A polynomial-time algorithm for computing shortest paths of bounded curvature amidst moderate obstacles

Jean-Daniel Boissonnat 1 Sylvain Lazard 1
1 PRISME - Geometry, Algorithms and Robotics
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : In this paper, we consider the problem of computing shortest paths of bounded curvature amidst obstacles in the plane. More precisely, given two prescribed initial and final configurations (specifying the location and the direction of travel) and a set of obstacles in the plane, we want to compute a shortest $C^1$ path joining those two configurations, avoiding the obstacles, and with the further constraint that, on each $C^2$ piece, the radius of curvature is at least 1. In this paper, we consider the case of moderate obstacles (as introduced by Agarwal et al.) and present a polynomial-time exact algorithm to solve this problem.
Document type :
Conference papers
Complete list of metadatas

https://hal.inria.fr/inria-00442806
Contributor : Sylvain Lazard <>
Submitted on : Tuesday, December 22, 2009 - 4:11:23 PM
Last modification on : Saturday, January 27, 2018 - 1:30:54 AM
Long-term archiving on : Thursday, June 17, 2010 - 10:08:42 PM

Files

ACM.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Jean-Daniel Boissonnat, Sylvain Lazard. A polynomial-time algorithm for computing shortest paths of bounded curvature amidst moderate obstacles. Symposium on Computational Geometry (SoCG'96), 1996, Philadelphia, United States. pp.242-251, ⟨10.1145/237218.237393⟩. ⟨inria-00442806⟩

Share

Metrics

Record views

284

Files downloads

231