Robust Factorization Methods Using A Gaussian/Uniform Mixture Model

Andrei Zaharescu 1 Radu Horaud 1
1 PERCEPTION - Interpretation and Modelling of Images and Videos
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : In this paper we address the problem of building a class of robust factorization algorithms that solve for the shape and motion parameters with both affine (weak perspective) and perspective camera models. We introduce a Gaussian/uniform mixture model and its associated EM algorithm. This allows us to address robust parameter estimation within a data clustering approach. We propose a robust technique that works with any affine factorization method and makes it robust to outliers. In addition, we show how such a framework can be further embedded into an iterative perspective factorization scheme. We carry out a large number of experiments to validate our algorithms and to compare them with existing ones. We also compare our approach with factorization methods that use M-estimators.
Type de document :
Article dans une revue
International Journal of Computer Vision, Springer Verlag, 2009, 81 (3), pp.240-258. 〈10.1007/s11263-008-0169-x〉
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00446987
Contributeur : Radu Horaud <>
Soumis le : jeudi 14 janvier 2010 - 10:38:14
Dernière modification le : mercredi 11 avril 2018 - 01:59:41
Document(s) archivé(s) le : vendredi 18 juin 2010 - 00:51:10

Fichiers

ZaharescuHoraud-IJCVJuly08.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Andrei Zaharescu, Radu Horaud. Robust Factorization Methods Using A Gaussian/Uniform Mixture Model. International Journal of Computer Vision, Springer Verlag, 2009, 81 (3), pp.240-258. 〈10.1007/s11263-008-0169-x〉. 〈inria-00446987〉

Partager

Métriques

Consultations de la notice

323

Téléchargements de fichiers

423