Well-posedness, stability and invariance results for a class of multivalued Lur'e dynamical systems

Bernard Brogliato 1 Daniel Goeleven 2
1 BIPOP - Modelling, Simulation, Control and Optimization of Non-Smooth Dynamical Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : This paper analyzes the existence and uniqueness issues in a class of multivalued Lur'e systems, where the multivalued part is represented as the subdifferential of some convex, proper, lower semicontinuous function. Through suitable transformations the system is recast into the framework of dynamic variational inequalities and the well-posedness (existence and uniqueness of solutions) is proved. Stability and invariance results are also studied, together with the property of continuous dependence on the initial conditions. The problem is motivated by practical applications in electrical circuits containing electronic devices with nonsmooth multivalued voltage/current characteristics, and by state observer design for multivalued systems.
Type de document :
Rapport
[Research Report] RR-7158, INRIA. 2009
Liste complète des métadonnées

https://hal.inria.fr/inria-00442081
Contributeur : Bernard Brogliato <>
Soumis le : mardi 12 janvier 2010 - 09:26:09
Dernière modification le : jeudi 11 janvier 2018 - 06:21:52
Document(s) archivé(s) le : jeudi 17 juin 2010 - 23:53:18

Fichier

RR-7158.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00442081, version 1

Citation

Bernard Brogliato, Daniel Goeleven. Well-posedness, stability and invariance results for a class of multivalued Lur'e dynamical systems. [Research Report] RR-7158, INRIA. 2009. 〈inria-00442081〉

Partager

Métriques

Consultations de la notice

394

Téléchargements de fichiers

117