High resolution SAR-image classification by Markov random fields and finite mixtures

Abstract : In this paper we develop a novel classification approach for high and very high resolution polarimetric synthetic aperture radar (SAR) amplitude images. This approach combines the Markov random field model to Bayesian image classification and a finite mixture technique for probability density function estimation. The finite mixture modeling is done via a recently proposed dictionary-based stochastic expectation maximization approach for SAR amplitude probability density function estimation. For modeling the joint distribution from marginals corresponding to single polarimetric channels we employ copulas. The accuracy of the developed semiautomatic supervised algorithm is validated in the application of wet soil classification on several high resolution SAR images acquired by TerraSAR-X and COSMO-SkyMed.
Type de document :
Communication dans un congrès
IS&T/SPIE Electronic Imaging, Jan 2010, San Jose, United States. 2010
Liste complète des métadonnées


https://hal.inria.fr/inria-00442348
Contributeur : Vladimir Krylov <>
Soumis le : dimanche 20 décembre 2009 - 20:31:33
Dernière modification le : jeudi 24 décembre 2009 - 13:50:54
Document(s) archivé(s) le : jeudi 17 juin 2010 - 23:58:38

Fichier

moserSPIE2010a.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00442348, version 1

Collections

Citation

Gabriele Moser, Vladimir Krylov, Sebastiano B. Serpico, Josiane Zerubia. High resolution SAR-image classification by Markov random fields and finite mixtures. IS&T/SPIE Electronic Imaging, Jan 2010, San Jose, United States. 2010. <inria-00442348>

Partager

Métriques

Consultations de
la notice

230

Téléchargements du document

309