Robust Factorization Methods Using A Gaussian/Uniform Mixture Model - Archive ouverte HAL Access content directly
Journal Articles International Journal of Computer Vision Year : 2009

Robust Factorization Methods Using A Gaussian/Uniform Mixture Model

(1) , (1)
1

Abstract

In this paper we address the problem of building a class of robust factorization algorithms that solve for the shape and motion parameters with both affine (weak perspective) and perspective camera models. We introduce a Gaussian/uniform mixture model and its associated EM algorithm. This allows us to address robust parameter estimation within a data clustering approach. We propose a robust technique that works with any affine factorization method and makes it robust to outliers. In addition, we show how such a framework can be further embedded into an iterative perspective factorization scheme. We carry out a large number of experiments to validate our algorithms and to compare them with existing ones. We also compare our approach with factorization methods that use M-estimators.
Vignette du fichier
cameras.png (15.36 Ko) Télécharger le fichier Fichier principal
Vignette du fichier
ZaharescuHoraud-IJCVJuly08.pdf (1.25 Mo) Télécharger le fichier
Format : Figure, Image
Origin : Files produced by the author(s)
Loading...

Dates and versions

inria-00446987 , version 1 (14-01-2010)

Identifiers

Cite

Andrei Zaharescu, Radu Horaud. Robust Factorization Methods Using A Gaussian/Uniform Mixture Model. International Journal of Computer Vision, 2009, 81 (3), pp.240-258. ⟨10.1007/s11263-008-0169-x⟩. ⟨inria-00446987⟩
96 View
688 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More