N

N
N

HAL

open science

Comparing Optimistic Database Replication Techniques

Pierre Sutra, Marc Shapiro

» To cite this version:

Pierre Sutra, Marc Shapiro. Comparing Optimistic Database Replication Techniques. Bases de Don-

nées Avancées (BDA), Oct 2007, Marseille, France. inria-00444785

HAL 1d: inria-00444785
https://inria.hal.science/inria-00444785
Submitted on 7 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00444785
https://hal.archives-ouvertes.fr

Comparing Optimistic Database Replication Technigues

Pierre Sutra Marc Shapiro
Université Paris VI and INRIA Rocquencourt, France
LIP6, 104, ave. du Président Kennedy, 75016 Paris, France
E-mail: pierre.sutra@lip6.fr, marc.shapiro@acm.org

Keywords:database replication, transaction procesk- Introduction
ing, optimistic concurrency control, synchronous

replication and atomic broadcast In order to scale up a database system, several ap-
proaches are possible: buying a bigger machine, di-
viding the work, or replicating the load across sev-
eral remote machines. Replication does not require
costly equipment and enables fault tolerance. How-

Replication is attractive for scaling databases up, @', remote access has a high latency, and the la-
it does not require costly equipment and it enabl&Cy gap only keeps increasing. Furthermore, re-
fault tolerance. However, as the latency gap b@ote access is subject to disconnections. Therefore,
tween local and remote accesses continues to wid&gintaining consistency between replicas is difficult.

maintaining consistency between replicas remains apptimistic replication (OR) is an attempt to ad-
performance and complexity bottleneck. Optimistigress this problem. An OR system caches data. A
replication (OR) addresses these problems. In ORy&abase executes transactions against its local cache
database tentatively executes transactions againsidiatively Remote databases reconcile after the fact

local cache; databases reconeilposteriorito agree tg agree on a common schedule of committed trans-
on a common schedule of committed transactiongtions.

We present three OR protocols based on the deferred)

update scheme. The first two are representative ofAmong OR technlq.ues, thfﬂeferre.d update

the state the art. The third is new: we describe it ﬁ?heme has recently raised an increasing interest of
detail. As all three protocols are expressed withintd® community [FGS03, HSAADE, RADO. SSF06].
common formal framework, we are able to compal the deferred update scheme a database executes
them, to identify similarities and differences, and fg new mcommg tr.ansactlon _a@_la'_”St Its .Iocal cache.
introduce common variants. We show that our er—_the transaction is a query it is immediately com-

tocol behaves better than the other two, with resp&@ftted; in the other case the database computes a
to latency, message cost and abort rate. logical clock, and the read set, write set and update

values of the transaction. This information is then

“This research is funded in part by the European projed@Nt to distant sites to globally commit the trans-
Grid4All and by the French project Respire. action. The deferred update scheme has proven to

Abstract

be efficient, outperforming existing pessimistic a2 System Model
proaches, while maintaining consistency [WIS05].

This paper compares three OR commitment pri consider a distributed system in which any client
tocols based on deferred updates. The first two & Submit an operation on shared data, at any site
representative of the state of the art: the epidenE@ny time. In the general case, maintaining consis-
protocol of Agrawal et al [JAES97], and the Databad&NCY requires a complex concurrency control mech-

State Machine (DBSM) approach of Pedone et &fism. However, providing the system with some
[PGSO03]. The third one is new. We describe it jpémantic knowledge can simplify consistency. For

detail. instance, suppose that all updates commute; in this
case, maintaining consistency reduces to propagat-
Our contributions are the following: ing the update operations to all sites, and executing

them in any order.
e We describe all three protocols in the same for-

mal framework. This clarifies the comparison. ~ Building upon this insight, our model (which is
a refinement of the Action-Constraint Framework

e Using the framework, we can explore commoi$BK04]) maintains an explicit graph, where the
variants. Forinstance, we propose a new variarddes are the actions that access shared data, and
to the Agrawal et al. protocol, ensuring snaphe edges represent semantic links between actions.
shot isolation. A consistency protocol is a particular solution to a

graph problem. The complexity of the problem is re-
e We propose a new OR protocol that batchggeq 1o the shape of the graph. In our experience,

transactions. This allows it to optimise the abog,r model clarifies the understanding of consistency,

rate. Furthermore, batching amortizes COMMyyakes it easier to compare protocols, and helps with
nication and computation costs. the design of new solutions.

e We show that our protocol improves over the
other two, in terms of latency, message cost aBd:L

abort rate. The Action-Constraint Framework

e We propose two variants of our protocol: ong.1.1 Actions, constraints and multilogs
that is more optimistic, and one that ensures

snapshot isolation. We postulate a universal setaftionsA.

The rest of this paper is organized as follows. We Actions are linked each others lpponstraints
present our model in Secti@h 2. Sectidn 3 studies tivhich are relations ovef. Five constraints are of
Agrawal et al. protocol, and proposes a variant fparticular interest in our framework:, —, —, <tand
snapshot isolation. Secti@h 4 studies the protocoliofrespectively pronounced “commit,” “abort,” “not
Pedone et al. Sectidd 5 presents our proposal aiftdr,” “enables” and “non-commuting.” The con-
its variants. We compare the different protocols straints+ and— are unary relations ovek, whereas
Sectior6. Sectiofl 7 surveys related work. We close, <t and« are binary relations ovek. Their se-
in Sectior 8 with a discussion. mantics will be explained shortly, in Sectibn211.2.

Our central structure in the Action-ConstrainthatS= (E, <s) is a schedule oM, iff :
Framework (ACF) is thanultilog. A multilog is a

sextuple(K,+,—,—, <,#) whereK is a set of ac- va,BeK

tions, and+-, —, —, <, « are some sets of constraints a-eM=a¢E

over A. We noteM the universal set of multilogs atfeM=0a€cE

overA. a<BeM= (BecE=0acE)

a—-BeM= (a,BeE=a<sPp)

We define union, intersection, difference, etc.,
between mUltiIOgS as Component'Wise Operatiorﬁ)r some actiorn and a schedul& = (E’<S), we
For instance, leM = (K,+,—,—,<,x) andM’ = gsay thatn is scheduledn S(noteda € 9) iff a € E.
(K',+,—,— ,<,#) be two multilogs. Then, we notex (M) the set of schedules .
MUM = (KUK +U+ ,—U— ,—U— ,qU
U+). By abuse of notation, we also use the union Thus the—, +, — and < constraints restrict
operator to add an element to a single componetflich schedules may appear®M). This defines
which should be clear from the context. For instand&€ir semantics.

MU {a} addsa to theK component, ieMU{a} 2 In contrast, « divides >(M) into equivalence
(Ku{a}t,+,—,—,<,x). Similarly, MU{a™} adds classes of schedules. Let= (K,+,—,—,<,#) be

(a,a) to the+ component, andM U {a — B} adds a multilog. Two scheduleSandS of £(M) are said
the pair(a, B) to the— component. equivalentaccording tar, notedS~ S, iff:

The notationa™ € M, or just (when clear from va,pek,

the context)a—, are used as a shorthand fqo'; o) { QcSoacs

is in the— component oM.” Similarly, either{a — (0,B) € AaHBEM= (0 <sB < o <g B)

B} € M or justa — B are shorthands for “The pair

(a,pB) is in the— component oM.”
We notex(M)/~ the quotient set cE(M) by ~,

A .
a S B=a—-BAB—a schedules induced by.

A
as BZ a—pBra<ap The following constraints or combinations of
aJB=a<BAB<Q constraints are particularly useful for defining appli-

cation semantics. Lavl = (K,+,—,—,<,#) be a

multilog anda, 3 two actions ofK. A —-cycle in

2.1.2 Schedules of multilogs and classes oM (e.g.,a = B) representantagonismi.e for any
schedules scheduleS of £(M), eithera isin S orBisin S or
neither of them; the conjunctidh < a meansx de-

-) <
Let E be a subset of. We call schedule a coupleP?€Nds causallpn ; and an-cycle such ast 5 B
S= (E, <s) where<s s a strict total order ove. EXPresses an atomic grouping. Finaily: 3 means

We noteS the universal set of schedules over thata and do not commute; itr and are trans-
actions, this models the isolation constraint (the | of

Given a multilogM = (K, +,—, —,<1,#), we say ACID).

3

2.1.3 Particular subsets of multilogs and con- Durable(M) éAborteo(M) U

cept of soundness
P {a eCommittedM) |

Let M = (K,+,—,—,<,n) be a multilog. The fol- VBeK:(B—aVvB<a)
lowing subsets oK are of particular interest for the = B < Durable(M)}
study of consistency.

Committedactions appear in every schedule @& multilog M is said sound iff CommittedM) N
M. This set is the greatest subseko$atisfying: AbortedM) = &. Observe thak(M) # @ implies
CommittedM) £ M sound.
{aja™ v 3B € CommittedM) : a < B} A multilog M is saiddecidediff DecidedM) =
Aborted actions never appear in a schedule &

M. Aborted M) is the greatest subset Kfthat A multilog M is saiddurableiff Durable(M) =K,

satisfies: or equivalently iffM is sound and=(M)/~| = 1.
Aborted M) =

{0] (3Ba,- -, Bm=0 € CommittedM), 2.2 Formalizing consistency in replicated

a—PBr—...—Pm—0a) systems
Vv 3B € AbortedM) : B < a
Va) We consider an asynchronous distributed system of
n sitesi, j,..., connected through fair-lossy links

Serialized actions are either aborted, or arLBCBTgE]' T_he failure model is fail-stop. A global
glockt € T ticks at every step of any process, but

ordered with respect to all non-commutin .
rocesses do not have access to it.

constraints against non-aborted action
SerializedM) a We assume that some shared daf[a _is replicated at
every site. Initially, at = 0, the data is in the same
state at every site. We make no further assumption

{a| VBeK,a«B =

(a—=BVB—a about the data; indeed data does not appear explicitly
V a € Aborted M) in the model, which considers only the actions that
VB € AbortedM))} access the data.

A site contains two processes: an application pro-
Decidedactions are either aborted, or both contess called thelient, and a singleonsistency agent
mitted and serialized: (or justagenthereatfter).

DecidedM) 2 Clients receive and execute user actions accessing

Aborted M) U (CommittedM) N SerializedM))shared data. Agents ensure the consistency of the

A Durableaction is decided, and, if committedSYSteM Py executing a protocol.

all actions that precede it, either by or by ACF constraints capture both the schedule se-
<, are themselves durable. This is the greatesantics of actions, and the decisions taken by the
subset oK satisfying : protocol.

2.2.1 Site-multilogs and site-schedules 2.2.2 Systems and Commitment Protocols

At any point in timet, each sitd is entirely defined We note a system ofn sites as S, =
by its site-multilog M(t) = (Ki(t),+i(t),—i(t), =i ((M1,S1).....(Mn,S)).
(t)); <i (1) (t) and itssite-schedule;§). We call protocol a family of algorithms? =

o Mi(t) is the local knowledge thathas at time {1, %2. ..} where eact¥; is defined by a set of cou-
of the set of actions and of the semantics linkiries(S T) € (MxS)?, whereSis a state and a tran-

them. sition.
Initially, every site-multilog is equal to In our framework both clients and agents exe-
(2,9,0,0,9,9). cute protocols. Given a systepy, we noteC =

_ _ _ _ Ci,...,Cn}, (resp. A= {Aq,...,A,}) the protocol
Site-multilogs grow monotonically over time s clients (resp. agents) executing at sites. f.
as clients and agents add new actions and con- _) -
straints. The following rule captures this mono- 1€ client protocol is left mostly unspecified, as
tonic growth: clients are free to do anything, as long as they do not

put the system into an error state. The agent proto-
col aims to bring the system to consistency; we refer
to A as acommitmenprotocol. Hereafter, we study
three different commitment protocols, and variants
of each.

We abstract the computation of constraints

into a routine noted addConstraint§).

This routine takes as input a multilog-2-3 Runs

M= (K,+,—,—,<,#), and returns a mul-
tlog M = (K/,+ ,— ,— ,< ,#) such that:
M C M’ and K’ = K. Different concurrency
control differ, in particular, in how they

Vie[1,n],vt e T,IM € M,
Mi(t+1) = Mi(t) UM

A runr of §, according toC andA is an array ofn
rows, each rowrepresenting the evolution over time
of (M;,§) starting at = 0, and such that :

computeaddConstraint). Vi€ [Ln],vt € T,3M € M,
e S(t) € Z(Mj(t)) represents the state of shared M;(t+1) = M;(t)UM
data oni at timet. The choice ofS(t) is arbi- A { (M;(1),S(t)) ~c (Mi(t+1),S(t+1))
trary when|Z(M;(t))/~| > 1. If §(t — 1) is not = ((Mi(t),S(t)),(M,S(t+1))) €C
a prefix of§(t), it represents a roll-back. A { (Mi(((t,\)/i I?t())\% (Nt;A ((I\'\:I (;J(rt 1),1?)(; +2)
= i 9 9 9 + € i

Agents and clients both have access to the site-
schedule and the site-multilog, but our clock is as-
sumed sulfficiently fine-grain that betwetesndt + 1,
only one or the other may access it. We formalise i -) X
using transitions(M; (t), S (t)) ~a (Mi(t +1), S (t + otherwise we say thats crashedinr (i € crash(r)).
1)) for the agent, andM;(t),S(t)) ~»c (M;(t + A column ofr at timet represents the state of the
1),S(t+ 1)) for the client. system at timé. We note itSy(t).

As usual, considering a run we say that a site
tigcorrectinr iff r(i] is infinite (noted € correct(r));

We noteR(S$y,C,A) the set of runs of A and C inensures that all sites eventually agree on the deci-

Sn . sions. Mergeability ensures that the system is glob-
ally sound, i.e., no decision ever puts it in an error
State.

2.3 Consistenc
y If in any run of R(S,,C,A), with at most f

Serialization theory[[BHGE7] considers only finit€™aShes, eventual consistency is attained by every
sets of transactions; accordingly, hereafter we cdif/"eCt Process, we say thais f-resilient.

sider only quiescent systems. Given a systgma Given a systems, a client C, and a fault-
set of clientsC, and a set of agent, we say that resilience degred we call the problem of finding

a systems, is quiescentiff in any run of $,, both such a protocoh, theconsistency problem

agents and clients eventually stop submitting new ac-

tions: 2.4 Modeling database replication
vr e R(5ﬂ>C>A)>
T e TVt >T e T,Vie [Ln], T_h_ls section refines the previous model to the spe-
Mi(t+1).K = M;(t).K cific case of a fully replicated database accessed
through ACID transactions.
whereM.K denotes th& component of multilodM. e model ACID transactions in our framework

Definition (Eventual Consistency)A systemsy IS at a coarse-grained level, where a single action rep-
eventually consistent (EC) in a run r iff it satisfiefesents a whole transaction. Given a transaclion
the following correctness conditions: we noteRST) its read setWST) its write set and

e Eventual Decision: UV(T) the corresponding update values.

Two transactions may be related by constraints
Vi € correct(r),vt € 7,Va € Ki(t), derived from their respective read and write sets, and
Jt' € T,a € DecidedM;(t')) from whether they are concurrent or not. Commit-

ment protocols differ on how they compute these

e Mergeability: constraints, as it will become apparent later.
We model a set of fully replicated databases as a
(U mi) #2 system of sites. A processes that issues transactions
igﬂq%v”ﬂ is a client, and agents execute the protocol.
The client, Algorithm[Jl, models the application
e Eventual Agreement: processes. A client submits a new transaction at
a time to its local replica, by adding it to the site-
3t € 7,vt’ >t,Vi, j € correct(r), multilog.
St ~Si(t) We divide an agent into three modules that exe-

cute in parallel:

Roughly speaking, eventual decision ensures tha® The executionmodule schedules and executes
the system makes progress. Eventual agreement transactions.

6

Algorithm 1 ClientC; at sitei 6. When sitej receivesT, it examinesWVST) and

[EnY

o gk wN

M; {the site-multilog ofi } RST), then either aborts or commitsaccord-
S {the site-schedule o} ing to a specific certification algorithm. If it
loop commits, it appliedJV(T) to WST).
choose some transactidn In the rest of this paper, we discuss the differences
M =M U{T} between commitment protocols, in particular differ-
end loop ent certification algorithms.

e The certification module decides which trans

We model bulletgll34 with the execution module.
Bullet[H constitutes the propagation module. Billet 6

actions to abort or commit. constitutes the certification module.

e The propagation module sends and receives

messages to co-ordinate replicas. 2.4.1 The execution module

All the commitment protocols considered in thig|gorithm[2 shows in more detail how, given the cur-
paper are based on a scheme knowdeferred ex- rent site-schedul§, the execution module computes
ecution A transaction first executes at the local sitg, new scheduls.

under local serializability. The system records the

transaction’s read set, write set and update values Agorithm 2 Execution module in the deferred scheme
this point, no remote locks are taken. After the transl: M; {the site-multilog of }
action terminates the system contacts remote site%, S {the site-schedule o

attempts to apply the update values to the write séﬁ

loop {executior}
chooseSe (M) such thawT, T’ e K,

remotely, and to certify the transaction. The transaqj.'—: TcS=TeSvT € AbortedM;)
tion may commit only if the certification succeeds. 6; (T,T'eSAT > T) =T >ST/I

(TESAT ¢SAT >sT) } LT

More formally, leti be a site, and a transaction 7: AWST) N (RYT)UWST')) = @

submitted ai. The deferred execution algorithm is CommittedM;)

as follows. g forall T,WST)=@do
. . 9: Mj:=MUT*
1. i executesT under two phase-locking (2PL)
- 10: end for
[BHGE7A 11 =S
2. WhenT terminates without aborting, it keepg2: €nd loop
its write locks and releases its read locks.
3. Sitei computesRST), WST) andUV(T), Two-phase locking ensures that any new sched-
_ o _ ule extends the current schedule. Consequently
4. If T is aread-only transaction, itcommits. 3 transaction never rolls back unless it is aborted
5. OtherwiseWST) andUV(T) are sent to sites(Line [), and transactions remain in the same or-

j £, der (Line[®). When a transaction terminates, it re-
leases its read locks but keeps its write locks; there-

1 with no loss of generality, we can ignore local deadlocksfore any new transaction can execute only if all the

7

transactions with which it conflicts are already com-

i i i : T<T[TT[T<T
mitted (LinelT). Finally read-only transactions com- RSTIN = / ” - =
mit when they terminate (Lirid 9). wsTh£g | T T | T=T T =T

WST)m ! / !
WST') £ @ T—-T TrT T —>T

2.4.2 The propagation module
propag Table 1:An example of constraints computation

The propagation module differs between commit-

ment protocols. In particular they are based on difz4.3 The certification module

ferent communication primitives. Consider some

messagen. The certification modules differs from one commit-
ment protocol to another, but they all base their cer-

Epidemic Propagation consists of two primitives: tification on static constraints computed using.

EPsendm) andEPreceivém). With epidemic prop- 1. Read-set and write-set intersection. Two trans-
agation, sites have the following guarantees: actions T and T’ are said to conflict iff

e Integrity: if j performsEPreceivém), then a (RYT)NWST') #)V (RYT) NWST) #
sitei performedEPsendm) previously. @)V (WST)NWST') # 9).
e If a correct sitei performs EPsendm) in- 2. Thehappens-beforeelation [Lam78]. Transac-

finitely often, andj is correct and performs tion T happens-beford’, notedT < T/, iff T’

EPreceivé) infinitely often, thenj eventually is submitted at some siteafter T finishes its
performsEPreceivém). execution at site, or if there exists a transac-

tion T” such thaflT < T" AT” < T'. If neither
T <T'norT’ < T the two transactions are said

Atomic broadcast consists of the primitives concurrent, noted || T'.

ABcastm) and ABdelivefm), with the following

properties: As mentioned previously, commitment protocols

enforce constraints computed gldConstraints).
These depend on the consistency criterion that needs
to be ensured. Tablg 1 provides an example of such
a computation.

e Uniform Integrity: for every messaga every
site performsABdelivefm) at most once and
only if a sitei performedABcastm) previously.

e Validity: if a correct sitei performsABcastm),
then it eventua”y performABdenvel(m). For instance given two transactiohsandT’ such

thatT | T/, RST) = {x},WST) ={y},RST) =@,

andWST’) = {x,y}, Table[1 defines the constraints

BetweerT andT’ as:T — T/ andT # T

e Agreement : if a correct sita performs
ABdelivefm), then every other correct sitee
eventually performABdelive(m).

e Uniform Total order: if a site performs If we consider an empty multiogM, then
ABdelivefm) and ABdelive(n) in this order, the result of addConstrainttM U{T,T'})
then every site that perfornABdelivefm’) has is the multlog M’ such that M’ =
previously performed\Bdeliverm). {T.712,9.{(T.T)}.{(T.T)}).

RYT)N WST)N T’ € workflow(T)

WST)#@ | WIT) #0 RST)"WST) £ 3 AT
T’ € snapshofT) T 37 %} 10) 7 —
T’ ¢ snapshofT) T-T T-T

T ¢ snapsh™) Table 3:Constraint computation for PCSI

— /
AT’ ¢ snapshofT) 4 T=T

Table 2:Constraint computation for GSI consistent, and the constraints linking transactions
are sufficienf then the system reaches the consis-

L . tency criterion.
2.4.4 Serializability and Snapshot Isolation

For instance, if the system is eventually consistent
This paper considers four consistency criteria, S@-a runr and constraints are computed according to
rializability (SER), External Consistency, Generairable[1, then the executianis serializable; if con-
ized Snapshot Isolation (GSI), and Prefix Consistesitaints are computed according to TdHle B GSI;
Snapshot Isolation (PCSI). and if constraints are computed according to Table 2

SER means that the multiversion serializatidfi addition to Tabl&€By is PCSI.
graph of committed transactions is acyclic |[BHG87].
GSI and PCSI are two consistency criterions non-
comparable to SER. They generalize Snapshot Isp- : : : :
lation (SI) to the case of distributed database s;f- Database repll_catlon with epr-
tems. Slis used in many commercial databases, such demic propagatlon
as Oracle[]|Orag7], PostGres [GIo04] and SQLServer

.[M'COSJ' In practice, most computations are Serla/lb'\grawal, El Abbadi and Steinke propose a family of
izable under SI[FLOO05]. , . .
commitment protocols based on an epidemic com-

GSl and PCSI ensure that read-only transactiomginication between sites JAES97]. We first model

never block and do not cause update transactionsteir pessimistic scheme (AES), then consider their

abort. In GSI a transaction always observes a c@ptimistic variant (AESO).

sistent state of the database, but not necessarily the

latest one[[EZP05]. In PCSI a transaction observes

at least the effects of the transactions that preced%_

in the same “workflow.”

4 Overview

We introduce GSI and PCSI inFo our frameAES uses a deferred scheme in which sites exchange
work as follows. LetT be a transaction. We note,niqemically their local logs. AES ensures serial-

snapshofT) the set of comm.ltt(T:-d transactlons. th"ﬁability with a certification test, such that any two
T reads from its snapshot. Similanyorkflon(T) is e yrrent transactions that conflict will both abort.
a set of committed transactions that defines the wogks o\ 4 sitei receives a log containing a transac-

flow of T. tion T, if T is not aborted, its updates apply at site
SER, GSl and PCSI are mapped to Eventual CanWheni learns thall was successfully executed at
sistency: if during a run, the system is eventualbll sites,T is committed at.

9

Algorithm 3 AES, code for sité
T<T [T[T [T <T _ .
RST)NWST)) 1: M; {the site-multilog of }

o T-T | TST | TST 2: § {the site-schedule o}
WST) AWST’ _ 3: Loggn] {an array ofh multilogs. Logdi] = M;}
.);é @ SRS AR STT =T 4: loop {executior}
true T-T 7] 75T 5. same as Algorithral2
6: end loop
Table 4:Constraints computation for AES 7|
8: loop {propagation
) o 9: letL={T € S|WST) #d}
3.2 Computing constraints in AES 10: choosek € [1,n]

11: L:={T € L|vT' € Loggk],T — T’ ¢ LogsK|}
EPsendL) to j

.) , 12:
Table[4 summarises the constraints used in AES. 9 ong loop

AES transactions are executed according to the ordegr |

they appear in logs, whether they commute or nat: loop {commitmen}

hence the— relation in the bottom row of the table.16: EPreceivélL) from some procesp

In AES concurrent conflicting transactions cannot B& Loggj] := addConstrainté_ogsj] UL)
both executed; we translate this with an antagonig® M := addConstrainteM; UL)

. . i forall TelLdo
(flrgt tv;c;[clms). Then, as transactions are execut;% 3T M i T © T/ € M; then
uhder sFL- 21: M =M U{T~,T'"}
. . &12 else
¢ |f a committed write happens-before aread witff" it T ¢ AbortedM;) A (vk € [1.n],3T' €
which it conflicts, the write is causally before ™ Logdk], T — T') thlen B
the read: 24: Mi := M U{T*}
, 25: end if
T=<T / 26: end if
=T 4T '
ARST)NWST') A0 } - 27 end for
28: end loop

e If a committed read or write happens-before a
write, the former is ordered before the write. 3.4 Correctness of our translation and ob-

servations
T<T T T
AWST)N(RST)UWST')) £ 32 - Concurrency control in AES is based on the predi-
cateHasRecvd, T,k). This predicate captures the
fact that sitei knows thatk has received transac-
tion T. We capture this information with an array

3.3 AES of n multilogs, Logs Loggk] contains the knowl-
edge thai has of sitek: HasRecv¢i, T, k) 297/ ¢

Algorithm [3 expresses the AES algorithm. (EactP9SK){T — T’} € LogskK].
loop iteration is atomic.) A non-query transactions that has executed lo-

10

cally, and has not yet been received by some remédgorithm 4 AESO, code for sité

site, is sent to that site. Formally, transactidris 1: M; {the site-multilog of }

sent to remote sitkif ~HasRecvd, T,k) < (VT' € 2: S {the site-schedule o}

Logsk],T — T’ ¢ Logsk]) (Line[I]). Observe that 3 Logsn] {an array oh muttilogs. Logsii] = M;}
this propagation scheme might block when client§’ loop {executior}

stop submitting new transactions to the system chooseS€ Z(M;) such that/T, T’ € K,
P 9 y) 6: TeS=TeSVT € AbortedM)

Using HasRecvd AES abortsT and T’ if both 70 (T, T"eSAT >gT)=T >sT’
of them have executed on at least one site, and % S:=9S
they are conflicting and concurrert [AES97]. Sel% end loop

_ X l
Lines[Z0 td211.. 11: loop {propagation

AES defines the predicaommitT,i) such that 12: same as Algorithifll3
i commitsT if i knows thatT has been received by13: end loop
every site and no concurrent conflicting transactiod$: ||

exist (LinedZB and24). 15: loop {commitment
() 16: same as Algorithrfl3

17: end loop

3.5 The optimistic variant

In AES, an optimistic variant of AES, transaction4d The Database State Machine Ap-
release their write locks at the end of execution. With proach
this modification, cascading aborts may occur, and

read-only transactions (queries) may read uncommit) -
ted values The database state machine approach [PGS03] uses a

_ _ _ deferred scheme where the certification test is based

Our model for AESO is almost identical G atomic broadcast. Two approaches exist: (1)
AES. Indeed < captures the existing abort dep classical approach (DBSM) in which an update
pendencies between transactions: W < T', yansaction commits or aborts as soon as it is deliv-
then T € CommittedM;) = T € CommittedMi) greq 1o sites; and (2) a reordering technique (DB-
and conversely (i)T € AbortedM;(t)) = T' € gMR) in which a delivered transaction is re-ordered

AbortedM;(t)). Releasing write locks at the end ofy;ith relation to the set of already committed transac-
execution translates to removing Lile 7 from Alggjons.

rithm[2. The rest is unchanged, see Algorithim 4.

3.6 The Snapshot Isolation variant 4.1 Static constraints in DBSM

As an illustration of our framework, we propose ¥t DBSM, all update transactions are ordered. Con-

variant of AES that ensures GSI or PCSI. sequently any pair of transactions with a non-null

For GSI, the change is very simple: in either AEgmte—set is considered non-commuting.

or AESO, replace Tabld 4 with Tadlé 2 . To obtain Now let us refine these constraints according to
PCSI, add TablEl3 to Tallé 2. the certification test; a sitg commitsT after it de-

11

Algorithm 5 DBSM, code for sité

T<T [T T [T <T : :
RST)NWST)) ; T 1: M; {the site-multilog ofi}
4 T-T | T-T)T 5T 2: S {the site-schedule o}
WST)WST) 3: loop {executior}
£ T-T @ =T 4: same as Algorithral2
WST) £ D , 5: end loop
AWST') £ @ 9 | TaT | O 6 ||
o 7: loop {propagation
Table 5:Constraints in DBSM 8: choosed € M;s.t.Te€SAT ¢ CommittedM;)
9: AB-cast()
livers it and iff: i‘; ﬁ”d loop
, . _ 12: loop {Commitmen}
VT' € CommittedM;), 13 AB-deliver(T)
T <TVWST)NRST)=@ 14: M :=addConstraintgM; UT)
15: forall T € CommittedM;) do
Consequentlyl is aborted iff: 16: Mi := M U{T' — T}
17: endfor
/ . _ 18: if T ¢ AbortedM;) then
T’ € Commltte(ﬂMJ)7 19: M; := M; U {T+}
T|TVvT <T 20: endif

AWST)NRST) #9 21: end loop

This test ensures that if boThandT’ are commit-
ted, thenT = T’ cannot occur. Consequently sincé'3 DBSMR

T is executed aftell”’, this certification test checks
thatT — T’ is not an existing constraint betwe@&n [N its classical form DBSM leads to a high abort rate

andT’. It follows that: due to the unnecessary order appearing aflihe 16. To

/) solve this problem Pedone et al. propose a reordering

T //\WST)/ﬁ RST) # 9 } _. T _ T/ technique based on the deterministic construction of
V(T <T'AWST')NRST) #) a partial order over certified transactions: Algorithm

al.

Moreover, since transactions execute in DBSM

with 2PL, observations appearing in Sectibn] 3.2 However this approach has a drawback : when
hold. Tabld®b sums up the constraints. the system becomes quiescent, transactions block in

. . uffer B. To preserve liveness, “null” transactions
For the reordering technique [IPG$03, page llﬁa P

- . ave to be sent to sites.
similar reasoning leads to the same table.

4.2 DBSM 4.4 Snapshot Isolation

Algorithm [H presents the translation of the classicBlnikety et al. depict a variant of DBSM to guarantee
database state machine approach in our framewoi&eneralized Snapshot Isolation [EZPPO5].

12

We translate this algorithm in our framework sim-
ilarily to what we did with AES. We use Algorithid 5,
and switch from TablEI5 to Tablé 2.

Algorithm 6 DBSMR, code for site 5 Optimization-Based Replication
1: M; {the site-multilog of }

:2)) g{{;hsu]scf'z';’f;ig‘ile o} The protocols depicted in the previous sections suf-
4; loop {execution fer a problematic abort rate as they kill transactions
5. same as Algorithrl2 more than necessary (AES, Tablel3.2), or do not se-
6: end loop rialize concurrent updates in a good order (DBSM,
7| Algorithm 3, line[I®). We also pointed out that they
8: loop {propagation may experience liveness issues when the system is
9: same as Algorithifll5. under low load (DBSMR, see Sectibn¥.3 and AES,
10: end loop see Sectiofidl4). Futhermore, they propagate one
E I|<|)op {commitmen} transaction at a time over the network (DBSM and
13; AB-deliver(T) DBSMR), whereas batch-processing transactions is
14: M; = addConstraint&V; U T) possible.
15: 'fVT/ € CommittedM;), {T — T'} ¢ M; We propose a new commitment protocol to rem-
Sjeol— 1]]: ’ | edy these issues.
A { vke [0, —1].{BK - T} ¢ M } Our idea is triple. We batch-process transactions

then A (VKE D = 1LAT — BlK} ¢ Mi) in the same atomic broadcast. We compute the weak-
16- for all T' € CommittedM;) do est static constraints to preserve serializability and
17: Mi = M; U{T' — B[l — 1]} causality. And we commit transactions trying to min-
18: end for . imize the number of transactions aborted.
;g; ?C/l)'r;"'\lf'eu[[{ji“__lﬁ]dg This last computation step is ensured with an
21: B[k + 1] := B[K heuristic as the problem is an NP-hard optimization
22: end for problem (see futher).
;i elszm =T In this section we first present our new protqcol
o5 M; =M U{T "} (OBR). Then we expose a more optimistic variant
26: endif (OBRO) where we release write locks at the end of
27: end loop execution. We conclude with a variant for snapshot

isolation.

5.1 OBR: overview

Our protocol works as follows:

13

Decidg) does not add new transactions:

T=<T [T|T [T <T K — K
7 = .
W T;é%V T - «+ 2+
SOOWST) 1| T | T T ,
#9 o — O —
Table 6:Static constraints in OBR e 0 — B=a—Bvaxp
o Hy = H

1. Transactions are executed against local cach
using 2PL. Read locks are released at the en
of execution, read sets, write sets and logica®- If M is sound, theM’ is sound.
timestamps are then computed. Queries are lo-According to this definition certification loops
cally committed. appearing in previous sections are all instances of

Decidg). However we offer an improveBecidd)

2. sites batch transactions in the same atorrgf:gorithm (Algorithm[¥) that aims at minimizing the
broadcast. abort rate

3. When a sité delivers such a set of transactions

. Multilog M’ is decided.

. . o i ’ We follow the general guidelines proposed by
I computes constraints linking transactions a%’hapiro and Krishnd I[SKD5]. We decompose deci-
cording to Tablél. sion into three parts: serialization, conflict-breaking

4. Theni takes a decision upon these transactioasd validation: serialization orders any non-
with an heuristic:Decide). We specify this de- commuting pairs of transactions, conflict-breaking
cision such that: aborts at least one transaction in anycycle, and

i i . validation commits the remaining set of non-aborted
e Non-commuting transactions are :serla{-r ansactions

ized.
Given T a blindwrite transactionRST) = d),

. Atl: trar;sacnons are either committed of o arializeT « T/ in T/ — T lines[3 to®. Indeed,
abortea. for any transactior”, T — T” is not possible ac-

The decision process is strictly monotonic, i.€ording to Tabld1s. Consequently re-cycle may
each new decision is sound with relation to préxist serializingT andT’in T’ — T.

vious decisions. We serialize the remaining pairs of non-

commuting transactions computing : line[d tolT0.
This relation extends». Observe here that it always

5.2 Computing a decision exists an order such that no new-cycle is added to

P : : .M
Formally Decidd) is an algorithm whose input is a
multilog M = (K, +, —,—,<,#), and whose output Breaking —-cycles minimizing the number of
is a multilogM’ = (K’,4+ ,— ,— , < ,«) such that transactions aborted is stated as follows:

1. Decid€) adds onlydecisions namely: 2 We can always extend a partial order to obtain a total order.

14

Algorithm 7 DecidgM) lower than AES and DBSM. We futher detail this re-

1: {Serializatior} sult in Sectiorb.

2: let SER =K\ SerializedM)

3: forall Te SER RST)=@do

4: forall e SERT+«T do 5.3 OBR

5: M:=MU{T' =T}

675; eSrIIEde:Z SER\{T} OBR_ is depicted in AlgorithnT]8. Each loop is

8: end for atomic.

9: choose— such that: : __
—C— Algorithm 8 OBR, code for sité
AVT,T'€SER ((T,T)) e—)V ((T',T) =) 1: M; {the site-multilog of }

10: —i=— 2: § {the site-schedule o}

11: {Cycle breaking 3: D=(9,0,0,0,0 d) {a multilog containing previ-

12: M := breakCyclegM) ous decisions

13: {Validation}

14: for all T ¢ DecidedM) do
15: M:=MU{T"}

16: end for

loop {executior}

same as Algorithral2
end loop
I|(|)op {propagation

letL := K\ DecidedM)
Definition. Consider a graph G= (V,E) where 10: AB-cast()
(i) each node in V is a transaction T of K 11: endloop
CommittedM) weighted by k, with k equals to ond? | _

L 13: loop {commitmen}

plus the number of distinct predecessors<pyhat . AB-deliver()
T has in M, and (i) for(v,v') € V, a directed edge ;5. p.— addConstraint® UL)
going from v to Vexists in E, iff v— V'isin M. Con- 1. D := DecidgD)
flict breaking is the problem of finding the minimung7: M; := M;uD
feedback vertex set of G. 18: end loop

© N gk

This problem is an NP-complete optimization . . .
problem, and the literature upon this subject is im- The second idea in OBR is to broadcast batches

portant [GJ9D]. Consequently we postulate the o transactions with atomic broadcast: lind 10. We

tence of an heuristidoreakCycle§) (line[13). ensure the growing monot_o_n|C|ty of_our dec!s!ons
with a local variable containing previous decisions
At the end of the serialization process and ti& lines[Id and_TI6. OBR ensures serializability of

conflict breaking, remaining non-aborted transalle update transactions. When adding to an execu-
tions are committed: lindSJIZ316. tion the read-only transactions, the execution may

become non-serailizable [SP07]; however our proto-
Algorithm [@ minimizes the number of:-cycles col ensures that read-only tranasctions see always a
created when serializing two writes , and reduces thefix of a serializable execution . This consistency
number of transactions aborted when breaking camiterion is called in the literature External Consis-
flicts. The abort rate of Algorithal 7 is consequentliency [Wei8T].

15

5.4 Increasing the optimism 5.5 Snapshot isolation

If we release write locks when transactions finish imilarly to what we did in SectiofL3.6, we ensures
execute, we increase the transactions throughputspfin both of our algorithms by switching from Ta-

the system. This result comes from the fact that Wee[g to Tablé3 and Tabl@ 2 in our algorithms.
batch process transactions in a single atomic broad-

cast.

On the other hand, this technique also augmeys Comparlson between AES, DBSM
the probability that a—-cycle may exist. But OBR

is designed to reduce the abort rate. Consequenlty and OBR
we may expect that the number of transactions com-

mitted increase. Algorithrll9 depicts our proposaAES DBSM and OBR all ensure serializability. In

OBRO. this section we compare them according to fault tol-
Algorithm 9 OBRO, code for sité erance and liveness, time and message complexity,
: abort rate, and implementation considerations.

1: M; {the site-multilog ofi }

2: § {the site-schedule ot

3: D {a multilog containing previous decisions

4: loop {executior} 6.1 Faulttolerance and Liveness

5: same as Algorithril4

6: end loop . DBSM and OBR are based on an atomic broadcast
7: loop {propagatioh - . . :

8 letL :— K\ DecidedM) primitive. Atomic broadcast is not solvable in asyn-
9: Lo— L\ (T €L|WST) = @} chronous systems with crash-fail proces&es [F1.P85].
' o B However in a partially synchronous system with fail-

10: AB-cast() .

ure detectors, atomic broadcast becomes solvable
11: end loop . : X
12 | even in the presence of faulty processes [CT96].
13: loop {commitmen} AES was not designed to be fault-resilient. It
14: same as Algorithril8 blocks if a site crashes, for instance (in a real-case
15: end loop

deployment) during maintenance or if a site discon-
nects.

Similarly to AESO, we release write locks at the)))
end of execution: linEl5. Doing so, queries have to N Sectiond 34 anfL 4.3 we pointed out a live-

wait before being committed, since they may see RSS Problem that could occur with AES and DB-
inconstant state: ling 9. SMR. The impact of this issue is not negligible as
during quiescent periods the commitment may block.
Interestingly Algorithm[® may also serializeConversely, our protocol is designed to not suffer
transactions in a better way than OBR. This restitis liveness issue as transactions received by atomic
is detailed in Sectiohl 6. broadcast are immediately decided.

16

6.2 Time performance reorders transactions whereas DBSM not. It fol-
lows that AES aborts more transactions than DBSM

We measure the time performance of a distribut@ghich aborts more transactions than DBSMR. We

protocol with the latency degree: the smallest nuow compare DBSMR with OBR.

ber of non-parallel communication steps required to))

solve a problem. The latency degree measures for_Flrst of all observe that Tablé 5 is a strict augmen-

a commitment protocol, the minimal causal patiftion of TableB. Consequently DBSMR computes

happens-before relation, to commit or abort a trar&lONger constraints than OBR to obtain the same re-
action. sult: serializability. But as DBSMR computes more

.) . constraints, it may also abort more transactions.
In AES a transactioil is sent epidemically to ev-

ery distant sites, and decided ortidasRecvd, T, k) Table[T illustrates this matter. We use the nota-
holds for evenk. In the best case, it requires 2 contion of [BHG81]: r1{x] models a read from transac-
munication steps. tion T1 on data itenx andw2[z] models a write by

DBSM and OBR are based on atomic broadcagt"fmsamnOnT2 on data itenz.

This communication primitive has a latency degree Table[T depicts a run during which two trans-
of 3 [CTY€]. If broadcast over IP is possible, thigctionsT1 and T2 are concurrent td3. The or-
value is reduced to 1[([PSUCO02]. der of delivery is the following: deliverT1) <

We observed previously that AES and OBReliverT2) <deliver(T3).
batch-process transactions when they commumcate.Recau now that two transactions with a non-

This idea improves substantially time-performanqﬁnpty write set. do not commute in DBSMR. Conse-
when the system becomes under medium to h'anently when DBSMR receivel2, T2 is ordered af-

charge. ter T1. The resulting schedule ®1.T2. Now when
T3 is received; DBSMR aborts it as the schedules
6.3 Message complexity T1T2T3, TLT3.T2 andT3.T1.T2 are not possi-

ble.
Message compIeX|_ty is measureq as the total numberOn the contrary our protocol does not ordet
of messages required to commit or abort a transac- . . .
. . and T2, andT3 is committed when received. The
tion. AES has a message complexity of DBSM resulting schedule 2 T3.T1
and OBR 3; 3n decreases tn if broadcast over IP 9 I

is available. T1= (Wi} T2<T1
Once again, batch-processing transactions in T2={r2ly],w2[7} T1| T3

AES and OBR, decreases the message cost to comr T3={r3[x,w3ly]} T2| T3

mit a transaction since we send them many at a time.| deliver{T1) < deliverT2) < deliver(T3)

Table 7:Unnecessary ordering of transactions with DB-
6.4 Abortrate SMR

AES aborts all concurrent conflicting transactions, DBSMR serializes concurrent writes according to
DBSM and OBR try to minimize them; and DBSMRhe order they are received with atomic broadcast. In

17

particular it does not serialize blindwrite transactions Tl={wlly,r2[Z} T1| T2
properly. T2={r2[x],w2[Z} T1| T3
T3 = {w3[x],w3[y|} T2<T3
Table[® illustrates such a situation. Three con- deliver(T1) < deliverT2,T3)
current transaction¥ 1, T2 and T3 are delivered in
the following order: deliver(T2) < deliver(T1) < Table 9:Batch-processing transactions reduce abort rate

deliverT3). DBSMR computesT2, thenT2.T1,

. T1={rlx,wlly]} T2<T1
and finally abortsT 3. T2 = {w2lx,r2[2} T1)|T3
On the contrary OBR schedul&sl and T2 in T3={w3[x,r3ly]} T2|T3

T1.T2 when it receives the blindwrite transaction
T2. Then it compute§ 1.T3.T2 whenT3 is deliv-
ered..

Table 10:Serialization in OBRO

LetT1, T2 andT3 be three transactions such that
Tl={wl]x,rily]} ~ T1|T2 T2 < T1,T24T3 andT3 — T1. OBR keeps lock
g - %%E}‘g%} % H 12 at the end of execution, consequentlg andT 3 are
deliver(T2) < déliver(Tl) < deliver(T3) ordered beford 1 is received. Now sinc&é2 — T3
does not create more>-cycles thanT3 — T2, T2
Table 8:Serialization of blindwrite transactions ~ andT3 may be serialized if2 — T3; and wheril 1
is received, the constraints3— T1,T1— T3, and
Batch-processing transactions induces a lowEB" induce thafl 1 is aborted.

abortion rate. Indeed we can compute a greater num-

ber of schedules when transactions are received se{f we consider th_e execution with QBRO' and that
by set, than one by one. T1 andT 2 are sent in the same atomic broadcagt,

andT 3 are serialized i3 — T2 as it minimizes the

To illustrate this claim, we consider a run denumber of—-cycles: all transactions are committed.
picted TableB. In this rud1 has already been re-

ceived, andl2, T3 are received within a set. Since
T2 andT 3 are batch-processed, we obtain the resugt5 Implementation considerations
ing scheduld 1.T2.T 3 where all the transactions are
committed.

Garbage collecting transactions in logs is encom-
On the contrary, suppose that we deliver in twassed in our concept of durable actions: an action
distinct messageE3 thenT 2 (it is possible sinc@2 is durable if it is decided and its predecessors-by
release its read locks, and the two atomic broadca@fsl < are durable. Consequently given a nyna
are independent). The serializationTaf andT2 can certain point of r, and a transactions € M;(t), T
lead toT2.T1, as both order§1.T2 andT2.T1 do is durable inr, if T € Durable(Mi(t)) holds, and in
not abort any transaction. But when we delifed, the remaining of the run, no new predecessors of
we must abort it. appear inv;.

We said in Sectiof B4 that OBRO may serialize In our framework according to Tablg 4, a trans-
transactions in a better way than OBR, Tdble 10 éctionT is durable in a run of AES as soon as it is
lustrates this. executed on every sites (and hence committed). This

18

is what Agrawal et al. do I JAES97]; they garbage- IceCube is based on coarse-grained constraints.
collect transactions as soon as they are committedshapiro et al. refine these constraints and introduce

. . the Action-Constraint Framework to ease the under-
In DBSM and OBR the durability of a transaction

i ication_[SBK04].
is achieved similarly. Indeed according to Talﬂ]asséandmg of replicatiori] 4l

and®, if every site execuf®, T is durable. Kemme et al. propose a novel approach to imple-
ment eager replicatiorl_ [KA0O]. This commitment

Practically however we can prune actions frofysiocol is based on the deferred update technique
the log according to an equivalence relation. For igqg atomic broadcast, but a single site decides if a

stance we keep only the latest write on a certain dgsnsaction commits or aborts, and only one transac-
tum. tion at a time is sent in a single atomic broadcast.

Wiesmann and Schiper performed a quantitative
comparison between the protocol of Kemme et al.,
DBSM and existing pessimistic approaches [WIS05].
Their work show that the deferred update technique
Holliday et al. propose a quorum-based variant ofitperforms pessimistic approaches.

AES to lower the abort rate of concurrent and con-

flicting transactions[[HSAACQ3] . This variant does

not ensure Serializability, but External Consistendg. ~ Conclusion
The drawbacks of the approach remain: concurrent

and conflicting transactions are antagonist, and #fgis paper depicts a detailed comparison between
protocol still suffers a liveness issue. two existing optimistic database replication tech-

Pedone et al. propose initially the database st@igues: AES [[AESS7] and DBSM [PGS03], and
machine approach as a reordering technique for disnew solution: OBR, that we describe in detail.
tributed databaseSJPGS$97]. Oliveira et al. revidif'ese techniques all implement the deferred update
the 1-copy equivalence of DBSM and point out thscheme, a datgbase replication technique managing
session guarantees such as read-yours-writes are?fgvhere-anytime-anyway updates.
ensured [[OPAaCA06]. To solve the problem they Our comparison emphasizes the basic building
introduce a semantic link between reads and writei®cks of the deferred update scheme viz. the execu-
causally preceding them; this solution is very simiion module, the propagation module, the certifica-
lar to what we depicted in Secti@n 21.4 to introduagn module, and the static constraints computation.
Prefix Consistent Snapshot Isolation. It furthermore alleviates the design of new variants:

The idea of considering optimistic replication a8 sr_1a|_os_hot |splated variant for AES and OBR, and an
eo_pt|m|st|c variant for OBR.

7 Related work

an optimization problem was firstly proposed in Ic
Cube [PSMO03a]. The IceCube approach was appliedIn our new commitment protocol OBR, we refine

to databases in mobile environmerits [PSMO03b], atite consistency problem: serializability or snapshot
in P2P environments [MP0D6]. However the recorisolation, as a graph problem, and solve it with an
ciliation process was always centralized to a primalnguristic: Decidg). We also batch process transac-
site. tions in a single communication primitive whereas

19

previous approaches only send transactions oneﬁﬁyaferences

one. We finally show gqualitatively that our solution
outperforms DBSM and AES with respect to latencjAES97]
message cost and abort rate.

In a shorter term, we plan to corroborate these re-
sults with an implementation into our ACF middle-
ware Telex[[Tél]. In particular we intend to analyze
the tradeoff between releasing write locks (OBRO)
and keeping them at the end of execution (OBR), ac-
cording to different workloads. [BCBT96]

9 Acknowledgment

We thank Jean-Michel Busca for his insightful re-
marks on serialialization and stable actions. [BHG87]

[CT96]

[EZPO5]

[FLO*05]

[FLP85]

20

D. Agrawal, A. El Abbadi, and R. C.
Steinke. Epidemic algorithms in repli-
cated databases (extended abstract). In
PODS '97: Proceedings of the sixteenth
ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems
pages 161-172, New York, NY, USA,
1997. ACM Press.

Anindya Basu, Bernadette Charron-Bost,
and Sam Toueg. Solving problems in
the presence of process crashes and lossy
links. Technical Report TR96-1609, Cor-
nell University, Computer Science Depart-
ment, 1996.

Philip A. Bernstein, Vassos Hadzilacos,
and Nathan GoodmarConcurrency Con-
trol and Recovery in Database Systems
Addison-Wesley, 1987.

Tushar Deepak Chandra and Sam Toueg.
Unreliable failure detectors for reliable
distributed systemsJournal of the ACM
43(2):225-267,1996.

Sameh Elnikety, Willy Zwaenepoel, and
Fernando Pedone. Database replication
using generalized snapshot isolation. In
SRDS '05: Proceedings of the 24th IEEE
Symposium on Reliable Distributed Sys-
tems (SRDS'05)pages 73-84, Washing-
ton, DC, USA, 2005. IEEE Computer So-
ciety.

Alan Fekete, Dimitrios Liarokapis, Eliz-
abeth O’Neil, Patrick O'Neil, and Den-
nis Shasha. Making snapshot isolation se-
rializable. ACM Trans. Database Syst.
30(2):492-528, 2005.

Michael J. Fischer, Nancy A. Lynch, and
Michael S. Patterson. Impossibility of dis-
tributed consensus with one faulty process.
Journal of the ACM32(2):374-382, April
1985.

[GJ90]

[Glo04]

[HSAAO3]

[KAQO]

[Lam78]

[MicO5]

[MPO6]

[OPAACAO06] Rui Oliveira, José Pereira, Jr Afranio Cor[-

[Ora97]

[PGS97]

Michael R. Garey and David S. Johnson.
Computers and Intractability; A Guide to
the Theory of NP-CompletenesaV. H.
Freeman & Co., New York, NY, USA,
1990.

Global Development Group. PostGreSQL
7.4 Documentation, 2004.

[PGS03]

JoAnne Holliday, Robert Steinke, Di-[PSM03a]
vyakant Agrawal, and Amr El Ab-

badi. Epidemic algorithms for replicated
databaseslEEE Transactions on Knowl-

edge and Data Engineerind5(5):1218—

1238, 2003.

Bettina Kemme and Gustavo Alonso. A

new approach to developing and implepsmo3b]
menting eager database replication proto-

cols. ACM Transactions on Database Sys-

tems 25(3):333-379, 2000.

Leslie Lamport. Time, clocks, and the or-
dering of events in a distributed system.
Communications of the ACM21(7):558—

565, July 1978. [PSUCO02]

Microsoft Corporation. Yukon Release
Microsoft SQL Server, 2005.

Vidal Martins and Esther Pacitti. Dynamic
and distributed reconciliation in p2p-dht
networks. InEuropean Conf. on Paral-
lel Computing (Euro-Par)Dresden, Ger-

many, 2006. Springer.
SBKO04]

reia, and Edward Archibald. Reuvisiting 1-
copy equivalence in clustered databases. In
SAC '06: Proceedings of the 2006 ACM
symposium on Applied computingages
728-732, New York, NY, USA, 2006.
ACM Press.

Oracle corporation. Data concurrency arlg KOS]

Consistency, Oracle8 Concepts, 1997.

F. Pedone, R. Guerraoui, and A. Schiper.
Transaction reordering in replicated
databases. IrProceedings of the 16th

21

Symposium on Reliable Distributed Sys-
tems (SRDS-16Durham, North Carolina,
USA, 1997.

F Pedone, R Guerraoui, and A Schiper.
The database state machine appro&is-
trib. Parallel Databases14(1):71-98, July
2003.

Nuno Preguica, Marc Shapiro, and
J. Legatheaux Martins. SqllceCube:
Automatic semantics-based reconciliation
for mobile databases. Technical Report
TR-02-2003 DI-FCT-UNL, Universidade

Nova de Lisboa, Dep. Informatica, FCT,
2003.

N. Preguica, Marc Shapiro, and J. Legath-
eaux Martins. Sqlicecube: Automatic
sematics-based reconciliation for mobile
databases. Technical Report 2, Departa-
mento de Informatica FCT/UNL, 2003.

URL=http://asc.di.fct.unl.pt/ nmp/papers/sqlice3-

rep.pdf.

Fernando Pedone, André Schiper, Péter
Urban, and David Cavin. Solving agree-
ment problems with weak ordering or-
acles. In EDCC-4: Proceedings of
the 4th European Dependable Comput-
ing Conference on Dependable Comput-
ing, pages 44-61, London, UK, 2002.
Springer-Verlag.

Marc Shapiro, Karthikeyan Bhargavan,
and Nishith Krishna. A constraint-based
formalism for consistency in replicated
systems. IrProc. 8th Int. Conf. on Prin-
ciples of Dist. Sys. (OPODIShumber
3544 in Springer-Verlag, pages 331-345,
Grenoble, France, December 2004.

Marc Shapiro and Nishith Krishna. The
three dimensions of data consistency. In
Jourrées Francophones sur la Cefence
des Donkes en Univers &parti (CDUR)
pages 54-58, CNAM, Paris, France,
November 2005.

[SPO7]

[SSPO6]

[Tel]
[Weig7]

[WS05]

Rodrigo Schmidt and Fernando Pedone. A
Formal Analysis of the Deferred Update
Technique. Technical report, 2007. Brief
Announcement in Proceedings of the 21st
International Symposium on Distributed
Computing (DISC’2007).

Nicolas Schiper, Rodrigo Schmidt, and
Fernando Pedone. Optimistic Algorithms
for Partial Database Replication. Dth
International Conference on Principles
of Distributed Systems (OPODIS’2006)
pages 81-93, 2006. Also published as a
Brief Announcement in the Proceedings of
the 20th International Symposium on Dis-
tributed Computing (DISC’2006).

Telex, http://gforge.inria.fr/projects/telex2/.

William E. Weihl. Distributed version
management for read-only actiondEEEE
Trans. Softw. Eng13(1):55-64, 1987.

Matthias Wiesmann and André Schiper.
Comparison of database replication tech-
nigues based on total order broadcast.
IEEE Transactions on Knowledge and
Data Engineering17(4):551-566, 2005.

22

	Introduction
	System Model
	The Action-Constraint Framework
	Actions, constraints and multilogs
	Schedules of multilogs and classes of schedules
	Particular subsets of multilogs and concept of soundness

	Formalizing consistency in replicated systems
	Site-multilogs and site-schedules
	Systems and Commitment Protocols
	Runs

	Consistency
	Modeling database replication
	The execution module
	The propagation module
	The certification module
	Serializability and Snapshot Isolation

	Database replication with epidemic propagation
	Overview
	Computing constraints in AES
	AES
	Correctness of our translation and observations
	The optimistic variant
	The Snapshot Isolation variant

	The Database State Machine Approach
	Static constraints in DBSM
	DBSM
	DBSMR
	Snapshot Isolation

	Optimization-Based Replication
	OBR: overview
	Computing a decision
	OBR
	Increasing the optimism
	Snapshot isolation

	Comparison between AES, DBSM and OBR
	Fault tolerance and Liveness
	Time performance
	Message complexity
	Abort rate
	Implementation considerations

	Related work
	Conclusion
	Acknowledgment

