NON ASYMPTOTIC EFFICIENCY OF A MAXIMUM LIKELIHOOD ESTIMATOR AT FINITE NUMBER OF SAMPLES

Abstract : In estimation theory, the asymptotic (in the number of samples) efficiency of the Maximum Likelihood (ML) estimator is a well known result [1]. Nevertheless, in some scenarios, the number of snapshots may be small. We recently investigated the asymptotic behavior of the Stochastic ML (SML) estimator at high Signal to Noise Ratio (SNR) and finite number of samples [2] in the array processing framework: we proved the non-Gaussiannity of the SML estimator and we obtained the analytical expression of the variance for the single source case. In this paper, we generalize these results to multiple sources, and we obtain variance expressions which demonstrate the non-efficiency of SML estimates.
Type de document :
Communication dans un congrès
European Signal Processing Conference, EUSIPCO-04, 2004, Vienne, Austria. 2004
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00444827
Contributeur : Alexandre Renaux <>
Soumis le : jeudi 7 janvier 2010 - 12:41:42
Dernière modification le : jeudi 13 septembre 2018 - 15:24:04
Document(s) archivé(s) le : vendredi 18 juin 2010 - 00:31:53

Fichier

RFB04.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00444827, version 1

Citation

Alexandre Renaux, Philippe Forster, Eric Boyer. NON ASYMPTOTIC EFFICIENCY OF A MAXIMUM LIKELIHOOD ESTIMATOR AT FINITE NUMBER OF SAMPLES. European Signal Processing Conference, EUSIPCO-04, 2004, Vienne, Austria. 2004. 〈inria-00444827〉

Partager

Métriques

Consultations de la notice

368

Téléchargements de fichiers

157