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set of prior mesh models to establish the patterns of global shape variations. Local
appearance is captured from neighborhoods in the manifold once the overall repre-
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Inf érence de Mod�eles Articulés par une Optimisation
MRF de Haut-Niveau dans des Domaines Non-Lińeaires

Résuḿe : Ce papier introduit une nouvelle approche pour inférer des mod�eles articuĺes
�a partir d'images. Un domaine approximativement linéaire par monceaux est créé
a�n de réduire la complexit́e des donńees d'une base d'apprentissage de mod�elesa
priori , et ce a�n d'établir les patrons de variations. L'apparence locale est obtenue par
une analyse de voisinages dans le domaine lorsque la représentation globale converge.
L'inf érence par rapport aux param�etres est effectúee par un Markov Random Field
(MRF). Des valeurs potentiels unitaires et binômes mesurent le support avec les données
et la coh́erence de l'objet avec les mod�eles avoisinant respectivement, alors que des
fonctions de haut niveau introduisent des contraintes géoḿetriques pour les modes de
variations locales. L'optimisation des param�etres est effectúee par une approche de
programmation lińeaire et par dualité. Le mod�ele ŕesultant est intuitif ǵeoḿetriquement,
capture la distribution statistique du sous-domaine et respecte les contraintes de l'image.
Des ŕesultats exṕerimentaux sur des formes articulés telles que la colonne vertébrale
démontrent le potentiel de notre approche.

Mots-clés : Inférence d'images, modélisation statistique, domaines non-linéaires,
mod�ele articuĺe, Markov Random Field
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4 Kadoury & Paragios

1 Introduction

Statistical models of shape variability have been successful in addressing fundamen-
tal vision tasks such as segmentation and registration in computer vision and medical
imaging analysis. Such models help to understand the distribution in appearance of
a group of shapes and offer ef�cient parametrization of the geometric variability in
a given cluster. In medical imaging, one has the ability to compare information of a
subject over a time period, between different subjects or between groups of patholog-
ical cases by using these types of representation [1]. These models have been used
extensively for localized structures. On the other hand object constellations have been
sparely investigated in computer vision (mainly on body [2] and hand-pose estimation
[3]), which is mostly due to the challenges in interpreting the images.

Various statistical approaches for three-dimensional modeling of structures have
been proposed based on shape analysis. Active Shape (ASM) [4] and Appearance
Models (AAM) [5] have been successful in recovering object geometries obtained
from dense collection of data points. Implicit representations is an alternative formu-
lation [6] to address model-based segmentation while more recently numerous meth-
ods based on point distribution models and embedding on various geometric spaces
(spherical [7]) have been proposed. However, model-based segmentation of single ob-
jects typically leads to �tting errors when no clear object boundary is present, similar
structures in close vicinity, or pathologies. The result is thereby sensitive to model
initialization and therefore limited to the capture range.

Simultaneous multi-object inference is often bene�cial compared to the separate
segmentation of individual objects. In [8], an extension of point distribution models
(PDMs) was considered for modeling relations between shape constellations using con-
ditional probabilities between 2D-contours. Furthermore, rigid transformations were
considered as statistics between different parts to evaluate the variability from a given
class of models [9] and to achieve multi-modal inference [10].

Last, but not least in the context of medical imaging, traditional body-pose estima-
tion methods are prone fail. This is due to the fact that the aim of articulated models
is to deduce the anatomical structure but most importantly to identify/segment the in-
dividual structures precisely, which is not the focus of vision methods. In vision where
mostly 2D models are used, classi�cation techniques are often considered to provide
candidate positions for the different parts [11]. This information along with prior con-
straints are used to determine the most appropriate pose con�guration.

The main limitation of the above mentioned methods is that incorporating image-
driven information is not straightforward. Furthermore, the high dimensionality and
complex non-linear underlying structure unfortunately makes the commonly used lin-
ear statistics [12] inapplicable for articulated structures. Given the important and often
un-correlated variations in the orientation and translation of the global shape, such
statistics can only be performed along a linear manifold that appropriately parameter-
izes the nonlinear space. Recent concepts on Riemannian manifolds in tensor spaces is
particulary suited for this application [13].

A manifold learning algorithm of particular interest to this work is locally linear
embedding [14]. It maps high-dimensional observation data that are presumed to lie on
a nonlinear manifold, onto a single global coordinate system of lower dimensionality.
Therefore, it helps to preserve neighborhood relationships of similar object geometries,
thereby revealing the underlying structure of the data which can be used for statistical
modeling. Inferring a model from the underlying manifold is a novel concept but far

INRIA
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from being trivial, and relies on a cost function which includes visual support and prior
constraints.

In this paper, we introduce a deformable articulated body instantiation through a
statistical modeling of inter-object transformations. We use nonlinear manifold embed-
dings which can handle both small and large deformations of the object constellations
in a given dataset. Our principal contribution lies with regards to the representation
of the model. Rather than directly optimizing a set of transformation parameters, we
perform a statistical embedding on the transformation vectors which describe the artic-
ulations, thus signi�cantly reducing the degrees of freedom. An explicit representation
of the nonlinear manifold given by smooth functions enables the joint mapping be-
tween ambient and embedded space. Furthermore, because of the limited dimension-
ality of the search space, the inference with respect to the low-dimensional parameters
is performed in an integrated and interconnected high-order MRF. This graph involves
costs related both to the data, prior geometrical dependencies and global higher-order
cliques. We consider a framework which applies recent advances in MRF labeling
schemes generalizing energy function classes with degrees higher than two which can
be decomposed into pair-wise potentials [15]. This demonstrates the capability to
model complex interactions of random variables. Recent advances in the area of dis-
crete optimization which explore duality theorem of linear programming [16] are ex-
plored to obtain the lowest potential of the objective function.

This paper is organized as follows. Section 2 presents the theoretical methodology
for the manifold embedding algorithm of articulated mesh models while in Section 3
we propose the MRF-based inference framework minimizingPn Potts models energy
terms. In Section 4 we present our evaluation results applied to medical images of the
spinal column and the last section concludes the paper.

RT n° 0376



6 Kadoury & Paragios

2 Manifold Embedding of Articulated Models

The input to our method is a sample of articulated models which comprises a set of
learning shapes. These shapes are a constellation of triangular meshes, each annotated
with landmarks de�ned as characteristic points uniquely localized across a set of ob-
jects. We �rst build an articulated shape model from a training database by embedding
the data into a low-dimensional sub-space which dimensionality corresponds to the do-
main of admissible variations. Local shape appearance is determined via analysis of
variations within a sub-patch of the manifold.

2.1 Representation of Articulated Models

Our shape modelS = f s1; : : : ; sL g consists of an interconnection ofL objects. For
each local shapesi , we recover a triangular mesh with verticesf v i

j jj = 1 ; : : : ; Vg,
where thej th vertex corresponds to approximately the same surface location from one
shape to another. Additionally, everysi is annotated with landmarks on each per-
sonalized model to rigidly register each object to its upper neighbor. The resulting
rigid transforms are stored for each inter-object link. These transforms can also be
determined via an ICP-like algorithm to recover the extrinsic parameters. Hence, an
articulated deformable model (ADM) is represented by a vector of local inter-object
rigid transformationsA = [ T1; T2; : : : ; TL ] as illustrated in [Fig. 1]. To perform global
shape modeling of the shapeS, we convertA into an absolute representation

Aabs = [ T1; T1 � T2; : : : ; T1 � T2 � : : : � TL ] (1)

using recursive compositions. The transformations are expressed in the local coor-
dinate system (LCS) of the lower object, which can be de�ned proper to the object's
geometrical representation capturing main axes of deformation. Center of transfor-
mation is located at the midpoint of the triangular mesh. The rigid transformations
described in this paper are the combination of a rotation matrixR, a translation vector
t and the scalings. We formulate the rigid transformationT = f s; R; tg of a tri-
angular mesh model asy = sRx + t wherex; y; t 2 < 3. Composition is given by
T1 � T2 = f R1R2; R1t2 + t1g, while inversion asT � 1 = f RT ; � RT tg.

2.2 Nonlinear Manifold Embedding of ADMs

Let us considerN articulated shape models expressed by the absolute vector repre-
sentationA i

abs, of dimensionalityD . The aim is to create a low-dimensional manifold
consisting ofN pointsYi , Yi 2 < d, i 2 [1; N ] whered � D . In such a framework,
if an adequate number of data points is available, then the underlying manifoldM is
considered to be “well-sampled”. Therefore, it can represent the underlying population
structure. In the sub-cluster corresponding to a pathological population, each individ-
ual point of the training set and its neighbours would lie within a locally linear patch
on the manifold.

2.2.1 Nearest neighbor selection

The main limitation of embedding algorithms is the assumption of Euclidean metrics
in the ambient space to evaluate similarity between sample points. In our approach,
we adopt the intrinsic nature of the Riemannian manifold geometry allowing us to dis-
cern between articulated shape deformations in a topological invariant framework. The

INRIA
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Figure 1: Schematic representation of inter-object transformations.

K closest neighbours are selected for each point using a distortion metric particularly
suited for geodesic metrics, de�ned asdM (A i

abs; A j
abs) which estimates the distance of

articulated modelsi; j . As such,A i
abs andA j

abs are represented by the feature vectors
described in (1). The distance measure can therefore be expressed as a sum of articu-
lation deviations:

dM (A i
abs; A j

abs) =
LX

k=1

dM (T i
k ; T j

k ) (2)

=
LX

k=1

dM

��
Ri

k ci
k

::: 1

�
;
�

Rj
k cj

k
::: 1

��

where the canonical representation encodes the intrinsic (c) and orientation (R)
parameters. The difference between analogous articulations is computed within the
geodesic framework:

dM (A i
abs; A j

abs) =
LX

k=1

kci
k � cj

k k +
LX

k=1

dQ (Ri
k ; Rj

k ): (3)

The �rst term evaluates intrinsic distances in theL 2 norm. Using the geodesics,
it is possible to de�ne a diffeomorphism between rotation neighborhoods inM and
a tangent planeTx M . The exponential map atx 2 M maps vectors of the tangent
planeTx M to a point in the manifold which is reached by the geodesic
 x;v in a
unit time. In other words, if
 (x;v ) (1) = y, then the inverse mapping is known as
logx (y) = v. The quaternion distances are therefore computed with the Frobenius
norm dQ (Ri

k ; Rj
k ) = k log((Ri

k ) � 1Rj
k )kF based on the geodesic distance on the 3D

manifold. This is feasible since rotationsRi
k ; Rj

k are nonsingular, invertible matrices.
Thelog map can be thought as the unfolding operation connecting the tangent space at
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8 Kadoury & Paragios

x and the manifoldM . One can now proceed to the manifold reconstruction using the
local support in high-dimension data.

2.2.2 Embedding algorithm

The manifold reconstruction weights are estimated by assuming the local geometry of
the patches can be described by linear coef�cients that permit the reconstruction of
every model point from its neighbours. In order to determine the value of the weights,
the reconstruction errors are measured using the following objective function:

min
W

" (W ) =
NX

i =1






 A i

abs �
KX

j =1

Wij A j
abs








2
(4)

subject to

(
Wij = 0 if A i

abs not neighborA j
absP

j Wij = 1 for every i;
(5)

Here,A i
abs is the absolute vector describing an articulated model described above

and"(W ) sums the squared distances between all data points and their corresponding
reconstructed points. The weightsWij represent the importance of thej th data point
to the reconstruction of thei th element. It is easy to show that each weight can be
calculated individually [14]. Each sampleA i

abs and weightWij contributes to" such
that:

" ( i ) (W ) =
KX

j =1

KX

m =1

Wij Wim Qi
jm (6)

with Q as aK � K matrix s.t.Qi
jm = ( A i

abs� A j
abs)

T (A i
abs� Am

abs). With R = ( Q+
� I ) � 1, given a suitably chosen regularization constant� (see [17]), thenWij are solved
by a least squares problem given the constraint in (5),Wij = (

P K
m =1 Rjm )=(

P K
p;q=1 Rpq).

We propose to solveQ based on distance matrixD using articulated metric in (3) such
thatQ = ( D ij + D im � D jm )=2.

The algorithm then maps each high-dimensionalA i
abs to a low-dimensionalYi .

These global internal coordinates are determined with a cost function minimizing the
reconstruction error

�( Y ) =
NX

i =1






 Yi �

KX

j =1

Wij Yj








2
(7)

=
NX

i =1

NX

j =1

M ij Y T
i Yj

with M as a sparse and symmetricN � N matrix enclosing the reconstruction
weightsWij such thatM = ( I � W)T (I � W), andY spanning theYi 's. By constrain-
ing Y to identity, the problem becomes a straightforward one withmin tr(YMY T )
given the constraint1N YYT = I . Using Lagrange multipliers and setting the deriva-
tive to zero gives(M � �) YT = 0 , where� is the diagonal Lagrange multiplier
matrix. The optimal embedding, up to a global rotation, is obtained from the bottom
d + 1 eigenvectors of the and helps to minimize the cost function�( Y ) as a simple
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eigenvalue problem. Thed eigenvectors form thed embedding coordinates. The co-
ordinatesYi can be translated by a constant displacement without affecting the overall
cost�( Y ). The eigenvector corresponding to the smallest eigenvalue corresponds to
the mean value of the embedded dataY 0 = f y1; : : : ; ydg; s.t.yi = 0 ; 8i . This can be
discarded with

P
Yi = 0 to obtain an embedding centered at the origin. Hence, a new

ADM denoted asYnew can be inferred in the embeddedd-space as a low-dimensional
data point by �nding its optimal manifold coordinatesyi .

2.2.3 Inverse mapping to the ambient space

To obtain the articulation vector for a new embedded point in the ambient space (image
domain), one has to determine the representation in high-dimensional space based on
its intrinsic coordinates. We �rst assume an explicit mappingf : M ! < D from
manifoldM to the ambient space< D . The inverse mapping ofYi is then performed
by estimating the relationship between< D andM as a joint distribution, such there
exists a smooth functional which belongs to a local neighborhood. Theoretically the
manifold should follow the conditional expectation:

f (Yi ) � E (A i
absjM (A i ) = Yi ) =

Z
A i

f (Yi ; A i )
f M (A i ) (Yi )

dA (8)

which captures the overall trend of the data. Here, bothf M (A i ) (Yi ) (marginal den-
sity of M (A i )) andf (Yi ; A i ) (joint density) are unknown. UsingNadaraya-Watson
kernel regression theorem [18], densities are replaced by kernel functions based in
a conditional expectation setting [19]. We replace these variable withf M (A i ) (Yi ) =
1
K

P
j 2N ( i ) Gh (Yi ; Yj ) andf (Yi ; A i ) = 1

K

P
j 2N ( i ) Gh (Yi ; Yj )Gg(A i ; A j ). The Gaus-

sian regression kernelsG require the neighborsA j
abs of j 2 N (i ) to determine the

bandwidthsh; g so it includes allK data points. Plugging these estimates in (8), this
gives:

f NW(Yi ) =
Z

A i

1
K

P
j 2N ( i ) Gh (Yi ; Yj )Gg(A i ; A j )

1
K

P
j 2N ( i ) Gh (Yi ; Yj )

dA: (9)

By assumingG is symmetric about the origin and generalize the expectation such that
the observationsY are de�ned in terms of a metricdM in manifold spaceM , we obtain:

f NW(Yi ) = argmin
A i

abs

P
j 2N ( i ) G(Yi ; Yj )dM (A i

abs; A j
abs)P

j 2N ( i ) G(Yi ; Yj )
(10)

which integrates the distance metricdM (A i
abs; A j

abs) de�ned in (3) and updatesf NW(Yi )
using the closest neighbors of pointYi in the manifold space. This constrains the
regression to be valid for similar data points in its vicinity since locality aroundYi

preserves locality inA i
abs.

2.3 Local Shape Appearances in the Manifold

The key idea of capturing local shape appearance lies on the assumption that models,
represented in a given neighborhoodM k of the general manifoldM s.t. M k 2 M :
< d, will also manifest similar local geometries. We assume here that local shape ap-
pearances follow a linear distribution within the low-dimensional manifold. Hence,
given a data pointYj and itsK neighbors, the local shape modelsi , representing the

RT n° 0376



10 Kadoury & Paragios

i th element of the ADM, is obtained by building a particular class of shapes given the
set of examplesf s1

i ; :::; sK
i g. This set belongs to the sub-patchM k , such that each

shapesj
i 2 Sj . We approximate the distribution of the shape using a parameterized

linear model by computing the deformation vectors formed for theK � 1 shape sam-
ples. We compute then eigenvalues� 1; � 2; : : : ; � n and corresponding eigenvectors,
v1; v2; : : : ; vn of thei th covariance matrix:

Ci =
1

K � 1

KX

j =1

(sj
i � �si )(sj

i � �si )T (11)

where �si is the mean shape of theK neighboring local objects�si = 1
K

P K
j =1 sj

i . By
arranging eigenvalues in increasing order, a new instancesnew

i of the shape model can
be de�ned. The new shape is approximated by a linear combination of the deformation
vector as follows:

snew
i � �si +

nX

i =1

! i vi = �si + [ v1 : : : vn ][! 1 : : : ! n ] (12)

= �si + Vw

whereV is a K � n matrix with eigenvectors in each column, andw = [ ! 1 : : : ! n ]
the weight vector of sizen. In (12), w provides a compact parametrization of the
transformation we seek for each object composing the model shapeS based on the
principal deviations. This �nal step warps individual instances from the training set to
infer new local shape models.

INRIA
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3 Inference through MRF Optimization

Once an appropriate modeling of shape variations is determined, a successful inference
between the image and manifold must be accomplished. We describe here how a new
model is deformed, the similarity criterions as well as the adopted optimization proce-
dure which infers the shape model to the sparse data. We search the optimal embedded
manifold pointY = ( y1; : : : ; yd) of the global ADM. Such a strategy offers an ideal
compromise between the prior constraints, as well as the individual shape variation
described by the main weight vectorsW = ( w1; : : : ; wn ) in a localized sub-patch.
Formally, the inference of the modelS to the imageI is given by:

(f y1; : : : ; ydg; f w1; : : : ; wn g) = argmin
~� i ;! i

E(S0; I ; ~� ; 
) : (13)

The energyE of inferring the modelS in the imageI is a function of the displacement
vectors~� = ( ~� 1; : : : ; ~� d) in the non-linear manifold space for global shape represen-
tation. This involves a data-related termV(Y0 + ~� ; I ) expressing the image cost and
a global prior termV(N; ~�) measuring deformation between low-dimensional vectors
with shape models. Furthermore we introduce a higher-order termV(H; ~� ; 
) which
is expressed by the reconstruction weights
 = ( ! 1; : : : ; ! n ) for local shape modeling
in a linear space. The energy functionE can therefore be decoupled to a global and
local optimization scheme controlled by the weighting parameters� -� :

E
�

S0; I ; ~� ; 

�

= V
�

Y0 + ~� ; I
�

+ � V
�

N; ~�
�

(14)

+ � V
�

H; ~� ; 

�

:

We explain in this section how we de�ne the global and local energy terms.

3.1 Rigid Alignment of the ADM

The global alignment of the model with the target (i.e., image data) primarily drives
the deformation of the ADM in the �rst phase of convergence controlled by the� -term
such that it is minimized when the neighborsK in a manifold sub-patch stabilizes.
The purpose here is to estimate the set of articulations describing the global model
shape by determining its optimal representationY0 in the embedded sub-space. This is
performed by reformulating the global representation using the inverse mapping in (10)
sof NW(Yi + ~�) = f NW(f y1 + ~� 1; : : : ; yd + ~� dg) = A i

abs+ ~D with ~D as deformations
in ambient space< D . This allows to represent the model in image space based on its
manifold space coordinates ofM . The global cost is expressed as:

V
�

Y0 + ~� ; I
�

= V
�

f NW(f y1 + ~� 1; : : : ; yd + � dg); I )
�

= V
�

A0
abs+ ~D; I

�
: (15)

Since the transformationsTi are implicitly modeled in the absolute representationA0
abs,

we can formally consider the singleton image-related term as a summation of costs
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12 Kadoury & Paragios

associated with eachL objects of the ADM:

V
�

A0
abs+ ~D; I

�
=

LX

i =1

Vi

�
si � (T0

i + ~di ); I
�

(16)

where Vi (s; I ) =
X

v i 2 s

nT
i (v i )rI (v i );

is a modular term seeking to minimize the distance between the mesh vertices of the
inferred ADM and image dataI by a rigid transformation of the vectors. This globally
modi�es the mesh vertices in order to align them with theI . In (16), v i is the set of
triangle centers,n i is the triangle normal pointing outwards, andrI (v i ) is the image
gradient at locationv i . This modular term effectively measures the strength of the
edges over the triangles corresponding to the inferred model. The prior constraint for
the rigid alignment is de�ned in the manifold space by modeling pairwise potentials
between low-dimensional featuresyi represented by the second term in (14):

� V
�

N; ~�
�

= � ij

X

i 2 G

X

j 2N ( i )

Vij (y0
i + ~� i ; y0

j + ~� j ): (17)

This potential measures the distance between pairsy0
i andy0

j from the current data

point coordinates to a prior distribution built with theK pointsy1;::;K
i ; y1;::;K

j in the
local neighborhoodM k . This term represents the smoothness term of the global cost
function to ensure that the deformation~� i applied to point coordinates is regular in
the non-linear vicinity of variations. This is measured by the geodesic distance in the
Riemannian manifold

Vij = P
�

k(y0
i + ~� i ) � (y0

j + ~� j )kF ; N (i )
�

: (18)

The Frobenius distance is measured to a density function determined from the theK
samples in the neighborhood such thatP(x; N ) = 1

� N
p

2�
(1 � e( � x � � N )2 =2� 2

N ) as-
signs a cost based on the probability thatx belongs to a Gaussian distribution, with�
and� calculated from thei andj vectors ofN (i ) 2 M k .

3.2 Non-Rigid Adaptation of Local Shapes

Local shape geometry for each of the ADM's components is obtained by varying the
weight parameters of the principal variations. We parameterize these potentials with
clique variableswc taking on corresponding costs� q if the cliques are given to the
weight vectors! c. Hence the third term of (14) is described as a high-order functional:

� V
�

H; ~� ; 

�

= � c

X

c2C

Vc(w0
c + ! c) (19)

where independent clique variablesc are treated as a graph minimization problem.
Our prior term is represented by higher-order potentials of degreen, based on the
eigenvalues in 2.3 of theL local objects from our modelS. The potential functions are
de�ned as:

Vc(w0
c) = min f min

q2f 1;2;:::;t g
� q + � q(w0

c); � maxg (20)
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with � q(w0
c) =

P
i 2 c;l 2L  q

il � (! i = l) is a deviation function to evaluate the
assignment ofw0

c . The Kronecker delta function� generates binary variables, while
the weights are assigned such that q

il = f 0; � maxg depending on whether the clique
variablewc is given the appropriate label.

Our work is inspired from a mesh recon�guration where the costs� q depend on the
positions of the morphed mesh verticesv i . It introduces a tradeoff between adherence
to the image and coherence with regards to the prior principal modes of shape variations
in the neighborhoodM k . The strategy �nds the point in the target image with an
optimal boundary criterion. Hence for each mesh triangle, a search along the normal
n i from v i with optimal compromise between boundary detection and distancej
 is
performed. It measures the cost of driving the triangle centers towards detected features
points in the target image [20]:

� q =
VX

i =1

wq

� rI (v i )
krI (v i )k


 n i argmin
j = � m;:::; � m

(j 2
 2 (21)

� nT
i rI (v i + j
 n i ))

� 2
:

In (21), V is the number of triangles,m is the sample space to �nd the closest
detected feature inrI and
 speci�es the distance between two points on the normal.
The weightswq controls the tradeoff of how far the directed gradient distance lies from
the mean eigenvalue shape.

One can integrate the global data and prior terms along with local shape terms
parameterized as the higher-order cliques, by combining (15), (17) and (19):

E
�

S0; I ; ~� ; 

�

= V
�

f NW(f y1 + ~� 1; : : : ; yd + ~� dg); I )
�

+ � ij

X

i 2 G

X

j 2N ( i )

Vij (y0
i + ~� i ; y0

j + ~� j )

+ � c

X

c2C

Vc(w0
c + ! c): (22)
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14 Kadoury & Paragios

3.3 Energy Minimization

The optimization strategy of the resulting MRF (22) in the continuous domain is not
a straightforward problem. The convexity of the solution domain is not guaranteed,
while gradient-descent optimization approaches are prone to non-linearity and local
minimums. We therefore considered results obtained from discrete optimization ap-
proaches [16]. By assuming the initial zero-mean shape model in the given manifold
spaceM falls in the image domainI and that the desired accuracy is speci�ed so to
de�ne the quantization step, we can approximate the deformation of the shape model
towards the optimal solution.

We seek to assign the optimal labelsL ~� = f l1; : : : ; ldg andL 
 = f l1; : : : ; ln g
which are associated to the quantized space~� of displacements and local weight pa-
rameters
 . If we consider that displacing the coordinates of the sub-domain pointy0

i

by ~� l i is equivalent to assigning labell i to y0
i , we can formulate the energy as:

(f l
~�
1 ; : : : ; l

~�
d g; f l 
1 ; : : : ; l 
n g) = argmin

l �
i ;l 


i 2L � ;L 

E (S0 ; I ; L

~� ; L 
 ): (23)

The quantization domain of the label set is crucial to achieve both inference accuracy
and computational ef�ciency. To this end, we adopt a coarse-to-�ne approach which
continuously increases the number of displacements while decreasing the search space.
This speeds up the convergence and helps to reduce the interaction between graph
nodes. Furthermore to account for previously searched labels, an incremental approach
is used where in each iterationt we look for the set of labels that improves the current
solution s.t.yt

i = y0
i +

P
t
~� l i t , which is a temporal minimization problem. Then (22)

can be re-written as a labeling problem:

E t (L
~� ; L 
 ) = V

�
f NW(f yt � 1

1 ; l
~�
1 ; : : : ; yt � 1

d ; l
~�
d g); I )

�

+ � ij

X

i 2 G

X

j 2N ( i )

Vij (yt � 1
i ; yt � 1

j ; l
~�
i ; l

~�
j )

+ � c

X

c2C

Vc(wt � 1
c ; l 


c ): (24)

We solve the minimization of the higher-order cliques in (24) by transforming them
into quadratic functions [15] using a(t + 1) -state switching variable which �nds the
deviation function which assigns the lowest cost to the labeling:

min Vc(w0
c) = min

w0
c ;z 2f 1;2;:::;t +1 g

f (z) +
X

i 2 c

g(z; wi ) (25)

wheref (z) = f � q; � max g is a cost assigning function depending on the state variablez
andg(z; wi ) =  q

il whenz = q andwi = l 2 L 
 , while g(z; wi ) = 0 whenz = t + 1 .
We apply a Primal-Dual algorithm called FastPD [16] which can ef�ciently solve

the inference problem in a discrete domain by formulating the duality theory in linear
programming. The advantage of such an approach lies in its generality, ef�cient com-
putational speed, and guarantees the global optimum without the condition of linearity.
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Figure 2: Manifold embedding result of the spine dataset with illustration of a local
patchM k for individual shape warping of two �rst modesn = 2 with variation of
� 3SD.

4 Experimental Validation

In order to validate the performance of the method, we considered modeling patho-
logical spinal columns represented as articulated shapes for computerized tomography
(CT) inference. We used a database of711 spine models reconstructed in 3D from
X-ray images, exhibiting different types of deformations relative to global and local
shape geometries. For each spine,6 landmarks on each of the17 vertebrae composing
the spinal column where used to de�ne the LCS in order to extrapolate the inter-object
transformation as described in Section 2.1. Models were composed between3831
and6942vertices depending on the vertebra level. Dimensionality reduction provides
the embedding manifold shown in [Fig. 2] with local variation mode from a selected
patch. Optimal neighborhood size was found atK = 10, while intrinsic dimensions
wasd = 7 andn = 5 as shown in [Fig. 3(a)] dictating the number of nodes in our
global graph model. We tested the algorithm on a subset of20 unseen cases from the
database. Successful examples of the obtained results from sparse sample points and
CT inferred data are shown in [Fig. 4]. Additional results are presented in [Fig. 5].
Towards checking the robustness of the method, we evaluated the performance based
on the density of the input sample points. [Fig. 6(a)] demonstrates the model's accu-
racy with respect to the number of available points, visibly affecting the global shape
when density is reduced to20%. To further validate the robustness, we added gaussian
distributed noise to the target data. While distortions begin to appear when� = 3 , the
inferences obtained in [Fig. 6(b)] are promising by simply varying the prior weight
complements� and� . The method also performs well when local objects are com-
pleted occluded or missing [Fig. 6(c)]. We quantitatively compared our method to an
AAM modeling based on global PCA [Fig. 3(b)]. Dice scores and root-mean-square
(RMS) landmark distances computed from the test cases show improvement of the pro-
posed MRF approach via a non-linear shape analysis. To demonstrate the potential of
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(a) (b)

Figure 3: (a) Dimensionality of the global manifold based on residual variance (top)
and of local shape eigenvalues using the % of covered shape variance (bottom);(b)
Boxplots of dice overlap coef�cients and landmark errors comparing our method to
AAM.

Figure 4: Successful spine inference results of triangulated mesh ADMs to sparse (red
points) and CT image with orthogonal views.

our method for other modeling applications, we produced results on deformable arm
poses (GRAIL, Univ. Washington) via an articulated representation shown in [Fig. 7].
These validations prove how our method elegantly encodes prior knowledge with im-
age constraints in an MRF framework, and ef�ciently minimizes the energy term to
converge towards an optimal solution. One drawback remains the computational time
due to the inverse regression mapping and higher-order clique potential minimization.
Experiments were conducted in C++ on a 2.8GHz Intel P4 processor and 4GB memory.
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(a) (b)

Figure 5: (a)-(b) Examples of successful and erroneous inference results in various
con�gurations.

5 Discussion

We have proposed a novel method for inferring articulated shape models. Our main
contribution consists in modeling complex, non-linear patterns of prior deformations
in a Riemannian manifold embedding. New point-based models are created from sta-
tistical knowledge in terms of global and local variations. To this end, we introduced a
conditional regression kernel to perform the inverse mapping to the ambient space from
neighbors selected with an articulated distance metric based on intrinsic and orienta-
tion properties. One observation of the non-linear embedding is that it avoids creating
shape distortions and eliminates the need to solve large-dynamic programming prob-
lems, thus saving computational time and memory space. The proposed framework
based on higher-order MRFs is general, and can be extended for other applications in
vision and medical imaging to accommodate for pose modeling. Real-time inference
of articulated models, motion tracking and medical guidance based on optimal higher-
order clique decomposition would be bene�cial towards this end.
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(a) (b)

(c)

Figure 6: Triangulated mesh models represent inferred ADM; red points illustrate the
target image data. (a) Decreasing number of available points to infer the ADM affect-
ing global shape coherence. (b) Local shape distortions with signi�cant noise level
increase� added to target points (error-coded models for ground-truth distances). (c)
Robustness of method towards missing target components and occluded parts.

Figure 7: Human body part deformation results for the arm.
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