M. Aganagi´caganagi´c, Newton's method for linear complementarity problems, Mathematical Programming, pp.349-362, 1984.

M. Bergounioux, M. Haddou, M. Hintermüller, and K. Kunisch, A Comparison of a Moreau--Yosida-Based Active Set Strategy and Interior Point Methods for Constrained Optimal Control Problems, SIAM Journal on Optimization, vol.11, issue.2, pp.495-521, 2000.
DOI : 10.1137/S1052623498343131

URL : https://hal.archives-ouvertes.fr/hal-00022028

M. Bergounioux, K. Ito, and K. Kunisch, Primal-Dual Strategy for Constrained Optimal Control Problems, SIAM Journal on Control and Optimization, vol.37, issue.4, pp.1176-1194, 1999.
DOI : 10.1137/S0363012997328609

URL : https://hal.archives-ouvertes.fr/hal-00023011

J. F. Bonnans, J. Ch, C. Gilbert, C. Lemaréchal, and . Sagastizábal, Numerical Optimization ? Theoretical and Practical Aspects, p.17, 2006.

H. Buchholzer, . Ch, P. Kanzow, S. Knabner, and . Kräutle, The semismooth Newton method for the solution of??reactive transport problems including mineral precipitation-dissolution reactions, Computational Optimization and Applications, vol.58, issue.2, p.17, 2009.
DOI : 10.1007/s10589-010-9379-6

R. Chandrasekaran, A special case of the complementary pivot problem, Opsearch, vol.7, pp.263-268, 1970.

F. H. Clarke, Optimization and Nonsmooth Analysis, 1983.
DOI : 10.1137/1.9781611971309

A. R. Conn, N. I. Gould, and P. L. Toint, Trust-Region Methods, MPS-SIAM Series on Optimization 1. SIAM and MPS, p.17, 2000.
DOI : 10.1137/1.9780898719857

R. W. Cottle and G. B. Dantzig, Complementary pivot theory of mathematical programming, Linear Algebra and its Applications, vol.1, issue.1, pp.103-125, 1968.
DOI : 10.1016/0024-3795(68)90052-9

R. W. Cottle, J. Pang, and R. E. Stone, The linear complementarity problem, Classics in Applied Mathematics SIAM, vol.60, issue.5, p.17, 2009.

G. E. Coxson, The P-matrix problem is co-NP-complete, Mathematical Programming, pp.173-178, 1994.
DOI : 10.1007/BF01582570

F. Facchinei and J. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems (two volumes) Springer Series in Operations Research, 2003.

M. Fiedler and V. Pták, On matrices with nonpositive off-diagonal elements and principal minors, Czechoslovak Mathematics Journal, vol.12, pp.382-400, 1962.

A. Fischer and C. Kanzow, On finite termination of an iterative method for linear complementarity problems, Mathematical Programming, pp.279-292, 1996.
DOI : 10.1007/BF02592200

P. T. Harker and J. Pang, A damped-Newton method for the linear complementarity problem, Computational Solution of Nonlinear Systems of Equations, Lecture in Applied Mathematics 26, p.17, 1990.

M. Hintermüller, K. Ito, and K. Kunisch, The Primal-Dual Active Set Strategy as a Semismooth Newton Method, SIAM Journal on Optimization, vol.13, issue.3, pp.865-888, 2003.
DOI : 10.1137/S1052623401383558

K. Ito and K. Kunisch, On a semi-smooth Newton method and its globalization, Mathematical Programming, pp.347-370, 2009.
DOI : 10.1007/s10107-007-0196-3

. Ch and . Kanzow, Inexact semismooth Newton methods for large-scale complementarity problems, Optimization Methods and Software, vol.19, issue.4 6, pp.309-325, 2004.

N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, vol.244, issue.S, pp.373-395, 1984.
DOI : 10.1007/BF02579150

R. B. Kellogg, On complex eigenvalues ofM andP matrices, Numerische Mathematik, vol.15, issue.2, pp.170-175, 1972.
DOI : 10.1007/BF01402527

M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems, Lecture Notes in Computer Science, vol.538, issue.3, 1991.

M. Kojima and S. Shindo, Extension of Newton and quasi-Newton methods to systems of PC 1 equations, Journal of Operations Research Society of Japan, vol.29, pp.352-375, 1986.

M. M. Kostreva, Direct algorithms for complementarity problems, 1976.

S. Kräutle, The semismooth Newton method for multicomponent reactive transport with minerals, Advances in Water Resources, vol.34, issue.1, p.17, 2010.
DOI : 10.1016/j.advwatres.2010.10.004

C. E. Lemke, Bimatrix Equilibrium Points and Mathematical Programming, Management Science, vol.11, issue.7, pp.681-689, 1965.
DOI : 10.1287/mnsc.11.7.681

O. L. Mangasarian, Solution of symmetric linear complementarity problems by iterative methods, Journal of Optimization Theory and Applications, vol.6, issue.4, pp.465-485, 1977.
DOI : 10.1007/BF01268170

N. Megiddo, A note on the complexity of P -matrix LCP and computing an equilibrium, IBM Research, p.17, 1988.

N. Metla, The Sequential Quadratic Programming Method for Elliptic Optimal Control Problems with Mixed Control-State Constraints, Johann Radon Institute for Computational and Applied Mathematics, p.17, 2008.

W. Morris, Randomized pivot algorithms for P-matrix linear complementarity problems, Mathematical Programming, 92A, pp.285-296, 2002.
DOI : 10.1007/s101070100268

K. G. Murty, Linear Complementarity, Linear and Nonlinear Programming, 1988.

L. Qi, Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations, Mathematics of Operations Research, vol.18, issue.1, pp.227-244, 1993.
DOI : 10.1287/moor.18.1.227

H. Samelson, R. M. Thrall, and O. Wesler, A partition theorem for the Euclidean n-space, Proceedings of the American Mathematical Society, vol.9, issue.3, pp.805-807, 1958.

U. Schäfer, A Linear Complementarity Problem with a P-Matrix, SIAM Review, vol.46, issue.2, pp.189-201, 2004.
DOI : 10.1137/S0036144502420083

D. Solow, R. Stone, and C. A. Tovey, Solving LCP on P -matrices is probably not NP-hard. Unpublished note, p.17, 1987.

P. Tseng, Co-NP-completeness of some matrix classification problems, Mathematical Programming, pp.183-192, 2000.
DOI : 10.1007/s101070000159