheduling using deadline
monotonic priority assignment □

Theorem 1: An exact bound on the processor speedup
factor for fixed priority pre-emptive scheduling of
arbitrary-deadline tasksets using deadline monotonic
priority ordering is 2.

Proof: Consider taskset V with the following parameters
on a processor of speed : f

1τ : , T , kC 2/11 = k/11 = 11 =D
2τ : , T , 2/1=C2 2 2∞= D k2/11+=

where k is an integer, and task 1τ has a higher priority than
task 2τ i.e. deadline monotonic priority ordering. The
execution of taskset V under fixed priority pre-emptive
scheduling is illustrated in Figure 2. (Note the similarity to
the taskset used as an example in Section 3).

D2D1

0
1+1/2k

1Task 1

Task 2

1/k
1/2k

T1 2T1 3T1

Figure 2

We observe that with fixed priority pre-emptive
scheduling, any increase in the execution time of either
task will cause task 2τ to miss its first deadline following
simultaneous release of the two tasks.

We now consider the execution of taskset V under EDF
on a processor of unit speed. Let taskset S be formed from
taskset V by increasing the execution times of tasks 1τ and

2τ by a scaling factor to form tasks 1f τ ′ and 2τ ′ , thus
accounting for the reduction in processor speed.

We observe that is an upper bound on the
maximum scaling factor that could possibly result in a
schedulable taskset under EDF as this scaling factor results
in task

2=f

1τ ′ having a utilisation of 100%.
Under EDF scheduling, the processor demand bound

function for taskset S is the sum of the processor
demand bound functions

)(th
),(1τ ′th and),(2τ ′th for tasks 1τ ′

and 2τ ′ respectively.

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥⎥
⎦

⎥
⎢
⎣

⎢ +−
<

=′ 1
2)/1(

)/1(1
10

),(1 t
k
f

k
kt

t
th τ (17)

⎣ ⎦ yxyx // ≤ , we have the following upper bound: as

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥+
−

<
≤′ 1

22
)1(

10
),(1 t

k
ftf

t
th τ

2

 (18)

Similarly, the processor demand bound function for task
τ ′ is:

⎭
⎬
⎫

⎩
⎨
⎧

+≥
+<

=′
)2/1(12/
)2/1(10

),(2 ktf
kt

th τ (19)

Recall that any arbitrary-deadline taskset is schedulable
according to EDF, provided that:

LOAD = 1)(
≤⎟

⎠
⎞

⎜
⎝
⎛

∀ t
th

t

=

max (20)

Now, given the following:
(i) The value of tth /)(at time 1=t is kf 2/ .
(ii) An upper bound, from Equations (18) and (19), on the

value of tth /)(at time)2/1(1 kt + is:

))2/1(1(
)2/()2/)(1))2/1(1(()2/(

))2/1(1(
))2/1(1(

k
kffkf

k
kh

+
+−++

≤
+
+

))2/1((2
))2/3((

+
=

k
kf

t

+ (21)

(iii) The rate of increase of the upper bound on tth /)(for
)2/1(1 k+>

2
 is 2/f (from Equation (18)).

Then for values of ≤f
tth /)(kt 2/11+=

, the maximum value of the upper
bound on occurs at time , therefore:

2))2/1((2
))2/3(()(max

lim
f

k
kf

t
th k

t

∞→
=

+
+

=⎟
⎠
⎞

⎜
⎝
⎛

∀
 (22)

From Equation (22), the minimum value for the
processor LOAD is achieved in the limit as ∞→k

2/f
, and

this value is . From Equation (22), for = ∞k

2=f

, taskset
V is schedulable according to EDF when its task execution
times are scaled up by a factor of to form taskset S.
Hence taskset S requires a processor speedup factor of 2 in
order to be schedulable under fixed priority pre-emptive
scheduling with deadline monotonic priority ordering. As
the processor speedup factor for fixed priority pre-emptive
scheduling of arbitrary-deadline tasksets using deadline
monotonic priority ordering is also upper bounded by 2
(Lemma 1), the exact processor speedup factor is 2 □

Corollary 1: Taskset S defined in the proof of Theorem 1
(with = ∞k), is a speedup-optimal taskset for fixed
priority pre-emptive scheduling of arbitrary-deadline
tasksets using deadline monotonic priority ordering.

It is interesting to note that the speedup-optimal taskset

(requiring the largest speedup factor), includes a task 1τ ,
with a deadline much larger than its infinitesimal period,

In Proc. of the 17th International Conference on Real-Time and Network Systems
RTNS'2009, Paris, ECE, 26-27 October, 2009

and a task 2τ , with a deadline much smaller than its
infinite period.

Theorem 2: An upper bound on the processor speedup
factor for fixed priority pre-emptive scheduling of
arbitrary-deadline tasksets using an optimal priority
assignment algorithm is 2.

Proof: Follows directly from the fact that using an optimal
priority assignment algorithm, fixed priority pre-emptive
scheduling can schedule any taskset that is schedulable
using deadline monotonic priority ordering. Hence the
processor speedup factor required can be no greater with
optimal priority assignment than the exact processor
speedup factor given by Theorem 1 for deadline monotonic
priority ordering □

Theorem 3: A lower bound on the processor speedup
factor for fixed priority pre-emptive scheduling of
arbitrary-deadline tasksets using an optimal priority
assignment algorithm is = 1.76322. Ω/1

Proof: Follows directly from the fact that the set of
arbitrary-deadline tasksets is a superset of the set of
constrained-deadline tasksets, and the proof given by
Davis et al. [10] that the exact speedup factor required for
constrained-deadline tasksets is □ Ω/1

5. Summary and conclusions

In this paper, we have examined the relative
effectiveness of fixed priority pre-emptive scheduling for
tasksets with arbitrary deadlines. Our metric for measuring
the effectiveness of this scheduling algorithm is a resource
augmentation factor known as the processor speedup
factor.

The processor speedup factor is defined as the minimum
amount by which the processor needs to be speeded up so
that any taskset that is feasible (i.e. schedulable by an
optimal algorithm such as EDF) can be guaranteed to be
schedulable under fixed priority pre-emptive scheduling.

Table 3 shows the processor speedup factor needed for
fixed priority pre-emptive scheduling given the different
taskset classifications (implicit-, constrained-, and
arbitrary-deadline) and different priority assignment
policies. In Table 3, when a single value is shown for both
the upper and lower bounds, this implies that the bounds
are the same and the value is exact. (Note the results
shown are for tasksets of arbitrary cardinality).

Table 3: Fixed priority pre-emptive
scheduling processor speedup factors

Taskset constraints
[Priority ordering]

Lower
Bound

Upper
Bound

Implicit-deadline
[Optimal (RMPO)]

)2ln(/1 =
1.44269

Constrained-deadline
[Optimal (DMPO)]

Ω/1 =
1.76322

Arbitrary-deadline
[Not optimal

(DMPO)]

2

Arbitrary-deadline
[Optimal algorithm]

Ω/1 =
1.76322

2

In conclusion, the major contributions of this paper are

as follows:
o Proving that the exact processor speedup factor for

fixed priority pre-emptive scheduling of arbitrary-
deadline tasksets with priorities assigned
according to deadline monotonic priority
assignment is 2.

o Proving that the processor speedup factor for fixed
priority pre-emptive scheduling of arbitrary-
deadline tasksets with priorities assigned
according to Audsley’s optimal priority
assignment algorithm, is upper bounded by 2 and
lower bounded by Ω/1 = 1.76322.

The seminal work of Liu and Layland [18] characterises
the maximum performance penalty incurred when an
implicit-deadline taskset is scheduled using rate-
monotonic, fixed priority pre-emptive scheduling instead
of an optimal algorithm such as EDF.

The research in this paper provides an analogous
characterisation of the maximum performance penalty
incurred when arbitrary-deadline tasksets are scheduled
using fixed priority pre-emptive scheduling instead of an
optimal algorithm such as EDF. Table 4 summarises the
maximum extent of these performance penalties, when
deadline monotonic priority assignment is used.

Table 4: Sub-optimality of fixed priority pre-
emptive scheduling using deadline
monotonic priority assignment

 Optimal
(e.g. EDF)

Fixed
Priority
(DMPO)

Speedup
factor

Implicit-
deadline

1≤U)2ln(≤U
693147.0≈

)2ln(/1
44270.1

≈

Constrained-
deadline

LOAD Ω/1
76323.1

 1≤

LOAD≤

Ω
567143.0≈ ≈

Arbitrary-
deadline

LOAD 1≤

LOAD≤

5.0 2

In Proc. of the 17th International Conference on Real-Time and Network Systems
RTNS'2009, Paris, ECE, 26-27 October, 2009

Note that although in this paper, we have made
numerous references to EDF as an example of an optimal
pre-emptive uniprocessor scheduling algorithm, and made
use of results about EDF in our proofs, our results are valid
with respect to any optimal pre-emptive uniprocessor
scheduling algorithm, for example Least Laxity First [19].
This is because all such optimal algorithms can by
definition schedule exactly the same set of tasksets: all
those that are feasible.

In conclusion, this paper provides for the first time,
bounds on the sub-optimality of fixed priority pre-emptive
scheduling for uniprocessor systems with arbitrary-
deadlines

Future work

Although this paper provides upper and lower bounds,
the exact sub-optimality of fixed priority pre-emptive
scheduling with respect to arbitrary-deadline tasksets
assuming optimal priority assignment remains an open
question. To the best of our knowledge, no research has yet
been done to characterise the average-case sub-optimality
of fixed priority pre-emptive scheduling for arbitrary-
deadline tasksets. This is also an interesting area for future
research.

Acknowledgements

This work was funded in part by the EU FP7 projects
Jeopard (project number 216682) and eMuCo (project
number 216378).

References

[1] Audsley N.C., "Optimal priority assignment and feasibility
of static priority tasks with arbitrary start times", Technical
Report YCS 164, Dept. Computer Science, University of York,
UK, 1991.
[2] Audsley N.C., Burns A., Richardson M., Wellings A.J.,
“Applying new Scheduling Theory to Static Priority Pre-emptive
Scheduling”. Software Engineering Journal, 8(5), pages 284-292,
1993.
[3] Baker T.P., “Stack-based Scheduling of Real-Time
Processes.” Real-Time Systems Journal (3)1, pages 67-100. 1991.
[4] Baruah S., Burns A. “Sustainable Scheduling Analysis”. In
Proceedings of the IEEE Real-Time Systems Symposium, pages
159-168, 2006.
[5] Baruah S., Burns A., “Quantifying the sub-optimality of
uniprocessor fixed priority scheduling.” In Proceedings of the
IEEE International conference on Real-Time and Network
Systems, pages 89-95, 2008.
[6] Baruah S.K., Mok A.K., Rosier L.E., “Preemptively
Scheduling Hard-Real-Time Sporadic Tasks on One Processor”.
In Proceedings of the IEEE Real-Time System Symposium,
pages182-190, 1990.

[7] Baruah S.K., Rosier L.E., Howell R.R., “Algorithms and
Complexity Concerning the Preemptive Scheduling of Periodic
Real-Time Tasks on one Processor”. Real-Time Systems, 2(4),
pages 301-324, 1990.
[8] Bini E., Buttazzo G.C., “Measuring the Performance of
Schedulability Tests”, Real-Time Systems 30 (1-2), pages 129-
154, 2005.
[9] Bini E., Buttazzo G.C., Buttazzo G.M., “Rate Monotonic
Scheduling: The Hyperbolic Bound”. IEEE Transactions on
Computers, 52(7), pages 933–942, 2003.
[10] Davis R.I., Rothvoß T., Baruah S.K., Burns A., “Exact
Quantification of the Sub-optimality of Uniprocessor Fixed
Priority Pre-emptive Scheduling.” Real-Time Systems to appear
2009.
[11] Dertouzos M.L., “Control Robotics: The Procedural Control
of Physical Processes”. In Proceedings of the IFIP congress,
pages 807-813, 1974.
[12] Fineberg M.S., Serlin O., “Multiprogramming for hybrid
computation”. In Proceedings of AFIPS Fall Joint Computing
Conference, pages 1-13, 1967.
[13] Joseph M., Pandya P.K., “Finding Response Times in a
Real-time System”. The Computer Journal, 29(5), pages 390–
395, 1986.
[14] Kalyanasundaram B., Pruhs K., “Speed is as powerful as
clairvoyance”. In Proceedings of the 36th Symposium on
Foundations of Computer Science, pages 214-221, 1995.
[15] Leung J.Y.-T., Whitehead J., "On the complexity of fixed-
priority scheduling of periodic real-time tasks". Performance
Evaluation, 2(4), pages 237-250, 1982.
[16] Lehoczky J., “Fixed priority scheduling of periodic task sets
with arbitrary deadlines”. In Proceedings 11th IEEE Real-Time
Systems Symposium, pages 201–209, 1990.
[17] Lehoczky J.P., Sha L., Ding Y., “The rate monotonic
scheduling algorithm: Exact characterization and average case
behaviour”. In Proceedings of the IEEE Real-Time Systems
Symposium, pages 166–171, 1989.
[18] Liu C.L., Layland J.W., "Scheduling algorithms for
multiprogramming in a hard-real-time environment", Journal of
the ACM, 20(1) pages 46-61, 1973.
[19] Mok A.K., “Fundamental Design Problems of Distributed
Systems for the Hard-Real-Time Environment,” Ph.D. Thesis,
Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1983.
[20] Tindell K.W., Burns A., Wellings A.J., “An extendible
approach for analyzing fixed priority hard real-time tasks”. Real-
Time Systems. Volume 6, Number 2, pages 133-151, 1994.
[21] Zuhily A., Burns A., “Optimality of (D-J)-monotonic
Priority Assignment”. Information Processing Letters. Number
103, pages 247-250, 2007.

In Proc. of the 17th International Conference on Real-Time and Network Systems
RTNS'2009, Paris, ECE, 26-27 October, 2009

	Abstract
	1. Introduction
	1.1. Related work on average case sub-optimality
	1.2. Organisation

	2. Scheduling model and schedulability analysis
	2.1. Scheduling model, terminology and notation
	2.2. Schedulability analysis for fixed priority pre-emptive scheduling
	2.3. Exact schedulability analysis for EDF
	2.4. Definitions

	3. Example
	4. Processor speedup factor for arbitrary-deadline tasksets
	4.1. Arbitrary-deadline tasksets with deadline Monotonic priority ordering

	5. Summary and conclusions
	Future work
	Acknowledgements

	References

